Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (5): 1244-1252.DOI: 10.6048/j.issn.1001-4330.2023.05.024
• Microbes·Animal Husbandry Veterinarian • Previous Articles Next Articles
HUA Lanlan1,2(), LIN Qing2, SHI Hongling2, WANG Na3, LOU Kai2, LI Jinyu1(
), HUO Xiangdong2(
)
Received:
2022-09-30
Online:
2023-05-20
Published:
2023-05-22
Correspondence author:
HUO Xiangdong (1974-), male, native place: Gansu Province. associate professor, research filed: microbial resources, (E-mail) Supported by:
华兰兰1,2(), 林青2, 时红玲2, 王娜3, 娄恺2, 李金玉1(
), 霍向东2(
)
通讯作者:
霍向东(1974-),男,甘肃人,副研究员,博士,研究方向为微生物资源,(E-mail) 作者简介:
华兰兰(1994-),女,安徽人,硕士研究生,研究方向为应用生物化学与分子生物学,(E-mail)1370708071@qq.com
基金资助:
CLC Number:
HUA Lanlan, LIN Qing, SHI Hongling, WANG Na, LOU Kai, LI Jinyu, HUO Xiangdong. Analysis of biological properties and chemical components of Inonotus obliquus in xinjiang[J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1244-1252.
华兰兰, 林青, 时红玲, 王娜, 娄恺, 李金玉, 霍向东. 新疆野生桦褐孔菌生物学特性及化学成分分析[J]. 新疆农业科学, 2023, 60(5): 1244-1252.
Fig.1 Morphological characteristics of Inonotus obliquus strain HS819 Note:A: Sclerotium; B: Upper view of colony on BA; C: Upper view of Colony on enriched PDA; D: Reverse view of colony on enriched PDA; E: Mycelia (Bars=20 μm)
Fig.3 Average well color development (AWCD) of metabolized carbon sources by Inonotus obliquus strain HS819 in biolog FF microplate based on 16 d incubation (n=3)
孔 Well | 碳源 Carbon source | 代谢能力 Metabolic Capacity |
---|---|---|
E1 | D-核糖D-Ribose | +++ |
F1 | γ-氨基丁酸γ-Aminobutyric Acid | + |
H1 | 甘氨酰-L-谷氨酸Gycyl-L-Glutamic Acid | +++ |
A2 | 吐温80 Tween 80 | ++ |
E2 | 水杨苷Salicin | +++ |
C3 | D-葡萄醛酸D-Glucuronic Acid | ++ |
D3 | D-松三糖D-Melezitose | + |
F3 | 反丁烯二酸Fumaric Acid | ++ |
G3 | 琥珀酰胺酸Succinamic Acid | ++ |
G4 | 琥珀酸Succinic Acid | ++ |
B5 | D-果糖D-Fructose | + |
C5 | 肝糖Glycogen | + |
G5 | 琥珀酸单甲酯Succinic Acid Mono-Methyl Ester | ++ |
C6 | m-纤维醇m-Inositol | + |
D6 | β-甲基-D-半乳糖苷β-Methyl-D- Galactoside | +++ |
F6 | P-羟基苯乙酸p-Hydroxy-phenyla cetic Acid | ++ |
G6 | N-乙酰-L-谷氨酸N-Acetyl-L-Glutamic Acid | ++ |
B7 | D-半乳糖D-Galactose | + |
F7 | α-酮戊二酸α-Ketoglutaric Acid | +++ |
A8 | D-阿拉伯糖D-Arabinose | ++ |
B8 | D-半乳糖醛酸D-Galacturonic Acid | + |
C8 | α-D-乳糖α-D-Lactose | + |
D8 | β-甲基-D-葡萄糖苷β-Methyl-D-Glucoside | + |
A9 | L-阿拉伯糖L-Arabinose | ++ |
B9 | 龙胆二糖Gentiobiose | ++ |
E9 | D-海藻糖D-Trehalose | ++ |
C10 | 麦芽糖醇Maltitol | ++ |
A11 | 熊果苷Arbutin | ++ |
G11 | L-天冬氨酸L-Aspartic Acid | ++ |
A12 | D-纤维二糖D-Cellobiose | +++ |
B12 | α-D-葡萄糖α-D-Glucose | ++ |
E12 | D-木糖D-Xylose | ++ |
G12 | L-谷氨酸L-Glutamic Acid | +++ |
Tab.1 Carbon substrate utilization profiling of Inonotus obliquus strain HS819 in biolog FF microplate
孔 Well | 碳源 Carbon source | 代谢能力 Metabolic Capacity |
---|---|---|
E1 | D-核糖D-Ribose | +++ |
F1 | γ-氨基丁酸γ-Aminobutyric Acid | + |
H1 | 甘氨酰-L-谷氨酸Gycyl-L-Glutamic Acid | +++ |
A2 | 吐温80 Tween 80 | ++ |
E2 | 水杨苷Salicin | +++ |
C3 | D-葡萄醛酸D-Glucuronic Acid | ++ |
D3 | D-松三糖D-Melezitose | + |
F3 | 反丁烯二酸Fumaric Acid | ++ |
G3 | 琥珀酰胺酸Succinamic Acid | ++ |
G4 | 琥珀酸Succinic Acid | ++ |
B5 | D-果糖D-Fructose | + |
C5 | 肝糖Glycogen | + |
G5 | 琥珀酸单甲酯Succinic Acid Mono-Methyl Ester | ++ |
C6 | m-纤维醇m-Inositol | + |
D6 | β-甲基-D-半乳糖苷β-Methyl-D- Galactoside | +++ |
F6 | P-羟基苯乙酸p-Hydroxy-phenyla cetic Acid | ++ |
G6 | N-乙酰-L-谷氨酸N-Acetyl-L-Glutamic Acid | ++ |
B7 | D-半乳糖D-Galactose | + |
F7 | α-酮戊二酸α-Ketoglutaric Acid | +++ |
A8 | D-阿拉伯糖D-Arabinose | ++ |
B8 | D-半乳糖醛酸D-Galacturonic Acid | + |
C8 | α-D-乳糖α-D-Lactose | + |
D8 | β-甲基-D-葡萄糖苷β-Methyl-D-Glucoside | + |
A9 | L-阿拉伯糖L-Arabinose | ++ |
B9 | 龙胆二糖Gentiobiose | ++ |
E9 | D-海藻糖D-Trehalose | ++ |
C10 | 麦芽糖醇Maltitol | ++ |
A11 | 熊果苷Arbutin | ++ |
G11 | L-天冬氨酸L-Aspartic Acid | ++ |
A12 | D-纤维二糖D-Cellobiose | +++ |
B12 | α-D-葡萄糖α-D-Glucose | ++ |
E12 | D-木糖D-Xylose | ++ |
G12 | L-谷氨酸L-Glutamic Acid | +++ |
类别 Cate- gory | 化合物 Compound | 相对含量 Relative content (%) | ||
---|---|---|---|---|
菌核 Sclero- tium | 菌丝体 Myce- lium | 发酵液 Fermen- tation broth | ||
烃类 Hydroc arbons | 2,6,10-三甲基十三烷 | - | - | 1.07 |
二十碳基环己烷 | - | 0.19 | 0.51 | |
2-甲基庚烷 | - | 0.16 | 2.14 | |
5-甲基壬烷 | - | 0.15 | - | |
环己基十九烷 | - | 0.27 | 0.91 | |
1,2-环氧十六烷 | - | 0.77 | - | |
2-甲基二十五烷 | - | 0.17 | 0.93 | |
十五烷基环己烷 | - | 0.14 | - | |
正三十六烷 | 1.33 | 0.3 | 6.58 | |
十一烷基环戊烷 | - | 0.17 | - | |
正十八烷 | - | 0.14 | - | |
α-衣兰油烯 | - | 0.2 | - | |
十四烷 | - | 0.15 | 0.63 | |
四十四烷 | 0.38 | - | 0.53 | |
正二十烷 | 1.01 | 0.26 | 4.91 | |
正二十一烷 | 0.46 | - | 0.99 | |
正十七烷 | 0.22 | - | - | |
1-碘二十烷 | 1.2 | - | - | |
1-十九碳烯 | 0.23 | 0.42 | 0.97 | |
3-甲基十七烷 | 0.28 | - | 0.97 | |
植烷 | 1 | - | - | |
1-碘癸烷 | 0.48 | - | - | |
11-甲基二十烷 | 0.39 | 0.37 | 7.11 | |
正五十四烷 | - | 2.49 | ||
三十五烷 | 1.68 | - | 7.44 | |
正二十四烷 | 1.33 | 0.41 | 4.89 | |
十六烷环己烷 | 0.37 | - | - | |
正四十烷 | 1.44 | 0.13 | 3.81 | |
正十七烷基环己烷 | 0.22 | - | 1.27 | |
1,14-二溴十四烷 | 0.32 | - | - | |
N-二十八烷 | 1.66 | - | - | |
三十四烷 | 1.68 | 0.19 | 1.87 | |
5,5-二乙基十五烷 | 1.48 | - | - | |
角鲨烯 | 4.53 | - | 3.99 | |
酸类 Acids | 九十六烷酸 | 0.45 | - | - |
肉豆蔻酸 | 2.75 | 0.99 | 3.06 | |
棕榈酸 | 7.4 | 18.51 | 3.3 | |
棕榈油酸 | 2.31 | 0.48 | - | |
硬脂酸 | 5.87 | 3.89 | - | |
酸类 Acids | 油酸 | 28.76 | 1.36 | |
反油酸 | 21.15 | 7.4 | - | |
亚油酸 | 24.39 | - | - | |
亚麻酸 | 1.75 | - | - | |
醇类 Alcohols | 1-二十三烷醇 | - | 0.32 | 1.37 |
1-二十二醇 | 0.3 | - | - | |
二十四烷醇 | 0.4 | - | - | |
二十七烷醇 | 1.55 | 0.72 | 3.05 | |
鲸蜡醇 | - | - | 0.78 | |
叶绿醇 | 1.32 | - | 1.87 | |
二十六烷醇 | 0.25 | - | 1.17 | |
酯类 Esters | 油酸乙酯 | - | 1.13 | - |
十八碳酸乙烯基酯 | - | - | 5.04 | |
十六酸乙酯 | - | 0.14 | - | |
乙酸三十烷酯 | - | 1.06 | - | |
乙酸二十八酯 | 1.06 | 1.06 | 1.06 | |
邻苯二甲酸二丁酯 | 0.21 | - | ||
(Z)-十八碳-9-烯内酯 | - | 27.12 | - | |
四十三烷基七氟丁酸酯 | - | - | 2.36 | |
4-甲氧基乙酸十三烷基酯 | - | - | 4.43 | |
邻苯二甲酸异丁基环己基甲酯 | 0.47 | - | - | |
其它 Others | 壬基十四烷基醚 | 0.48 | 0.29 | 1.28 |
辛基十四烷基醚 | - | - | 0.64 | |
十二烷基七聚乙二醇醚 | - | - | 2.57 | |
二十烷基壬基醚 | 2.7 | 0.29 | - | |
硬脂烷醛 | 0.61 | - | - | |
顺-7-十四烯醛 | 1.42 | - | - | |
N-乙基花生酰胺 | 0.33 | - | - | |
N,N-二甲基辛酰胺 | - | 0.53 | - | |
肉豆蔻酰胺 | 0.5 | - | 2.1 | |
棕榈酰胺 | - | 0.41 | ||
2,4-二叔丁基酚 | 0.85 | 0.23 | 2.16 | |
依兰酚 | - | 1.55 | 8.39 | |
萘酚 | - | 0.32 | - |
Tab.2 Qualitative and quantitative results of chemical components in sclerotium, mycelium and fermentation broth of Inonotus obliquus strain HS819
类别 Cate- gory | 化合物 Compound | 相对含量 Relative content (%) | ||
---|---|---|---|---|
菌核 Sclero- tium | 菌丝体 Myce- lium | 发酵液 Fermen- tation broth | ||
烃类 Hydroc arbons | 2,6,10-三甲基十三烷 | - | - | 1.07 |
二十碳基环己烷 | - | 0.19 | 0.51 | |
2-甲基庚烷 | - | 0.16 | 2.14 | |
5-甲基壬烷 | - | 0.15 | - | |
环己基十九烷 | - | 0.27 | 0.91 | |
1,2-环氧十六烷 | - | 0.77 | - | |
2-甲基二十五烷 | - | 0.17 | 0.93 | |
十五烷基环己烷 | - | 0.14 | - | |
正三十六烷 | 1.33 | 0.3 | 6.58 | |
十一烷基环戊烷 | - | 0.17 | - | |
正十八烷 | - | 0.14 | - | |
α-衣兰油烯 | - | 0.2 | - | |
十四烷 | - | 0.15 | 0.63 | |
四十四烷 | 0.38 | - | 0.53 | |
正二十烷 | 1.01 | 0.26 | 4.91 | |
正二十一烷 | 0.46 | - | 0.99 | |
正十七烷 | 0.22 | - | - | |
1-碘二十烷 | 1.2 | - | - | |
1-十九碳烯 | 0.23 | 0.42 | 0.97 | |
3-甲基十七烷 | 0.28 | - | 0.97 | |
植烷 | 1 | - | - | |
1-碘癸烷 | 0.48 | - | - | |
11-甲基二十烷 | 0.39 | 0.37 | 7.11 | |
正五十四烷 | - | 2.49 | ||
三十五烷 | 1.68 | - | 7.44 | |
正二十四烷 | 1.33 | 0.41 | 4.89 | |
十六烷环己烷 | 0.37 | - | - | |
正四十烷 | 1.44 | 0.13 | 3.81 | |
正十七烷基环己烷 | 0.22 | - | 1.27 | |
1,14-二溴十四烷 | 0.32 | - | - | |
N-二十八烷 | 1.66 | - | - | |
三十四烷 | 1.68 | 0.19 | 1.87 | |
5,5-二乙基十五烷 | 1.48 | - | - | |
角鲨烯 | 4.53 | - | 3.99 | |
酸类 Acids | 九十六烷酸 | 0.45 | - | - |
肉豆蔻酸 | 2.75 | 0.99 | 3.06 | |
棕榈酸 | 7.4 | 18.51 | 3.3 | |
棕榈油酸 | 2.31 | 0.48 | - | |
硬脂酸 | 5.87 | 3.89 | - | |
酸类 Acids | 油酸 | 28.76 | 1.36 | |
反油酸 | 21.15 | 7.4 | - | |
亚油酸 | 24.39 | - | - | |
亚麻酸 | 1.75 | - | - | |
醇类 Alcohols | 1-二十三烷醇 | - | 0.32 | 1.37 |
1-二十二醇 | 0.3 | - | - | |
二十四烷醇 | 0.4 | - | - | |
二十七烷醇 | 1.55 | 0.72 | 3.05 | |
鲸蜡醇 | - | - | 0.78 | |
叶绿醇 | 1.32 | - | 1.87 | |
二十六烷醇 | 0.25 | - | 1.17 | |
酯类 Esters | 油酸乙酯 | - | 1.13 | - |
十八碳酸乙烯基酯 | - | - | 5.04 | |
十六酸乙酯 | - | 0.14 | - | |
乙酸三十烷酯 | - | 1.06 | - | |
乙酸二十八酯 | 1.06 | 1.06 | 1.06 | |
邻苯二甲酸二丁酯 | 0.21 | - | ||
(Z)-十八碳-9-烯内酯 | - | 27.12 | - | |
四十三烷基七氟丁酸酯 | - | - | 2.36 | |
4-甲氧基乙酸十三烷基酯 | - | - | 4.43 | |
邻苯二甲酸异丁基环己基甲酯 | 0.47 | - | - | |
其它 Others | 壬基十四烷基醚 | 0.48 | 0.29 | 1.28 |
辛基十四烷基醚 | - | - | 0.64 | |
十二烷基七聚乙二醇醚 | - | - | 2.57 | |
二十烷基壬基醚 | 2.7 | 0.29 | - | |
硬脂烷醛 | 0.61 | - | - | |
顺-7-十四烯醛 | 1.42 | - | - | |
N-乙基花生酰胺 | 0.33 | - | - | |
N,N-二甲基辛酰胺 | - | 0.53 | - | |
肉豆蔻酰胺 | 0.5 | - | 2.1 | |
棕榈酰胺 | - | 0.41 | ||
2,4-二叔丁基酚 | 0.85 | 0.23 | 2.16 | |
依兰酚 | - | 1.55 | 8.39 | |
萘酚 | - | 0.32 | - |
[1] |
Zheng W F, Miao Kj, Liu Y B, et al. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production[J]. Applied Microbiology and biotechnology, 2010, 87: 1237-1254.
DOI URL |
[2] |
Sun J E, Ao Z H, Lu Z M, et al. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice[J]. Journal of Ethnopharmacology, 118(1): 7-13.
DOI URL |
[3] |
Zhong X H, Ren K, Lu S J, et al. Progress of research on Inonotus obliquus[J]. Chinese Journal of Integrative Medicine, 2009, 15(2): 156-160.
DOI URL |
[4] |
Lu Xm, Chen H X, Dong P, et al. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus[J]. Journal of the Science of Food and Agriculture, 2010, 90(2): 276-280.
DOI URL |
[5] | Ichimura T, Watanabe O, Maruyama S. Inhibition of HIV-1 Protease by Water-Soluble Lignin-Like Substance from an Edible Mushroom, Fuscoporiaobliqua[J]. Bioscinece Biotechnology and Biochemistry, 1998, 62(3): 575-577. |
[6] |
Glamoĉlija J, Ciric A, Nikolic M, et al. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal "mushroom"[J]. Journal of Ethnopharmacology, 2015, 162: 323-332.
DOI PMID |
[7] |
Parka Y K, Lee H B, Jeon E J, et al. Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay[J]. BioFactors, 2004, 21(1-4): 109-112.
PMID |
[8] | Chen H, Xu X Q, Zhu Y. Optimization of Hydroxyl Radical Scavenging Activity of Exopolysaccharides from Inonotus obliquus in Submerged Fermentation Using Response Surface Methodology[J]. Journal Microbiol and Biotechnol, 2010, 20(4): 835-843. |
[9] |
Park Y M, Won J H, Kim Y H, et al. In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus[J]. Journal of Ethnopharmacology, 2005, 101(1-3): 120-128.
DOI URL |
[10] | Choi S Y, Hur S J, An C S, et al. Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate[J]. Biomed Research International, 2010: 1-5. |
[11] |
Song Y, Hui J, Kou W, et al. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides[J]. Current Microbiology, 2008, 57: 454-462.
DOI URL |
[12] |
Song F Q, Liu Y, Kong X S, et al. Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotusobliquus[J]. Asian Pacific Journal of Cancer Prevention, 2013, 14(3): 1571-1578.
DOI URL |
[13] |
Müller A, Faubert P, Hage N M, et al. Volatile profiles of fungi-chemotyping of species and ecological functions[J]. Fungal Genetics and Biology, 2013, 54: 25-33.
DOI PMID |
[14] |
Lu Z M, Tao W Y, Zou X L, et al. Protective effects of mycelia of Antrodiacamphorata and Armillariellatabescens in submerged culture against ethanol-induced hepatic toxicity in rats[J]. Journal of Ethnopharmacol, 2007, 110(1): 160-164.
DOI URL |
[15] |
Singh M P. Application of Biolog F F Micro Plate for substrate utilization and metabolite profiling of closely related fungi[J]. Journal of Microbiological Methods, 2009, 77(1): 102-108.
DOI URL |
[16] | 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. |
ZHENG Liping, LONG Tao, LIN Yusuo, et al. Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J]. Chinese Journal of Applied Environmental Biology, 2013 19(5): 759-765. | |
[17] |
Barrera V A, Martin M E, Aulicino M, et al. Carbon-substrate utilization profiles by Cladorrhinum (Ascomycota)[J]. Revista Argentina De Microbiología, 2019, 51(4): 302-306.
DOI URL |
[18] | 张惠艳, 李艳菊, 顾金刚, 等. 基于 Biolog-FF 技术的金霉素降解真菌的碳代谢特征研究[J]. 微生物学报, 2015, 42(7): 1241-1247. |
ZHANG Huiyan, LI Yanju, GU Jingang, et al. On carbon metabolism of fungi in chlortetracycline degradation based on Biolog-FF system[J]. Microbiology China, 2015, 42 (7): 1241-1247. | |
[19] |
Wang C, Zhuang W Y. Carbon metabolic profiling of Trichoderma strains provides insight into potential ecological niches[J]. Mycology: An International Journal on Fungal Biology, 2020, 112(2): 213-223.
DOI URL |
[20] |
Janusz G, Czurylo A, Frac M, et al. Laccase production and metabolic diversity among Flammulinavelutipes strains[J]. World Journal of Microbiology and Biotechnology, 2015, 31: 121-133.
DOI URL |
[21] |
Pérez J, Muñoz-Dorado J, De La Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview[J]. International Microbiology, 2002, 5: 53-63.
DOI PMID |
[22] |
Polizzi V, Adams A, De Saeger S, et al. Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds[J]. Science of the Total Environment, 2012, 414: 277-286.
DOI URL |
[23] | Boddy L, Frankland J, Van West P. Ecology of Saprotrophic Basidiomycetes[M]. The British Mycological Society: Elsevier Ltd, 2008. |
[24] |
Öberg G, Brunberg H, Hjelm O. Prodcction of organically-bound chorine during degradation of birch wood by common white-rot fungi[J]. Soil Biology and Biochemistry, 1997, 29(2): 191-197.
DOI URL |
[25] |
Strobel G A, Dirkse E, Sears J, et al. Volatile antimicrobials from Muscodoralbus, a novel endophytic fungus[J]. Microbiology, 2001, 147(11): 2943-2950.
DOI URL |
[26] | Stadler M, Mayer A, Anke H, et al. Fatty Acids and Other Compounds with Nematicidal Activity from Cultures of Basidiomycetes[J]. Planta Medice, 1994, 60(2): 128-132. |
[27] |
CANTRELL CL, CASE B P, MENA E E, et al. Isolation and Identification of Antifungal Fatty Acids from the Basidiomycete Gomphusfloccosus[J]. Journal of Agricultural and Food Chemistry, 2008, 56: 5062-5068.
DOI URL |
[28] | 杨生兵, 陆震鸣, 耿燕, 等. 灰树花菌核与发酵菌丝体挥发性化合物分析[J]. 菌物学报, 2013, 32(1): 103-113. |
YANG Sengbing, LU Zhenming, GENG Yan, et al. Analysis of volatile compounds in fruiting bodies and fermentation mycelium of Grifolafrondosa[J]. Journal of Fungi, 2013, 32(1): 103-113. | |
[29] | Olennikov D N, Agafonova Sy V, Penzina Ty A, et al. Fatty Acid Composition of Fourteen Wood-decaying Basidiomycete Species Growing in Permafrost Conditions[J]. Records of Natural Products, 2014, 8(2): 184-188. |
[30] |
Stahl P D, Klug M J. Characterization and Differentiation of Filamentous Fungi Based on Fatty Acid Composition[J]. Applied and Environmental Microbiology, 1996, 62(11): 4136-4146.
DOI PMID |
[31] |
Dexter Y, Cooke R C. Fatty acids, stterols and carotenoids of the psychrophilemucorstrictus and some mesophilic mucor species[J]. Transactions of the British Mycological Society, 1984, 83(3): 455-461.
DOI URL |
[32] |
Sumner J L, Morgan E D, Evans H C. The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales[J]. Canadian Journal of Microbiology, 1969, 15: 515-520.
PMID |
[33] |
Gutiérrez A, Del Rio J C, Martínez-Íñigo M J, et al. Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes[J]. Applied and Environmental Microbiology, 2002, 68(3): 1344-1350.
DOI PMID |
[34] | Vestal J R, White D C. Lipid Analysis in Microbial Ecology[J]. American Institute of Biological Sciences, 1989, 39(8): 535-541. |
[1] | WANG Lijun, SUN Beibei, WANG Chunyan, XIA Zhanfeng, MA Guocai. Isolation and nitrogen-fixing activity detection of bacteria from four desert plants [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2742-2749. |
[2] | ZHU Xiafen, HE Wei, LUO Wenfang, ZHOU Junhui, LI Kemei, XU Jianjun. Metabolomics analysis of Bacillus velezensis JTB8-2 induced tomato antagonism towards Orobanche aegyptiaca based on defense enzyme [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2396-2407. |
[3] | HUANG Wei, WANG Ning, SONG Bo, WANG Suling, QIN Xinzheng, SONG Suqin, LUO Yi, WEI Zengzhou, ZHANG Lijuan, WANG Wei. Inhibitory effect of different phases of Streptomyces rochei A144 volatile substances on Valsa mali var.mali [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2475-2483. |
[4] | WANG Haozhong, LIN Qing, ZENG Jun, GAO Yan, ZHAO Yanhui, SHI Hongling, MA Guijun, MA Zhenghai, LOU Kai, HUO Xiangdong. Screening of phytase producing probiotic lactic acid bacteria [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2290-2298. |
[5] | ZHANG Tingjun, LI Zihui, CUI Yujiang, SUN Xiaogui, CHEN Fang. Effects of microbial agents on cotton growth and soil physico-chemical properties [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2269-2276. |
[6] | WANG Huinan, ZHU Jing, XIE Wenwen, HE Zixuan, BAI Xiaoyu, ZHU Yanlei, ZHANG Zhidong. Structure prediction of the ACC protein from Pontibacter kalidii XAAS-72T with the plant growth-promoting character [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1778-1785. |
[7] | WANG Yatong, GUO Jingjing, YANG Fenfen, NIU Yingying, ZHANG Shikui, FAN Guoquan, WANG Shangdong, GENG Wenjuan. Identification of genome size and chromosomal ploidy of three prunus species by flow cytometry [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1673-1681. |
[8] | YANG Caixia, GU Wei, GUAN Yuan, QU Jingtao, DANG Dongdong, WU Penghao, ZHENG Hongjian. Variation analysis of sweetness gene Sugary1 (Su1) sequence in Sweet corn [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1605-1614. |
[9] | LI Ying, GUO Wenwen, LI Jiangbo, QU Yanying, CHEN Quanjia, ZHENG Kai. Evaluation of adaptability of 90 BT transgenic insectresistant cotton varieties (lines) in early cotton areas of Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1561-1573. |
[10] | GONG Junming, XIONG Xianpeng, ZHANG Caixia, SHAO Dongnan, CHENG Shuaishuai, SUN Jie. Functional analysis of 4-coumarate: CoA ligase gene Gh4CL30 in upland cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1301-1309. |
[11] | LIU Yang, ZHANG Zhengxiao, BAI Yujia, FENG Zuoshan. Effects of Alternaria alternata infection on active oxygen metabolism in different tissues of melon [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1397-1406. |
[12] | LIN Qing, SHI Hongling, QIN Xinzheng, LI Yue, WANG Zihan, GAO Yan, ZENG Jun, WANG Haozhong, LOU Kai, HUO Xiangdong. Analysis of the composition differences between two yeast cultures based on untargeted metabolomics [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1218-1226. |
[13] | YANG Yuefa, WANG Chunxia, LIANG Fei, LAN Mingju. Meta-analysis of influencing factors on soil microbial population in seasonal freeze-thaw period [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1236-1249. |
[14] | BAI Xiaoyu, ZHU Liying, BAO Huifang, JIANG Ling, ZHU Jing, GU Meiying, Zhu Yanlei, ZHANG Zhidong. Screening and identification of a Streptomyces strain with quorum sensing inhibitory activity and effect of the crude extracts on virulence factors of Erwinia amylovora [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 1011-1020. |
[15] | SUN Jian, LI Xue, CHU Min, GU Meiying, Ainijiang Ersiman, ZHU Jin, HE Qi, TAN Huilin, ZHANG Zhidong. Screening,identification and characteristics of Lactic acid bacteria from raw camel milk [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 1021-1028. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 272
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||