

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (6): 1301-1307.DOI: 10.6048/j.issn.1001-4330.2025.06.001
• Crop Genetics and Breeding·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
LI Jianping1(
), LIU Zhiqing1, WANG Weiran1, WANG Meng1, ZHOU Zixin1, YANG Jing1, ZHU Jiahui1, LI Yaohua1, SONG Wu2(
), Alifu Aierxi1, KONG Jie1(
)
Received:2024-11-11
Online:2025-06-20
Published:2025-07-29
Correspondence author:
SONG Wu, KONG Jie
Supported by:
李建平1(
), 刘志清1, 王为然1, 王萌1, 周子馨1, 杨静1, 朱家辉1, 李耀华1, 宋武2(
), 阿里甫·艾尔西1, 孔杰1(
)
通讯作者:
宋武,孔杰
作者简介:李建平(1977-),男,新疆乌鲁木齐人,研究员,博士,研究方向为棉花生物技术育种,(E-mail) ljp7786@126.com
基金资助:CLC Number:
LI Jianping, LIU Zhiqing, WANG Weiran, WANG Meng, ZHOU Zixin, YANG Jing, ZHU Jiahui, LI Yaohua, SONG Wu, Alifu Aierxi, KONG Jie. Efficient screening of sgRNA mediated by CRISPR/Cas9 via TRV viral vectors in cotton[J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1301-1307.
李建平, 刘志清, 王为然, 王萌, 周子馨, 杨静, 朱家辉, 李耀华, 宋武, 阿里甫·艾尔西, 孔杰. 利用TRV病毒载体在棉花中高效筛选CRISPR/Cas9介导的sgRNA[J]. 新疆农业科学, 2025, 62(6): 1301-1307.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.06.001
| 引物名称 Primers name | 引物序列 Primer sequence(5'-3') | 注释 Annotation |
|---|---|---|
| AtU6-CLA1-F | tcccttcggaattctctagaTATGCTCGCGGAATGATCAG | 正向引物小写字母为AtU6载体序列,大写字母为CLA1 sgRNA序列。反向引物小写字母为TRV2载体序列,大写字母为CLA1 sgRNA序列 |
| CLA1-R | CTGATCATTCCGCGAGCATAggaggccttctagagaattc | |
| GhU6-CLA1-F | aagcgaaagaagcatTATGCTCGCGGAATGATCAG | 正向引物小写字母为GhU6载体序列,大写字母为CLA1 sgRNA序列,反向引物为CLA1-R |
| PGT-CLA1-F | caaagcaccagtggtctagtTATGCTCGCGGAATGATCAG | 正向引物小写字母为tRNA序列,大写字母为CLA1 sgRNA序列,反向引物为CLA1-R |
| AtU6-COR27-F | tcccttcggaattctctagaTGAGTTGACTCAAACCAACT | 注释同AtU6-CLA1-F,R。靶标基因为GhCOR27 |
| COR27-R | AGTTGGTTTGAGTCAACTCAggaggccttctagagaattc | 注释同CLA1-R,靶标基因为GhCOR27 |
| GhU6-COR27-F | aagcgaaagaagcatTGAGTTGACTCAAACCAACT | 注释同GhU6-CLA1-F,R,靶标基因为GhCOR27 |
| PGT-COR27-F | caaagcaccagtggtctagtTGAGTTGACTCAAACCAACT | 注释同PGTR-CLA1-F,靶标基因为GhCOR27 |
Tab.1 Primers of sgRNA delivery system mediated by TRV virus vector
| 引物名称 Primers name | 引物序列 Primer sequence(5'-3') | 注释 Annotation |
|---|---|---|
| AtU6-CLA1-F | tcccttcggaattctctagaTATGCTCGCGGAATGATCAG | 正向引物小写字母为AtU6载体序列,大写字母为CLA1 sgRNA序列。反向引物小写字母为TRV2载体序列,大写字母为CLA1 sgRNA序列 |
| CLA1-R | CTGATCATTCCGCGAGCATAggaggccttctagagaattc | |
| GhU6-CLA1-F | aagcgaaagaagcatTATGCTCGCGGAATGATCAG | 正向引物小写字母为GhU6载体序列,大写字母为CLA1 sgRNA序列,反向引物为CLA1-R |
| PGT-CLA1-F | caaagcaccagtggtctagtTATGCTCGCGGAATGATCAG | 正向引物小写字母为tRNA序列,大写字母为CLA1 sgRNA序列,反向引物为CLA1-R |
| AtU6-COR27-F | tcccttcggaattctctagaTGAGTTGACTCAAACCAACT | 注释同AtU6-CLA1-F,R。靶标基因为GhCOR27 |
| COR27-R | AGTTGGTTTGAGTCAACTCAggaggccttctagagaattc | 注释同CLA1-R,靶标基因为GhCOR27 |
| GhU6-COR27-F | aagcgaaagaagcatTGAGTTGACTCAAACCAACT | 注释同GhU6-CLA1-F,R,靶标基因为GhCOR27 |
| PGT-COR27-F | caaagcaccagtggtctagtTGAGTTGACTCAAACCAACT | 注释同PGTR-CLA1-F,靶标基因为GhCOR27 |
| 引物名称 Primers name | 引物序列 Primer sequence(5'-3') | 注释 Annotation |
|---|---|---|
| GhCLA1-F | CACGGTAACATACAGAATAAGCC | 扩增包含CLA1靶序列的基因组片段 |
| GhCLA1-R | ACGTCATGTACGACCTGTTGC | 扩增包含CLA1靶序列的基因组片段 |
| GhCOR27-F | CTCCGTCTTTGCATCCTC | 扩增包含GhCOR27靶序列的基因组片段 |
| GhCOR27-R | ATCAACCCTCTAGTTTCC | 扩增包含GhCOR27靶序列的基因组片段 |
Tab.2 Screening Primers of gene editing mutants
| 引物名称 Primers name | 引物序列 Primer sequence(5'-3') | 注释 Annotation |
|---|---|---|
| GhCLA1-F | CACGGTAACATACAGAATAAGCC | 扩增包含CLA1靶序列的基因组片段 |
| GhCLA1-R | ACGTCATGTACGACCTGTTGC | 扩增包含CLA1靶序列的基因组片段 |
| GhCOR27-F | CTCCGTCTTTGCATCCTC | 扩增包含GhCOR27靶序列的基因组片段 |
| GhCOR27-R | ATCAACCCTCTAGTTTCC | 扩增包含GhCOR27靶序列的基因组片段 |
| 投递系统 Delivery system | 靶标基因 Targeted gene | 突变体数量/ 样本数量 No. of mutations No. of samples | 突变率 Mutation rate (%) |
|---|---|---|---|
| TRV-AtU6::sgRNA | sgRNA-GhCLA1 | 13/20 | 65.0 |
| TRV-AtU6::PTG-sgRNA | 14/20 | 70.0 | |
| TRV-GhU6::sgRNA | 20/25 | 80.0 | |
| TRV-GhU6::PTG-sgRNA | 17/21 | 80.9 |
Tab.3 Mutation efficiency of CLA1 gene in different virus delivery systems
| 投递系统 Delivery system | 靶标基因 Targeted gene | 突变体数量/ 样本数量 No. of mutations No. of samples | 突变率 Mutation rate (%) |
|---|---|---|---|
| TRV-AtU6::sgRNA | sgRNA-GhCLA1 | 13/20 | 65.0 |
| TRV-AtU6::PTG-sgRNA | 14/20 | 70.0 | |
| TRV-GhU6::sgRNA | 20/25 | 80.0 | |
| TRV-GhU6::PTG-sgRNA | 17/21 | 80.9 |
| 投递系统 Delivery system | 靶标基因 Targeted gene | 突变体数量/ 样本数量 No. of mutations/ No. of samples | 突变率 Mutation rate (%) |
|---|---|---|---|
| TRV-AtU6::sgRNA | sgRNA-GhCOR27 | 13/20 | 65.0 |
| TRV-AtU6::PTG-sgRNA | 14/20 | 70.0 | |
| TRV-GhU6::sgRNA | 16/20 | 80.0 | |
| TRV-GhU6::PTG-sgRNA | 17/20 | 85.0 |
Tab.4 Mutation efficiency of GhCOR27 gene in different virus delivery systems
| 投递系统 Delivery system | 靶标基因 Targeted gene | 突变体数量/ 样本数量 No. of mutations/ No. of samples | 突变率 Mutation rate (%) |
|---|---|---|---|
| TRV-AtU6::sgRNA | sgRNA-GhCOR27 | 13/20 | 65.0 |
| TRV-AtU6::PTG-sgRNA | 14/20 | 70.0 | |
| TRV-GhU6::sgRNA | 16/20 | 80.0 | |
| TRV-GhU6::PTG-sgRNA | 17/20 | 85.0 |
| [1] | Long L, Guo D D, Gao W, et al. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression[J]. Plant Methods, 2018, 14: 85. |
| [2] | Liang Z, Zhang K, Chen K L, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/cas system[J]. Journal of Genetics and Genomics, 2014, 41(2): 63-68. |
| [3] | Sun X J, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 2015, 5: 10342. |
| [4] | Salava H, Thula S, Mohan V, et al. Application of genome editing in tomato breeding: mechanisms, advances, and prospects[J]. International Journal of Molecular Sciences, 2021, 22(2): 682. |
| [5] | Li S N, Lin D X, Zhang Y W, et al. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022, 602(7897): 455-460. |
| [6] | Khan Z, Khan S H, Ahmed A, et al. Genome editing in cotton: challenges and opportunities[J]. Journal of Cotton Research, 2023, 6(1): 3. |
| [7] | Tang X, Lowder L G, Zhang T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nature Plants, 2017, 3: 17018. |
| [8] | Li S Y, Li J Y, He Y B, et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination[J]. Nature Biotechnology, 2019, 37(4): 445-450. |
| [9] | Pan C T, Sretenovic S, Qi Y P. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants[J]. Current Opinion in Plant Biology, 2021, 60: 101980. |
| [10] | Sun C, Lei Y, Li B S, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nature Biotechnology, 2024, 42(2): 316-327. |
| [11] | Yin K Q, Han T, Liu G, et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing[J]. Scientific Reports, 2015, 5: 14926. |
| [12] | Baltes N J, Gil-Humanes J, Cermak T, et al. DNA replicons for plant genome engineering[J]. The Plant Cell, 2014, 26(1): 151-163. |
| [13] | Gil-Humanes J, Wang Y P, Liang Z, et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9[J]. The Plant Journal, 2017, 89(6): 1251-1262. |
| [14] | Cody W B, Scholthof H B. Plant virus vectors 3.0: transitioning into synthetic genomics[J]. Annual Review of Phytopathology, 2019, 57: 211-230. |
| [15] | Ma X N, Zhang X Y, Liu H M, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nature Plants, 2020, 6(7): 773-779. |
| [16] | Feng Z Y, Zhang B T, Ding W N, et al. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 2013, 23(10): 1229-1232. |
| [17] | Gao W, Long L, Tian X Q, et al. Genome editing in cotton with the CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2017, 8: 1364. |
| [18] | Jia-ming YAO, Huan-huan HAO, Jing ZHANG, Bin XU. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass[J]. Acta Prataculturae Sinica, 2023, 32(4): 129-141. |
| [19] | Gao W, Long L, Tian X Q, et al. Genome editing in cotton with the CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2017, 8: 1364. |
| [20] | Sun X J, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 2015, 5: 10342. |
| [21] | Long L, Guo D D, Gao W, et al. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression[J]. Plant Methods, 2018, 14: 85. |
| [22] | Ma X N, Zhang X Y, Liu H M, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nature Plants, 2020, 6(7): 773-779. |
| [23] | Senthil-Kumar M, Mysore K S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana[J]. Nature Protocols, 2014, 9(7): 1549-1562. |
| [1] | LI Quan sheng, GAO Zhi jian, YU Hang, WANG Guo dong, LIU Yu. Effects of zinc fertilizer on soil nutrients in oasis cotton fields in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1308-1317. |
| [2] | HE Mengzhu, WANG Jingwen, XIE Haojie, ZHU Xiaofeng, LU Wei, LI Haiqiang. Evaluate on the field control efficacy of nine Acaricides against cotton spider mite [J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1507-1516. |
| [3] | FANG Wancheng, LIN Tao, CUI Jianping, JIA Tao, BAO Longlong, WANG Liang, FAN Shiyu, HU Zhengdong, SHAO Yajie, TANG Qiuxiang. Prediction of SPAD value of cotton based on UAV multispectral remote sensing and machine learning [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1041-1050. |
| [4] | LIAO Xingyang, WANG Fangyong, FU Jihai, CHEN Weiming, HAN Huanyong. Effects of different amounts of drip irrigation water and DPC on population structure, yield, quality and production cost of machine-picked cotton in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1051-1063. |
| [5] | ZHANG Mengke, LIN Li, LIN Hao, HUI Ruihan, YANG Kepan. The effect of different irrigation frequencies on the growth indicators and yield of upland cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1064-1074. |
| [6] | MU Guangrong, LI Jie, Gulnaz Jurat, LOU Shanwei, Parhat Mamat, MA Tengfei, ZHANG Pengzhong, WU Xianglin, ZHANG Lizhen, Batur Bake. Effects of potassium fertilizer rationing and dosage on the growth, development and yield of cotton under membrane drip irrigation [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1075-1083. |
| [7] | CHEN Chuangzhou, ZHANG Yan, Halihash Yibati, SHE Lingyi, FAN Linxin, ZHANG You. Effects of different nitrogen application rates on growth, development and yield composition of cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1092-1101. |
| [8] | BAO Yanli, WANG Xiaowei, LI Qiongshi, ZHANG Lizhao, CHEN Yulan. Analysis of the high Quality development level and differences of cotton in major cotton regions of Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 1032-1040. |
| [9] | ZHAO Yuhang, YAN An, MA Mengqian, XIAO Shuting, SUN Zhe, LI Jingyan. Estimation of cotton LAI and SPAD under water-nitrogen coupling based on multi-spectral imaging of unmanned aerial vehicle [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 781-790. |
| [10] | LI Ke, YIN Caixia, CHEN Maoguang, CUI Hanyu, WANG Ke, LIU Liyang, TANG Qiuxiang. Research on cotton SPAD estimation based on UAV multispectral images combined with machine learning [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 791-799. |
| [11] | LI Huqing, SHAO Dongnan, ZHANG Yi, LIU Feng, ZHANG Xinyu, LI Yanjun, SUN Jie, YANG Yonglin, XUE Fei. Bioinformatics analysis and functional verification of GHSHA1 gene in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 800-806. |
| [12] | QIAO Di, LIN Tao, CUI Jianping, ZHANG Pengzhong, ZHANG Hao, BAO Longlong, TANG Qiuxiang. Effects of RZWQM2-based nitrogen fertilizer transport mode on cotton growth and yield [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 807-819. |
| [13] | ZHANG Lingjian, ZHANG Kai, ZHANG Hui, GUO Xiaomeng, CHEN Guoyue, WANG Yiding, JIA Qingyu. Study on the relationship between plant water content and morphological characteristics of top stem and leaf during the whole growth period of cotton [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 531-538. |
| [14] | ZHANG Lian, CHEN Xiangyao, WANG Tangang, MA Xiaomei, CHENG Bin, WANG Gang, DUAN Zhenyu. Effects of high-strength mulch on soil temperature, humidity and cotton growth [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 539-545. |
| [15] | XU Shouzhen, MA Qi, NING Xinzhu, LI Jilian, SU Junji, HAN Huanyong, WANG Fangyong, LIN Hai. Effects of different row spacing and defoliant on cotton defoliation [J]. Xinjiang Agricultural Sciences, 2025, 62(3): 546-555. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||