Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (11): 2807-2814.DOI: 10.6048/j.issn.1001-4330.2024.11.022

• Prataculture • Previous Articles     Next Articles

Crop remote sensing classification study in Qitai County based on deep learning and Google earth engine (GEE)

ZHAO Haonan1(), MA Haiyan2,3, Asiya Manlike2,3, TIAN Cong2,3, XU Jun2,3, PAN Jing1, SUN Zongjiu1, ZHENG Fengling2,3()   

  1. 1. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052,China
    2. Grassland Research Institute of Xinjiang Academy of Animal Sciences, Urumqi 830057,China
    3. Xinjiang Academy of Animal Science Field Orientation Observation and Research Station of Grassland Ecological Environment on the Northern Slope of Tianshan Mountains, Urumqi 830057,China
  • Received:2024-03-11 Online:2024-11-20 Published:2025-01-08
  • Correspondence author: ZHENG Fengling
  • Supported by:
    Sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region"Research on Identification and Yield Estimation of Artificial Grassland Based on Multi-Source Remote Sensing Time-Series Data - A Case of Alfalfa"(2023D01A75);Supported by the earmarked fund for XJARS(XJARS-11);The National Natural Science Foundation of China(31860679)

基于深度学习和GEE的作物遥感分类

赵昊楠1(), 马海燕2,3, 阿斯娅·曼力克2,3, 田聪2,3, 徐俊2,3, 潘竟1, 孙宗玖1, 郑逢令2,3()   

  1. 1.新疆农业大学草业学院,乌鲁木齐 830052
    2.新疆畜牧科学院草业研究所,乌鲁木齐 830057
    3.新疆畜牧科学院天山北坡草地生态环境野外定位观测研究站,乌鲁木齐 830057
  • 通讯作者: 郑逢令
  • 作者简介:赵昊楠(1999-),男,河北张家口人,硕士研究生,研究方向为植被遥感和空间信息技术,(E-mail)zhn113355@gmail.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目“基于多源遥感时序数据的人工草地识别与估产研究-以苜蓿为例”(2023D01A75);新疆维吾尔自治区奶产业技术体系(XJARS-11);国家自然科学基金项目(31860679)

Abstract:

【Objective】 This study aims to accurately acquire the crop planting structure and distribution using remote sensing data and deep learning methods in view of the complex crop planting structure.【Methods】 A sample set was obtained through field investigations.Sentinel-2 and Sentinel-1 images were acquired using the Google Earth Engine cloud platform; Model training and validation for deep learning algorithms were conducted using Google Colab; Classification accuracy was improved by adjusting and optimizing relevant parameters of deep learning.Additionally, the accuracy of three classification methods—deep learning, random forest, and support vector machine—was compared.【Results】 The deep learning approach achieved the highest classification accuracy, with an overall accuracy of 94.6%.【Conclusion】 The utilization of deep learning algorithms enables precise monitoring of crop planting structure in Qitai County.

Key words: crop; remote sensing classification; deep learning; Google Earth Engine; Google Colab

摘要:

【目的】利用遥感数据和深度学习方法准确获取农作物的种植结构和分布。【方法】通过实地调查新疆奇台县获取样本集,借助Google Earth Engine云平台获取Sentinel-2号和Sentinel-1号影像,利用Google Colab进行深度学习算法的模型训练和验证,调整和优化深度学习的相关参数来提升分类精度,并且比较了深度学习、随机森林和支持向量机3种分类方法的精度。【结果】深度学习的分类精度最高,总体精度达到94.6%。【结论】利用深度学习算法可实现奇台县农作物种植结构的精准监测。

关键词: 农作物, 遥感分类, 深度学习, 谷歌地球引擎, Google Colab

CLC Number: