新疆农业科学 ›› 2019, Vol. 56 ›› Issue (2): 197-206.DOI: 10.6048/j.issn.1001-4330.2019.02.001
• • 下一篇
唐亚萍1, 李宁1, 王娟1, 王柏柯1, 杨生保1, 郭斌2, 杨涛1, 郭春苗1, 马凯1, 刘君3, 王欢4, 余庆辉1
收稿日期:
2018-12-06
出版日期:
2019-02-20
发布日期:
2019-05-22
作者简介:
唐亚萍(1986-),女,助理研究员,硕士,研究方向为蔬菜遗传育种,(E-mail) tangyaping624@sina.com
基金资助:
TANG Ya-ping1, LI Ning1, WANG Juan1, WANG Bai-ke1, YANG Sheng-bao1, GUO Bin2, YANG Tao1, GUO Chun-miao1, MA Kai1, LIU Jun3, WANG Huan4, YU Qing-hui1
Received:
2018-12-06
Published:
2019-02-20
Online:
2019-05-22
Supported by:
摘要: 【目的】综述国内外相关高质量番茄基因组研究进展,比较与分析第一、二、三代测序技术的研究成果,为番茄重要性状功能基因的挖掘及新品种选育提供参考。【方法】收集查阅国内外相关官网、文献资料和现有研究前沿技术,整理汇总并进行对比,分析番茄基因组测序技术研究进展。【结果】栽培番茄S. lycopersicum Heinz 1706基因组利用一代和二代测序技术8年完成测序和组装。3个野生番茄基因组采用二代测序技术3年完成,三代测序技术缩短了测序时间,并且在二代测序技术的基础上提高了基因组的质量,提供了完整性高达96.46%的野生番茄品种潘那利的参考基因组。【结论】测序技术推动了番茄基因组研究,三代测序技术与一、二代技术相比,在测序速度、基因序列读长和准确性方面显著提高,也使基因组组装更加精确。
中图分类号:
唐亚萍, 李宁, 王娟, 王柏柯, 杨生保, 郭斌, 杨涛, 郭春苗, 马凯, 刘君, 王欢, 余庆辉. 番茄基因组研究进展[J]. 新疆农业科学, 2019, 56(2): 197-206.
TANG Ya-ping, LI Ning, WANG Juan, WANG Bai-ke, YANG Sheng-bao, GUO Bin, YANG Tao, GUO Chun-miao, MA Kai, LIU Jun, WANG Huan, YU Qing-hui. Advances in Tomato Genome Research[J]. Xinjiang Agricultural Sciences, 2019, 56(2): 197-206.
[1] | Gebhardt, & Christiane. (2016). The historical role of species from the solanaceae plant family in genetic research. Theoretical and Applied Genetics,129(12):2281-2294. |
[2] | Martin, G. , Brommonschenkel, S. , Chunwongse, J. , Frary, A. , Ganal, M. , & Spivey, R. , et al. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262(5138):1,432-1,436. |
[3] | Frary, A., Nesbitt, T.C., Grandillo, S., et al. (2000). Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289(5476):85-88. . |
[4] | Fridman, E. , Pleban, T. , & Zamir, D. . (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9):4,718-4,723. |
[5] | Maxam, A. M. , & Gilbert, W. . (1977). A new method for sequencing dna. Proceedings of the National Academy of Sciences, 74(2):560-564. |
[6] | Sanger, F. , Nicklen, S. , & Coulson, A. R. . (1977). Dna sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences,74(12):5,463-5,467. |
[7] | Melamede, R.J. Automatable process for sequencing nucleotide[J]. 1985, US patent. |
[8] | Margulies, M.,Egholm, M., Altman, W.E., et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057): 376-380. |
[9] | Fedurco, & M. (2006). BTA, a novel reagent for dna attachment on glass and efficient generation of solid-phase amplified dna colonies. Nucleic Acids Research, 34(3):e22-e22. |
[10] | Turcatti, G. , Romieu, A. , Fedurco, M. , & Tairi, A. P. . (2008). A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for dna sequencing by synthesis. Nucleic Acids Research, 36(4):e25. |
[11] | Shendure, J., Porreca, G.J., Reppas, N.B., et al. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science,309(5741), 1,728-1,732. |
[12] | Koren, S. , Harhay, G. P. , Smith, T. P. , Bono, J. L. , Harhay, D. M. , & Mcvey, S. D. , et al. (2013). Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biology,14(9):R101. |
[13] | Koren, S. , & Phillippy, A. M. . (2015). One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Current Opinion in Microbiology,23:110-120. |
[14] | Levene, M.J., Kodach, J., Turner, S.W., et a1. (2003). Zero mode wave guides for single-molecule analysis at high concentrations. Science, 299(5607): 682-686. |
[15] | Eid, J., Fehr, A., Gray, J., et a1. (2009). Real-time DNA sequencing from single polymerase molecules. Science,323(5910): 133-138. |
[16] | Stoddart, D., Heron, A.J., Mikhailova, E., et a1. (2009). Single nucleotide discrimination in immobilized DNA oligo nucleotides with a biological nanopore. Proceeding of the National Academy Sciences of the United States of America,106(19): 7,702-7,707. |
[17] | Korlach, J., Turner, S.W. (2012). Going beyond five bases in DNA sequencing. Current Opinion in Structural Biology,22(3): 251-261. |
[18] | Phillippy A.M. (2017). New advances in sequence assembly. Genome Research, 27(25): xi-xiii. |
[19] | Huddleston, J., Chaisson, M.J.P., Steingerg, K.M., et al. (2017). Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Research, 27(5):677-685. |
[20] | Merker, J.D., WengerA.M., Sneddon, T., et al. (2018). Long-read genome sequencing identifies causal structural variation in a Mendelian disease running title: long-read WGS identifies causal SV in mendelian disease. Genet Med,20(1):159-163. |
[21] | Sedlazeck, F.J., Rescheneder, P., Smolka, M., et al. (2018).Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods,15: 461-468. |
[22] | Pennisi, E. (2017). New technologies boost genome quality. Science,357(6346):10-11. |
[23] | Jiao, W.B., Schneeberger, K. (2017). The impact of third generation genomic technologies on plant genome assembly. Current Opinion in Plant Biololgy,36:64-70. |
[24] | Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., et al. (2017). The genome of Chenopodium quinoa . Nature,542(7641):307-312. |
[25] | Jiao, Y., Peluso, P., Shi, J., et al. (2017). The complex sequence landscape of maize revealed by single molecule technologies. Nature, 546: 524-527. |
[26] | Schnable, P.S., Ware, D., Fulton, R.S., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science,326(5956): 1,112-1,115. |
[27] | Hirsch, C.N., Hirsch, C.D., Brohammer, A.B., et al. (2016).Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell,28(11): 2,700-2,714. |
[28] | Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012,485:635-641. |
[29] | Aflitos, S., Schijlen, E., De, J. H., De, R. D., Smit, S., & Finkers, R., et al. (2015). Exploring genetic variation in the tomato (solanum section lycopersicon) clade by whole-genome sequencing. Plant Journal for Cell & Molecular Biology,80(1):136-148. |
[30] | Bolger, A., Scossa, F., Bolger, M.E., et al. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii . Nature Genetics, 46(9):1,034-1,038. |
[31] | Strickler, S. R. , Bombarely, A. , Munkvold, J. D. , York, T. , & Mueller, L. A. . (2015). Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. PeerJ, 3(2):e793. |
[32] | Schmidt, M.H., Vogel, A., Denton, A.K., et al. (2017). De Novo Assembly of a New Solanum pennellii Accession UsingNanopore Sequencing. Plant Cell,29(10): 2,336-2,348. |
[33] | Rothan, C., Diouf, I., Causse, M. (2019). Trait discovery and editing in tomato [J]. The Plant Journal., doi: 10.1111/tpj.14152. |
[34] | Sauvage, C., Segura, V., Bauchet, G., et al. (2014). Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiology,165: 1,120-1,132. |
[35] | Causse, M., Desplat, N., Pascual, L., et al. (2013). Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics,14:719. |
[36] | Lin, T., Zhu, G., Zhang, J., et al. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics,46:1,220-1,226. |
[37] | Tieman, D., Zhu, G., Resende, M.F.J., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science,355(6323):391-394 |
[38] | Bauchet, G., Grenier, S., Samson, N., et al. (2017). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist,215: 624-641. |
[39] | Zhu, G. Wang, S., Huang, Z., et al. (2018). Rewiring of the fruit metabolome in tomato breeding. Cell, 172(1-2):249-261. |
[40] | Blanca, J., Montero-Pau, J., Sauvage, C., at al. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16: 257. |
[41] | Sahu, K.K., Chattopadhyay, D. (2017). Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping. BMC Genomics,18: 430. |
[42] | Alseekh, S., Tong, H., Scossa, F., et al. (2017). Canalization of Tomato Fruit Metabolism. The Plant Cell, 29: 2753-2765. |
[43] | Bauchet, G., Grenier, S., Samson, N., et al. (2017). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist,215: 624-641. |
[44] | Gaiero, P., Vaio, M., Peters, S.A., et al. (2018). Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Annals of Botany, doi: 10.1093/aob/ mcy186. |
[45] | Li, R. , Li, Y. , Zheng, H. , Luo, R. , Zhu, H. , & Li, Q. , et al. (2009). Building the sequence map of the human pan-genome. NATURE BIOTECHNOLOGY, 28(1):57-63. |
[46] | Sherman, R.M., Forman, J., Antonescu, V., et al. (2019). Author correction: assembly of a pan-genome from deep sequencing of 910 humans of african descent. Nature genetics, 51(2), 364. doi.org/10.1038/s41588-018-0273-y. |
[47] | Li, Y.H., Zhou, G., Ma, J., et al. (2014). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 32(10):1,045-1,052. |
[48] | Golicz, A. A. , Bayer, P. E. , Barker, G. C. , Edger, P. P. , Kim, H. R. , & Martinez, P. A. , et al. (2016). The pangenome of an agronomically important crop plant brassica oleracea. Nature Communications,7, 13390. |
[49] | Gordon, S. P. , Contreras-Moreira, B. , Woods, D. P. , Des Marais, D. L. , Burgess, D. , & Shu, S. , et al. (2017). Extensive gene content variation in the brachypodium distachyon pan-genome correlates with population structure. Nature Communications,8(1):2184. |
[50] | Zhao, Q. , Feng, Q. , Lu, H. , Li, Y. , Wang, A. , & Tian, Q. , et al. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics,50(2):278-284. |
[51] | Stein, J. C. , Yu, Y. , Copetti, D. , Zwickl, D. J. , & Wing, R. A. . (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus oryza. Nature Genetics, 50(W1):285-296. |
[52] | Causse, M., Giovannoni, J., Bouzayen, M., et al. The tomato genome[M]. Germany, Springer, 2016. |
[53] | Yu, Q. H. , Wang, B. , Li, N. , Tang, Y. , Yang, S. , & Yang, T. , et al. (2017). Crispr/cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports,7(1):11874. |
[54] | Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Capturing chromosome conformation. Science,295(5558):1,306-1,311. |
[55] | Simonis M., Klous P., Splinter E., et al. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics,38(11):1,348-1,354. |
[56] | Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., & Honan, T. A., et al. (2006). Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Research,16: 1,299-1,309. |
[57] | Wang, M. , Wang, P. , Lin, M. , Ye, Z. , Li, G. , & Tu, L. , et al. (2018). Evolutionary dynamics of 3d genome architecture following polyploidization in cotton. Nature Plants, 4(2):90-97 |
[58] | Dong, Q. , Li, N. , Li, X. , Yuan, Z. , Xie, D. , & Wang, X. , et al. (2018). Genome-wide hi-c analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal. DOI:10.1111/tpj.13,925 |
[59] | Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M., & Jacobsen, S. E. (2014). Genome-wide hi-c analyses in wild-type and mutants reveal high-resolution chromatin interactions in arabidopsis. Molecular Cell,55(5):694-707. |
[1] | 徐毛毛, 高杰, 李君明, 李鑫, 刘磊, 潘峰. 20个番茄商业品种群体的多样性分析[J]. 新疆农业科学, 2024, 61(9): 2191-2196. |
[2] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
[3] | 田超, 李玉姗, 马越, 宋羽. 不同浓度苦豆子浸提液对连作番茄生长及土壤肥力的影响[J]. 新疆农业科学, 2024, 61(9): 2203-2210. |
[4] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[5] | 奚瑞, 陈怡佳, 李宁, 余庆辉, 王强, 秦勇. 外源2, 4-表芸苔素内酯对盐胁迫下不同盐敏感型番茄种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1983-1992. |
[6] | 张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053. |
[7] | 王亚铜, 郭婧婧, 杨芬芬, 牛莹莹, 章世奎, 樊国全, 王尚栋, 耿文娟. 利用流式细胞术鉴定3种李属植物基因组大小及染色体倍性检测[J]. 新疆农业科学, 2024, 61(7): 1673-1681. |
[8] | 张福林, 李宁, 刘宇翔, 陈怡佳, 余庆辉, 闫会转. 外源2,4-表油菜素内酯及褪黑素对樱桃番茄果实品质和果皮形态结构的影响[J]. 新疆农业科学, 2024, 61(7): 1738-1747. |
[9] | 阮向阳, 蒲敏, 肖乐乐, 罗林毅, 陈瑞杰, 李然, 陈国永, 冶军. 镁肥施用策略对加工番茄产量和品质的影响[J]. 新疆农业科学, 2024, 61(4): 916-925. |
[10] | 李春雨, 谭占明, 程云霞, 高源, 马全会, 李志国, 马兴. 水肥耦合对沙培番茄叶绿素含量以及光合特性日变化的影响[J]. 新疆农业科学, 2024, 61(12): 3006-3013. |
[11] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
[12] | 刘会芳, 王强, 韩宏伟, 庄红梅, 王浩, 常亚南. 盐、碱及复合盐碱胁迫对番茄幼苗光合特性及抗氧化酶活性的影响[J]. 新疆农业科学, 2024, 61(11): 2658-2666. |
[13] | 赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675. |
[14] | 李春雨, 谭占明, 程云霞, 束胜, 马全会, 何淼, 段轶帆, 吴慧. 不同加工番茄品种的农艺性状比较分析[J]. 新疆农业科学, 2024, 61(11): 2676-2683. |
[15] | 刘佳慧, 李红, 汪晶晶, 常持银. 新疆番茄制品出口贸易高质量发展的测度与评价[J]. 新疆农业科学, 2024, 61(10): 2593-2600. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 720
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 435
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||