新疆农业科学 ›› 2022, Vol. 59 ›› Issue (8): 1896-1906.DOI: 10.6048/j.issn.1001-4330.2022.08.010
• 园艺特产·种质资源·贮藏保鲜加工·土壤肥料 • 上一篇 下一篇
由佳辉1(), 高林1, 冯琳骄1, 买迪妮阿依·买买提1, 周龙1(
), 李树德2
收稿日期:
2021-11-15
出版日期:
2022-08-20
发布日期:
2022-10-01
通信作者:
周龙(1976-),男,新疆人,教授,博士,研究方向为果树种质资源及栽培生理,(E-mail) zhoulong2004@126.com作者简介:
由佳辉(1996-),女,山东烟台人,硕士研究生,研究方向为果树栽培生理,(E-mail) 961328021@qq.com
基金资助:
YOU Jiahui1(), GAO Lin1, FENG Linjiao1, Maimaiti Maidiniayi1, ZHOU Long1(
), LI Shude2
Received:
2021-11-15
Published:
2022-08-20
Online:
2022-10-01
Correspondence author:
ZHOU Long(1976-), male, Xinjiang. professor, PhD, the research direction is fruit tree germplasm resources and cultivation physiology,(E-mail) zhoulong2004@126.comSupported by:
摘要:
【目的】研究叶片解剖结构指标与葡萄砧木抗旱性之间的关系,为抗旱性葡萄品种的筛选提供便捷有效的方法。【方法】以17个葡萄砧木品种多年生田间树为材料进行干旱胁迫处理(21 d),测定其茎叶相对含水量和电导率,观测比较其叶片解剖结构特征,并结合主成分分析法和聚类分析法对各葡萄砧木品种的抗旱性进行了综合评价。【结果】干旱胁迫导致17个葡萄砧木品种的叶片相对含水量大幅度下降,茎相对含水量则出现小幅度的上升和下降两种趋势,叶片和茎的相对电导率均呈现不同程度的增加;而各项叶片解剖结构指标对干旱胁迫敏感程度的顺序为栅海比>细胞结构紧实度>细胞结构疏松度>上表皮细胞厚度>叶片厚度>下表皮细胞厚度>栅栏组织厚度>海绵组织厚度。【结论】叶片解剖结构指标与葡萄砧木品种的抗旱性关系密切,可用来鉴定其抗旱性。1103P、5BB和河岸9号的抗旱性极强,3309C、河岸2号、河岸10号和山河4号的抗旱性较强,1613C、Dogridge、贝达和山河1号的抗旱性中等,山河3号、河岸7号、Riparia Glorie、101-14MG和河岸4号的抗旱性较弱,Ganzia的抗旱性最弱。
中图分类号:
由佳辉, 高林, 冯琳骄, 买迪妮阿依·买买提, 周龙, 李树德. 17个葡萄砧木品种叶片解剖结构与抗旱性分析[J]. 新疆农业科学, 2022, 59(8): 1896-1906.
YOU Jiahui, GAO Lin, FENG Linjiao, Maimaiti Maidiniayi, ZHOU Long, LI Shude. Analysis of Leaf Anatomical Structure and Drought Resistance of 17 Grape Rootstock Varieties[J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1896-1906.
品种 Varieties | 亲本 Parents | 品种 Varieties | 亲本 Parents |
---|---|---|---|
山河1号Amurensis×Riparia1 | 山葡萄×河岸葡萄 | 101-14MG | 河岸葡萄×沙地葡萄 |
山河3号Amurensis×Riparia3 | 山葡萄×河岸葡萄 | 3309C | 河岸葡萄×沙地葡萄 |
山河4号Amurensis×Riparia4 | 山葡萄×河岸葡萄 | 1103P | 冬葡萄×沙地葡萄 |
河岸2号Riparia2 | 河岸葡萄 | 贝达Beta | 河岸葡萄×美洲葡萄 |
河岸4号Riparia4 | 河岸葡萄 | Dogridge | 香宾尼葡萄 |
河岸7号Riparia7 | 河岸葡萄 | 5BB | 冬葡萄×河岸葡萄 |
河岸9号Riparia9 | 河岸葡萄 | 光荣Riparia Glorie | 河岸葡萄 |
河岸10号Riparia10 | 河岸葡萄 | Ganzia | 不详 |
1613C | Solonis和Othello |
表 1 葡萄砧木品种及其亲本
Table 1 Test Grape rootstock varieties and their parents
品种 Varieties | 亲本 Parents | 品种 Varieties | 亲本 Parents |
---|---|---|---|
山河1号Amurensis×Riparia1 | 山葡萄×河岸葡萄 | 101-14MG | 河岸葡萄×沙地葡萄 |
山河3号Amurensis×Riparia3 | 山葡萄×河岸葡萄 | 3309C | 河岸葡萄×沙地葡萄 |
山河4号Amurensis×Riparia4 | 山葡萄×河岸葡萄 | 1103P | 冬葡萄×沙地葡萄 |
河岸2号Riparia2 | 河岸葡萄 | 贝达Beta | 河岸葡萄×美洲葡萄 |
河岸4号Riparia4 | 河岸葡萄 | Dogridge | 香宾尼葡萄 |
河岸7号Riparia7 | 河岸葡萄 | 5BB | 冬葡萄×河岸葡萄 |
河岸9号Riparia9 | 河岸葡萄 | 光荣Riparia Glorie | 河岸葡萄 |
河岸10号Riparia10 | 河岸葡萄 | Ganzia | 不详 |
1613C | Solonis和Othello |
品种名称 Varieties name | 叶片相对含水量 RWCL(%) | 茎相对含水量 RWCS(%) | ||
---|---|---|---|---|
CK | 处理Treatment | CK | 处理Treatment | |
101-14MG | 76.99±3.90 Aabc | 42.99±3.96 BCDdef | 91.32±1.65 Aab | 92.21±0.28 ABCDabcde |
1613C | 75.25 ±3.65 Aabc | 51.45±1.87 ABCDabcde | 82.06±4.55 Ab | 94.60±2.47 ABCabc |
3309C | 77.83±5.87 Aabc | 55.88±3.01 ABab | 92.91±4.81 Aa | 88.93±1.42 BCDdef |
1103P | 69.45±4.49 Aabc | 61.26±5.93 Aa | 85.42±6.54 Aab | 93.17±3.39 ABCDabcd |
贝达Beta | 71.66±3.18 Aabc | 51.08±3.30 ABCDabcde | 87.67±5.24 Aab | 97.37±1.08 Aa |
Dogridge | 78.64±3.14 Aab | 49.85±4.40 ABCDbcdef | 86.45±4.08 Aab | 89.24±3.82 BCDEcdef |
Ganzia | 77.20±1.11Aabc | 40.38±4.59 Df | 95.06±0.69 Aa | 86.63±2.45 DEef |
Riparia Glorie | 79.76±4.40 Aab | 44.31±4.93 BCDcdef | 90.05±1.83 Aab | 90.95±4.50 ABCDEbcdef |
河岸10号Riparia10 | 76.13±5.13 Aabc | 53.97±2.89 ABCDabc | 86.35±1.01 Aab | 95.51±1.94 ABab |
河岸9号Riparia9 | 69.71±4.14 Aabc | 56.37±2.43 ABab | 86.72±2.48 Aab | 96.25±1.24 ABab |
河岸7号Riparia7 | 70.99±2.73 Aabc | 46.46±3.88 BCDbcdef | 95.43±2.36 Aa | 87.81±1.85 CDEdef |
河岸4号Riparia4 | 78.81±3.25 Aab | 41.74±3.20 CDef | 82.69±3.28 Ab | 83.63±0.95 Eg |
河岸2号Riparia2 | 78.37±2.44 Aab | 54.58±1.32 ABCab | 88.11±2.26 Aab | 86.43±2.85 Df |
山河4号Amurensis×Riparia4 | 68.50±4.37 Ac | 52.26±5.61 ABCDabcd | 92.96±1.30 Aa | 96.42±0.20 ABab |
山河3号Amurensis×Riparia3 | 79.95±3.29 Aa | 47.61±3.24 ABCDbcdef | 86.37±3.20 Aab | 95.99±0.91 ABab |
山河1号Amurensis×Riparia1 | 68.18±4.68 Abc | 48.16±4.94 ABCDbcdef | 87.45±3.17 Aab | 91.71±3.15 ABCDbcdef |
5BB | 70.37±5.37 Aabc | 56.38±2.35 ABab | 87.19±0.88 Aab | 90.97±2.74 ABCDEbcdef |
表 2 17个葡萄砧木品种茎叶相对含水量
Table 2 The relative water content of stem and leaf of 17 grape rootstock varieties
品种名称 Varieties name | 叶片相对含水量 RWCL(%) | 茎相对含水量 RWCS(%) | ||
---|---|---|---|---|
CK | 处理Treatment | CK | 处理Treatment | |
101-14MG | 76.99±3.90 Aabc | 42.99±3.96 BCDdef | 91.32±1.65 Aab | 92.21±0.28 ABCDabcde |
1613C | 75.25 ±3.65 Aabc | 51.45±1.87 ABCDabcde | 82.06±4.55 Ab | 94.60±2.47 ABCabc |
3309C | 77.83±5.87 Aabc | 55.88±3.01 ABab | 92.91±4.81 Aa | 88.93±1.42 BCDdef |
1103P | 69.45±4.49 Aabc | 61.26±5.93 Aa | 85.42±6.54 Aab | 93.17±3.39 ABCDabcd |
贝达Beta | 71.66±3.18 Aabc | 51.08±3.30 ABCDabcde | 87.67±5.24 Aab | 97.37±1.08 Aa |
Dogridge | 78.64±3.14 Aab | 49.85±4.40 ABCDbcdef | 86.45±4.08 Aab | 89.24±3.82 BCDEcdef |
Ganzia | 77.20±1.11Aabc | 40.38±4.59 Df | 95.06±0.69 Aa | 86.63±2.45 DEef |
Riparia Glorie | 79.76±4.40 Aab | 44.31±4.93 BCDcdef | 90.05±1.83 Aab | 90.95±4.50 ABCDEbcdef |
河岸10号Riparia10 | 76.13±5.13 Aabc | 53.97±2.89 ABCDabc | 86.35±1.01 Aab | 95.51±1.94 ABab |
河岸9号Riparia9 | 69.71±4.14 Aabc | 56.37±2.43 ABab | 86.72±2.48 Aab | 96.25±1.24 ABab |
河岸7号Riparia7 | 70.99±2.73 Aabc | 46.46±3.88 BCDbcdef | 95.43±2.36 Aa | 87.81±1.85 CDEdef |
河岸4号Riparia4 | 78.81±3.25 Aab | 41.74±3.20 CDef | 82.69±3.28 Ab | 83.63±0.95 Eg |
河岸2号Riparia2 | 78.37±2.44 Aab | 54.58±1.32 ABCab | 88.11±2.26 Aab | 86.43±2.85 Df |
山河4号Amurensis×Riparia4 | 68.50±4.37 Ac | 52.26±5.61 ABCDabcd | 92.96±1.30 Aa | 96.42±0.20 ABab |
山河3号Amurensis×Riparia3 | 79.95±3.29 Aa | 47.61±3.24 ABCDbcdef | 86.37±3.20 Aab | 95.99±0.91 ABab |
山河1号Amurensis×Riparia1 | 68.18±4.68 Abc | 48.16±4.94 ABCDbcdef | 87.45±3.17 Aab | 91.71±3.15 ABCDbcdef |
5BB | 70.37±5.37 Aabc | 56.38±2.35 ABab | 87.19±0.88 Aab | 90.97±2.74 ABCDEbcdef |
品种名称 Varieties name | 叶片相对电导率 RECL(%) | 茎相对电导率 RECS(%) | ||
---|---|---|---|---|
CK | 处理Treatment | CK | 处理Treatment | |
101-14MG | 19.16±2.50 Aa | 51.62±3.09 ABabcd | 8.86±1.19 Ce | 41.18±3.46 ABabcd |
1613C | 14.28±0.48 Aabc | 42.67±3.85 CDEabcdef | 11.26±2.60 BCbcde | 36.73±2.99 ABCbcd |
3309C | 12.64±2.58 Ac | 37.86±2.82 Edef | 13.81±0.80 ABCbcde | 37.12±2.42 ABCcde |
1103P | 19.13±3.88 Abc | 39.28±2.95 ABabcd | 11.74±1.62 BCbcde | 34.36±2.66 Ce |
贝达Beta | 19.61±2.75 Aabc | 48.02±3.88 Aab | 19.10±2.89 Aa | 44.62±3.81 ABabc |
Dogridge | 12.10±0.42 Aabc | 41.68±3.87 Eef | 15.35±1.59 ABCabc | 41.81±2.74 ABabcd |
Ganzia | 11.89±1.40 Aabc | 45.33±2.09 Eef | 12.87±2.29 ABCbcde | 46.74±3.75 Aab |
Riparia Glorie | 13.54±0.28 Aabc | 45.32±3.11 DEbcdef | 13.21±0.56 ABCbcde | 45.05±2.39 ABabc |
河岸10号Riparia10 | 18.26±1.84 Aabc | 44.17±2.55 ABCDabcde | 14.17±3.55 ABCbcd | 38.38±3.18 ABCbcd |
河岸9号Riparia9 | 14.54±1.69 Ac | 38.30±1.95 BCDEabcdef | 13.87±1.29 ABCbcde | 37.08±3.53 ABCcde |
河岸7号Riparia7 | 18.05±2.32 Aabc | 49.49±2.80 ABCDabcde | 13.47±3.75 ABCbcde | 45.29±2.67 ABabc |
河岸4号Riparia4 | 17.94±0.66 Aab | 50.74±3.03 ABCDabcde | 14.58±1.32 ABCabc | 48.29±2.61 Aa |
河岸2号Riparia2 | 12.72±2.42 Abc | 39.30±3.11 Ecdef | 9.31±1.01 Cde | 33.86±2.07 BCde |
山河4号Amurensis×Riparia4 | 19.23±2.90 Aabc | 46.44±2.84 ABabc | 11.26±0.82 BCbcde | 36.28±2.61 ABCcde |
山河3号Amurensis×Riparia3 | 18.77±0.52 Aabc | 49.97±2.85 ABCabcd | 9.20±0.42 Cde | 39.12±3.60 ABCabcd |
山河1号Amurensis×Riparia1 | 10.70±2.06 Aabc | 40.63±2.69 Ee | 16.18±2.64 ABab | 44.16±2.46 ABabc |
5BB | 20.46±2.01 Aabc | 42.75±1.13 Aa | 11.06±2.75 BCcde | 32.79±2.53 BCde |
表 3 17个葡萄砧木品种茎叶相对电导率
Table 3 The relative electrical conductivity of stem and leaf of 17 grape rootstock varieties
品种名称 Varieties name | 叶片相对电导率 RECL(%) | 茎相对电导率 RECS(%) | ||
---|---|---|---|---|
CK | 处理Treatment | CK | 处理Treatment | |
101-14MG | 19.16±2.50 Aa | 51.62±3.09 ABabcd | 8.86±1.19 Ce | 41.18±3.46 ABabcd |
1613C | 14.28±0.48 Aabc | 42.67±3.85 CDEabcdef | 11.26±2.60 BCbcde | 36.73±2.99 ABCbcd |
3309C | 12.64±2.58 Ac | 37.86±2.82 Edef | 13.81±0.80 ABCbcde | 37.12±2.42 ABCcde |
1103P | 19.13±3.88 Abc | 39.28±2.95 ABabcd | 11.74±1.62 BCbcde | 34.36±2.66 Ce |
贝达Beta | 19.61±2.75 Aabc | 48.02±3.88 Aab | 19.10±2.89 Aa | 44.62±3.81 ABabc |
Dogridge | 12.10±0.42 Aabc | 41.68±3.87 Eef | 15.35±1.59 ABCabc | 41.81±2.74 ABabcd |
Ganzia | 11.89±1.40 Aabc | 45.33±2.09 Eef | 12.87±2.29 ABCbcde | 46.74±3.75 Aab |
Riparia Glorie | 13.54±0.28 Aabc | 45.32±3.11 DEbcdef | 13.21±0.56 ABCbcde | 45.05±2.39 ABabc |
河岸10号Riparia10 | 18.26±1.84 Aabc | 44.17±2.55 ABCDabcde | 14.17±3.55 ABCbcd | 38.38±3.18 ABCbcd |
河岸9号Riparia9 | 14.54±1.69 Ac | 38.30±1.95 BCDEabcdef | 13.87±1.29 ABCbcde | 37.08±3.53 ABCcde |
河岸7号Riparia7 | 18.05±2.32 Aabc | 49.49±2.80 ABCDabcde | 13.47±3.75 ABCbcde | 45.29±2.67 ABabc |
河岸4号Riparia4 | 17.94±0.66 Aab | 50.74±3.03 ABCDabcde | 14.58±1.32 ABCabc | 48.29±2.61 Aa |
河岸2号Riparia2 | 12.72±2.42 Abc | 39.30±3.11 Ecdef | 9.31±1.01 Cde | 33.86±2.07 BCde |
山河4号Amurensis×Riparia4 | 19.23±2.90 Aabc | 46.44±2.84 ABabc | 11.26±0.82 BCbcde | 36.28±2.61 ABCcde |
山河3号Amurensis×Riparia3 | 18.77±0.52 Aabc | 49.97±2.85 ABCabcd | 9.20±0.42 Cde | 39.12±3.60 ABCabcd |
山河1号Amurensis×Riparia1 | 10.70±2.06 Aabc | 40.63±2.69 Ee | 16.18±2.64 ABab | 44.16±2.46 ABabc |
5BB | 20.46±2.01 Aabc | 42.75±1.13 Aa | 11.06±2.75 BCcde | 32.79±2.53 BCde |
图 1 17个葡萄砧木品种叶片解剖结构 注:1为101-14MG;2为1613C;3为3309C;4为1103P;5为贝达;6为Dogridge;7为Ganzia;8为Riparia Glorie;9为河岸10号;10为河岸9号;11为河岸7号;12为河岸4号;13为河岸2号;14为山河4号;15为山河3号;16为山河1号;17为5BB。A为CK(土壤含水量为25.88%);B为Treatment(土壤含水量为7.64%)。
Fig. 1 Anatomical structure of leaves of 17 grape rootstock varieties Note: 1 for 101-14MG; 2 for 1613C; 3 for 3309C; 4 for 1103P; 5 for Beta; 6 for Dogridge; 7 for Ganzia; 8 for Riparia Glorie; 9 for Riparia10; 10 for Riparia9; 11 for Riparia7; 12 for Riparia4; 13 for Riparia2; 14 for Amurensis×Riparia4; 15 for Amurensis×Riparia3; 16 for Amurensis×Riparia1; 17 for 5BB. A for CK(Soil moisture content is 25.88%); B for Treatment(Soil moisture content is 7.64%).
品种名称 Varieties name | 上表皮细胞厚度 TUE(%) | 下表皮细胞厚度 TLE(%) | 叶片 厚度 TL(%) | 栅栏组织 厚度 TP(%) | 海绵组织 厚度 TS(%) | 栅海比 R/S(%) | 细胞结构 紧实度 CTR(%) | 细胞结构 疏松度 SR(%) |
---|---|---|---|---|---|---|---|---|
101-14MG | 95.13 | 97.28 | 102.41 | 96.78 | 110.55 | 87.54 | 94.50 | 107.95 |
1613C | 118.20 | 102.42 | 115.24 | 121.27 | 109.78 | 110.46 | 105.23 | 95.26 |
3309C | 93.55 | 122.93 | 103.31 | 124.25 | 90.21 | 137.73 | 120.27 | 87.32 |
1103P | 120.97 | 104.51 | 101.88 | 111.13 | 93.84 | 118.42 | 109.08 | 92.11 |
贝达Beta | 110.76 | 102.51 | 101.19 | 103.29 | 101.22 | 102.05 | 102.08 | 100.03 |
Dogridge | 113.69 | 111.71 | 81.33 | 106.71 | 124.33 | 85.82 | 131.21 | 152.89 |
Ganzia | 80.26 | 104.07 | 99.03 | 93.38 | 118.92 | 78.53 | 94.29 | 120.08 |
Riparia Glorie | 103.96 | 92.81 | 103.18 | 109.94 | 99.26 | 110.76 | 106.55 | 96.20 |
河岸10号Riparia10 | 102.59 | 137.89 | 96.13 | 97.69 | 89.23 | 109.48 | 101.63 | 92.82 |
河岸9号Riparia9 | 94.31 | 90.52 | 130.41 | 142.74 | 132.07 | 108.08 | 109.45 | 101.27 |
河岸7号Riparia7 | 82.30 | 123.90 | 112.59 | 99.03 | 125.41 | 78.96 | 87.95 | 111.38 |
河岸4号Riparia4 | 104.56 | 85.17 | 73.76 | 61.64 | 75.49 | 81.66 | 83.57 | 102.34 |
河岸2号Riparia2 | 105.14 | 108.79 | 113.64 | 107.62 | 109.33 | 98.44 | 94.71 | 96.21 |
山河4号Amurensis×Riparia4 | 130.28 | 77.39 | 100.18 | 107.21 | 95.43 | 112.34 | 107.01 | 95.25 |
山河3号Amurensis×Riparia3 | 95.68 | 89.37 | 109.61 | 110.27 | 112.09 | 98.38 | 100.60 | 102.25 |
山河1号Amurensis×Riparia1 | 130.35 | 111.24 | 144.20 | 143.41 | 143.91 | 99.66 | 99.46 | 99.80 |
5BB | 83.43 | 112.32 | 84.63 | 80.75 | 86.24 | 93.63 | 95.42 | 101.91 |
平均Average | 103.83 | 104.40 | 104.28 | 106.89 | 106.90 | 100.70 | 102.53 | 103.24 |
表 4 17个葡萄砧木品种叶片解剖结构中抗旱性相关指标的抗旱系数
Table 4 The drought-resistance coefficient of the indexes related to drought-resistance in the anatomical structure of leaves of 17 grape rootstock varieties
品种名称 Varieties name | 上表皮细胞厚度 TUE(%) | 下表皮细胞厚度 TLE(%) | 叶片 厚度 TL(%) | 栅栏组织 厚度 TP(%) | 海绵组织 厚度 TS(%) | 栅海比 R/S(%) | 细胞结构 紧实度 CTR(%) | 细胞结构 疏松度 SR(%) |
---|---|---|---|---|---|---|---|---|
101-14MG | 95.13 | 97.28 | 102.41 | 96.78 | 110.55 | 87.54 | 94.50 | 107.95 |
1613C | 118.20 | 102.42 | 115.24 | 121.27 | 109.78 | 110.46 | 105.23 | 95.26 |
3309C | 93.55 | 122.93 | 103.31 | 124.25 | 90.21 | 137.73 | 120.27 | 87.32 |
1103P | 120.97 | 104.51 | 101.88 | 111.13 | 93.84 | 118.42 | 109.08 | 92.11 |
贝达Beta | 110.76 | 102.51 | 101.19 | 103.29 | 101.22 | 102.05 | 102.08 | 100.03 |
Dogridge | 113.69 | 111.71 | 81.33 | 106.71 | 124.33 | 85.82 | 131.21 | 152.89 |
Ganzia | 80.26 | 104.07 | 99.03 | 93.38 | 118.92 | 78.53 | 94.29 | 120.08 |
Riparia Glorie | 103.96 | 92.81 | 103.18 | 109.94 | 99.26 | 110.76 | 106.55 | 96.20 |
河岸10号Riparia10 | 102.59 | 137.89 | 96.13 | 97.69 | 89.23 | 109.48 | 101.63 | 92.82 |
河岸9号Riparia9 | 94.31 | 90.52 | 130.41 | 142.74 | 132.07 | 108.08 | 109.45 | 101.27 |
河岸7号Riparia7 | 82.30 | 123.90 | 112.59 | 99.03 | 125.41 | 78.96 | 87.95 | 111.38 |
河岸4号Riparia4 | 104.56 | 85.17 | 73.76 | 61.64 | 75.49 | 81.66 | 83.57 | 102.34 |
河岸2号Riparia2 | 105.14 | 108.79 | 113.64 | 107.62 | 109.33 | 98.44 | 94.71 | 96.21 |
山河4号Amurensis×Riparia4 | 130.28 | 77.39 | 100.18 | 107.21 | 95.43 | 112.34 | 107.01 | 95.25 |
山河3号Amurensis×Riparia3 | 95.68 | 89.37 | 109.61 | 110.27 | 112.09 | 98.38 | 100.60 | 102.25 |
山河1号Amurensis×Riparia1 | 130.35 | 111.24 | 144.20 | 143.41 | 143.91 | 99.66 | 99.46 | 99.80 |
5BB | 83.43 | 112.32 | 84.63 | 80.75 | 86.24 | 93.63 | 95.42 | 101.91 |
平均Average | 103.83 | 104.40 | 104.28 | 106.89 | 106.90 | 100.70 | 102.53 | 103.24 |
指标 Indicators | 主成分 Principal component | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
叶片相对含水量RWCL | -0.072 | -0.309 | -0.009 | 0.163 |
叶片相对电导率RWCS | 0.098 | 0.300 | 0.013 | -0.069 |
茎相对含水量RECL | 0.069 | 0.124 | 0.070 | 0.448 |
茎相对电导率RECS | 0.079 | 0.308 | -0.002 | -0.134 |
上表皮细胞厚度TUE | -0.007 | 0.080 | -0.030 | 0.712 |
下表皮细胞厚度TLE | 0.163 | -0.048 | -0.115 | 0.287 |
叶片厚度TL | 0.191 | -0.099 | 0.193 | 0.001 |
栅栏组织厚度TP | 0.126 | -0.048 | 0.348 | -0.017 |
海绵组织厚度TS | 0.236 | -0.092 | 0.054 | -0.047 |
栅海比R/S | -0.137 | 0.030 | 0.339 | 0.085 |
细胞结构紧密度CTR | 0.130 | -0.046 | -0.341 | -0.021 |
细胞结构疏松度SR | -0.240 | 0.082 | -0.039 | 0.066 |
特征值Eigenvalue | 3.944 | 2.991 | 2.422 | 1.172 |
贡献率Contribution ratio(%) | 32.870 | 24.922 | 20.181 | 9.766 |
累计贡献率Cumulative contribution rate(%) | 32.870 | 57.793 | 77.974 | 87.739 |
表 5 17个葡萄砧木品种各项指标的主成分载荷矩阵、特征值和贡献率
Table 5 Principal component loading matrix, characteristic value and contribution rate of 17 grape rootstock varieties of various indicators
指标 Indicators | 主成分 Principal component | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
叶片相对含水量RWCL | -0.072 | -0.309 | -0.009 | 0.163 |
叶片相对电导率RWCS | 0.098 | 0.300 | 0.013 | -0.069 |
茎相对含水量RECL | 0.069 | 0.124 | 0.070 | 0.448 |
茎相对电导率RECS | 0.079 | 0.308 | -0.002 | -0.134 |
上表皮细胞厚度TUE | -0.007 | 0.080 | -0.030 | 0.712 |
下表皮细胞厚度TLE | 0.163 | -0.048 | -0.115 | 0.287 |
叶片厚度TL | 0.191 | -0.099 | 0.193 | 0.001 |
栅栏组织厚度TP | 0.126 | -0.048 | 0.348 | -0.017 |
海绵组织厚度TS | 0.236 | -0.092 | 0.054 | -0.047 |
栅海比R/S | -0.137 | 0.030 | 0.339 | 0.085 |
细胞结构紧密度CTR | 0.130 | -0.046 | -0.341 | -0.021 |
细胞结构疏松度SR | -0.240 | 0.082 | -0.039 | 0.066 |
特征值Eigenvalue | 3.944 | 2.991 | 2.422 | 1.172 |
贡献率Contribution ratio(%) | 32.870 | 24.922 | 20.181 | 9.766 |
累计贡献率Cumulative contribution rate(%) | 32.870 | 57.793 | 77.974 | 87.739 |
砧木品种名 Grape Rootstock Varieties | 各主成分的得分 Score of each principal component | 综合得分(F) Composite Scores | 综合排名 Ranking incomposite scores | |||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||
101-14MG | 49.841 | -21.514 | 45.998 | 8.214 | 24.056 | 15 |
1613C | 56.967 | -24.718 | 53.479 | 9.074 | 27.632 | 8 |
3309C | 61.747 | -26.916 | 53.670 | 7.439 | 28.660 | 4 |
1103P | 65.579 | -28.656 | 60.014 | 7.441 | 31.061 | 1 |
贝达Beta | 56.628 | -24.359 | 48.533 | 9.847 | 26.555 | 10 |
Dogridge | 56.100 | -24.690 | 51.481 | 8.395 | 26.780 | 9 |
Ganzia | 45.410 | -19.314 | 41.871 | 10.878 | 22.368 | 17 |
Riparia Glorie | 50.763 | -21.894 | 44.872 | 8.609 | 24.078 | 14 |
河岸10号Riparia10 | 59.105 | -25.456 | 50.250 | 10.821 | 27.675 | 6 |
河岸9号Riparia9 | 61.889 | -27.129 | 57.691 | 6.072 | 29.425 | 3 |
河岸7号Riparia7 | 51.209 | -22.175 | 48.297 | 8.145 | 24.901 | 13 |
河岸4号Riparia4 | 49.422 | -21.188 | 45.256 | 9.796 | 23.997 | 16 |
河岸2号Riparia2 | 59.190 | -25.749 | 53.133 | 8.735 | 28.054 | 5 |
山河4号Amurensis×Riparia4 | 58.637 | -25.300 | 51.279 | 9.717 | 27.658 | 7 |
山河3号Amurensis×Riparia3 | 53.172 | -22.954 | 47.552 | 8.915 | 25.330 | 12 |
山河1号Amurensis×Riparia1 | 54.086 | -23.393 | 50.580 | 8.596 | 26.209 | 11 |
5BB | 63.251 | -27.427 | 57.979 | 9.485 | 30.297 | 2 |
表 6 主成分综合评价结果
Table 6 Results of principal component comprehensive evaluation
砧木品种名 Grape Rootstock Varieties | 各主成分的得分 Score of each principal component | 综合得分(F) Composite Scores | 综合排名 Ranking incomposite scores | |||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | |||
101-14MG | 49.841 | -21.514 | 45.998 | 8.214 | 24.056 | 15 |
1613C | 56.967 | -24.718 | 53.479 | 9.074 | 27.632 | 8 |
3309C | 61.747 | -26.916 | 53.670 | 7.439 | 28.660 | 4 |
1103P | 65.579 | -28.656 | 60.014 | 7.441 | 31.061 | 1 |
贝达Beta | 56.628 | -24.359 | 48.533 | 9.847 | 26.555 | 10 |
Dogridge | 56.100 | -24.690 | 51.481 | 8.395 | 26.780 | 9 |
Ganzia | 45.410 | -19.314 | 41.871 | 10.878 | 22.368 | 17 |
Riparia Glorie | 50.763 | -21.894 | 44.872 | 8.609 | 24.078 | 14 |
河岸10号Riparia10 | 59.105 | -25.456 | 50.250 | 10.821 | 27.675 | 6 |
河岸9号Riparia9 | 61.889 | -27.129 | 57.691 | 6.072 | 29.425 | 3 |
河岸7号Riparia7 | 51.209 | -22.175 | 48.297 | 8.145 | 24.901 | 13 |
河岸4号Riparia4 | 49.422 | -21.188 | 45.256 | 9.796 | 23.997 | 16 |
河岸2号Riparia2 | 59.190 | -25.749 | 53.133 | 8.735 | 28.054 | 5 |
山河4号Amurensis×Riparia4 | 58.637 | -25.300 | 51.279 | 9.717 | 27.658 | 7 |
山河3号Amurensis×Riparia3 | 53.172 | -22.954 | 47.552 | 8.915 | 25.330 | 12 |
山河1号Amurensis×Riparia1 | 54.086 | -23.393 | 50.580 | 8.596 | 26.209 | 11 |
5BB | 63.251 | -27.427 | 57.979 | 9.485 | 30.297 | 2 |
[1] | 贺普超. 葡萄学[M]. 北京: 中国农业出版社, 1992. |
HE Puchao. Viticulture[M]. Beijing: China Agriculture Press, 1992. | |
[2] | 陈豫英, 冯建民, 陈楠, 等. 西北地区东部可利用降水的时空变化特征[J]. 干旱区地理, 2012, 35(1):56-66. |
CHEN Yuying, FENG Jianmin, CHEN Nan, et al. Spatio-temporal variation characteristic of the utilizable precipitation in eastern part of Northwest China[J]. Arid Land Geography, 2012, 35(1):56-66. | |
[3] | 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 22(S1):118-127. |
LI Fanglan, BAO Weikai. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Chinese Bulletin of Botany, 2005, 22(S1):118-127. | |
[4] | 李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1):88-98. |
LI Yonghua, LU Qi, WU Bo, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1):88-98.
DOI URL |
|
[5] | 吴亚维, 郑伟, 杨华, 等. 4个苹果新品种(材料)叶片形态解剖结构与抗旱性综合评价[J]. 贵州农业科学, 2014, 42(11):217-221. |
WU Yawei, ZHENG Wei, YANG Hua, et al. Comprehensive evalution on leaf morphological anatomy structure and drought resistance of four new apple varieties/lines[J]. Guizhou Agricultural Sciences, 2014, 42(11):217-221. | |
[6] | 樊卫国, 李迎春. 部分梨砧木的叶片组织结构与抗旱性的关系[J]. 果树学报, 2007, 25(1):17-21. |
FAN Weiguo, LI Yingchun. Study on the relationship between lamina anatomical structure and drought resistance of pear rootstocks[J]. Journal of Fruit Science, 2007, 25(1):17-21. | |
[7] | 郭素娟, 武燕奇. 板栗叶片解剖结构特征及其与抗旱性的关系[J]. 西北农林科技大学学报(自然科学版), 2018, 46(9):51-59. |
GUO Sujuan, WU Yanqi. Leaf anatomical structure characteristics and drought resistance of Chinese chestnut[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46(9):51-59. | |
[8] | 王金印, 郝喜龙, 刘志华. 葡萄叶片和根系解剖结构与抗旱性关系[J]. 北方园艺, 2017,(12):43-45. |
WANG Jinyin, HAO Xilong, LIU Zhihua. Relationship between anatomical structure of grape leaf and root and drought resistance[J]. Northern Horticulture, 2017,(12):43-45. | |
[9] | 厉广辉, 张昆, 刘风珍, 等. 不同抗旱性花生品种的叶片形态及生理特性[J]. 中国农业科学, 2014, 47(4):644-654. |
LI Guanghui, ZHANG Kun, LIU Fengzhen, et al. Morphological and physiological traits of leaf in different drought resistant peanut cultivars[J]. Scientia Agricultura Sinica, 2014, 47(4):644-654. | |
[10] | 潘昕, 邱权, 李吉跃, 等. 基于叶片解剖结构对青藏高原25种灌木的抗旱性评价[J]. 华南农业大学学报, 2015, 36(2):61-68. |
PAN Xin, QIU Quan, LI Jiyue, et al. Drought resistance evaluation based on leaf anatomical structures of 25 shrubs on the Tibetan Plateau[J]. Journal of South China Agricultural University, 2015, 36(2):61-68. | |
[11] | 王静, 刘海隆, 王玲. 气候变化背景下玛纳斯河流域绿洲适宜规模研究[J]. 干旱区地理, 2019, 42(1):113-120. |
WANG Jing, LIU Hailong, WANG Ling. Suitable oasis scale in Manas River Basin in the context of climate change[J]. Arid Land Geography, 2019, 42(1):113-120. | |
[12] | 张蜀秋. 植物生理学实验技术教程[M]. 北京: 科学出版社, 2011. |
ZHANG Shuqiu. Plant physiology[M]. Beijing: Science Press, 2011. | |
[13] |
Bouslama M, Schapaugh W T. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance[J]. Crop Science, 1984, 24(5):933-937.
DOI URL |
[14] | 方炎明. 植物学[M]. 北京: 中国林业出版社, 2006. |
FANG Yanming. Botany[M]. Beijing: China Forestry Press, 2006. | |
[15] | 许雯博, 彭玉梅, 王清风, 等. 葡萄幼苗在PEG-6000模拟干旱胁迫条件下生理生化的响应[J]. 新疆农业科学, 2014, 51(8):1504-1511. |
XU Wenbo, PENG Yumei, WANG Qingfeng, et al. Response of polythylene glycol(PEG-6000) simulated water stress on characteristics of the physiological indicators in grape[J]. Xinjiang Agricultural Sciences, 2014, 51(8):1504-1511. | |
[16] |
MARSHALL J, RUTLEDGE R, BLUMWALD E, et al. Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol[J]. Tree Physiology, 2000, 20(10):701-707.
PMID |
[17] | 潘学军, 张文娥, 杨秀永, 等. 贵州喀斯特山区野生葡萄实生苗抗旱机理研究[J]. 西北植物学报, 2010, 30(5):955-961. |
PAN Xuejun, ZHANG Wene, YANG Xiuyong, et al. Drought-resistance mechanism of four kinds of wild Vitis seedlings in karst regions of Guizhou province[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(5):955-961. | |
[18] | R.H.WARING, S.W.RUNNING. Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old‐growth Douglas‐fir[J]. Plant Cell & Environment, 1978, 1:131-140. |
[19] | 孙琪, 蔡年辉, 和润喜, 等. 干旱胁迫下云南松苗木的水分及其生理变化[J]. 西部林业科学, 2017, 46(2):96-100. |
SUN Qi, CAI Nianhui, HE Runxi, et al. Effects of drought stress on the seedling physiology of Pinus yunnanensis Franch.[J]. Journal of West China Forestry Science, 2017, 46(2):96-100. | |
[20] | 温国, 孙皓浦, 党江波, 等. 多倍体与二倍体枇杷叶片特征及抗旱性初步分析[J]. 果树学报, 2019, 36(8):968-979. |
WEN Guo, SUN Haopu, DANG Jiangbo, et al. A preliminary study on leaf characteristics and drought resistance of polyploid and diploid loquat[J]. Journal of Fruit Science, 2019, 36(8):968-979. | |
[21] | 徐扬, 陈小红, 赵安玖. 川西高原4种苹果属植物叶片解剖结构与其抗旱性分析[J]. 西北植物学报, 2015, 35(11):2227-2234. |
XU Yang, CHEN Xiaohong, ZHAO Anjiu. Drought resistance evaluation and leaf anatomical structures of four species of Malus plants in Western Sichuan Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(11):2227-2234. | |
[22] | 孟庆杰, 王光全, 董绍锋, 等. 桃叶片组织解剖结构特征与其抗旱性关系的研究[J]. 干旱地区农业研究, 2004, 22(3):123-126. |
MENG Qingjie, WANG Guangquan, DONG Shaofeng, et al. Relation between leaf tissue parameters and drought resistance of peaches[J]. Agricultural Research in the Arid Areas, 2004, 22(3):123-126. | |
[23] | 逯永满, 姜彦成. 中国海罂粟属(Glaucium L.)叶片特征及其抗旱性[J]. 新疆农业科学, 2010, 47(10):2063-2067. |
LU Yongman, JIANG Yancheng. Studies on characters and drought resistance of leaf of Chinese Glaucium L.[J]. Xinjiang Agricultural Sciences, 2010, 47(10):2063-2067. | |
[24] | 李嘉诚, 罗达, 史彦江, 等. 平欧杂种榛叶片解剖结构的抗旱性研究[J]. 西北植物学报, 2019, 39(3):462-471. |
LI Jiacheng, LUO Da, SHI Yanjiang, et al. Study on drought resistance of leaf anatomical structure of Corylus heterophylla×Corylus avellana[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3):462-471. |
[1] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[2] | 李金瑶, 徐贵青, 王立生, 吕平, 石东方, 郑伟华. 氮肥对头状沙拐枣幼苗抗旱性的影响[J]. 新疆农业科学, 2024, 61(9): 2330-2340. |
[3] | 苗雨, 陈翠霞, 马艳明, 邢国芳, 董裕生, 陈智军, 王仙, 向莉. 276份中亚大麦种质资源表型性状的遗传多样性分析[J]. 新疆农业科学, 2024, 61(8): 1888-1895. |
[4] | 姚诗雨, 王杰, 黄文娟, 焦培培, 彭承志, 熊丹, 陈月, 王鑫. 不同盐渍环境对胡杨叶解剖结构及离子含量的影响[J]. 新疆农业科学, 2024, 61(8): 2004-2013. |
[5] | 王一钊, 杨其志, 刘玉秀, 阿拉依·努尔卡马力, Vladimir Shvidchenko, 张正茂. PEG胁迫下评价哈萨克斯坦不同春小麦种质苗期的抗旱性[J]. 新疆农业科学, 2024, 61(6): 1352-1360. |
[6] | 张宏芝, 王立红, 时佳, 孔德鹏, 王重, 高新, 李剑峰, 王春生, 夏建强, 樊哲儒, 张跃强. 土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1041-1047. |
[7] | 杨璐, 王娜, 范少丽, 程平, 李宏, 汪阳东. 黑桑种质资源表型性状变异特征分析[J]. 新疆农业科学, 2024, 61(5): 1172-1181. |
[8] | 高沐甜, 肖艳梅, 廖志杰, 黄成. 玉米-大刍草渗入系群体籽粒及品质性状的综合评价[J]. 新疆农业科学, 2024, 61(4): 885-891. |
[9] | 杨祥波, 陈亮宇, 杨松楠, 陈喜凤, 邢伟明, 李雪莹, 丛炜轩, 臧振原, 臧远波, 张君. 东北春大豆种质资源表型分析及综合性评价[J]. 新疆农业科学, 2024, 61(12): 2921-2933. |
[10] | 徐斌, 王征, 宋占腾, 玛尔哈巴·帕尔哈提, 朱靖蓉, 车凤斌, 李永海, 武凤艳, 苗福红. 11份野生沙棘种质资源果实品质分析与综合评价[J]. 新疆农业科学, 2024, 61(12): 3020-3031. |
[11] | 程云霞, 谭占明, 郭玲, 李雯雯, 杜佳庚. 不同干旱胁迫对野生山杏和人工栽培山杏品种根茎叶解剖结构的影响[J]. 新疆农业科学, 2024, 61(11): 2684-2692. |
[12] | 于秋红, 许盼云, 郭春苗, 迪利夏提·哈斯木, 木巴热克·阿尤普. 扁桃耐旱砧木木质部解剖结构与栓塞特性的关系分析[J]. 新疆农业科学, 2024, 61(11): 2693-2704. |
[13] | 唐丽, 田可川, 张昕宁, 刘黎, 阿布力克木·阿地力, 杨智, 杨存明, 张晓雪, 黄锡霞, 田月珍. 不同生长阶段和田羊体重体尺指标的聚类与主成分分析[J]. 新疆农业科学, 2024, 61(11): 2853-2860. |
[14] | 汪天玲, 侯献飞, 施俊杰, 孙全喜, 贾东海, 顾元国, 单世华, 苗昊翠, 李强. 67份匍匐型花生种质资源遗传多样性分析[J]. 新疆农业科学, 2024, 61(1): 42-54. |
[15] | 欧阳单华, 赵康, 宋东博, 柳自清, 郭旺珍, 刘燕, 顾爱星, 阿扎提古丽·麦麦提图尔, 艾力卡尔江·艾麦尔. 35份棉花品系对黄萎病抗性鉴定及综合分析[J]. 新疆农业科学, 2024, 61(1): 9-18. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 73
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||