

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 993-1001.DOI: 10.6048/j.issn.1001-4330.2025.04.024
• Animal Husbandry Veterination · Agricultural Eeconomy • Previous Articles Next Articles
MENG Chen1(
), ZENG Yaqi1,2, WANG Jianwen1,2, YAO Xinkui1,2, LUO Penghui3, XIE Xiaoyu3, LI Pengcheng1, LIU Xiaoxiao1, WANG Chuankun1, MENG Jun1,2(
)
Received:2024-08-11
Online:2025-04-20
Published:2025-06-20
Supported by:
孟晨1(
), 曾亚琦1,2, 王建文1,2, 姚新奎1,2, 罗鹏辉3, 解晓钰3, 李鹏程1, 刘晓晓1, 王川坤1, 孟军1,2(
)
通讯作者:
孟军(1986-),男,教授,博士,硕士生导师,研究方向为动物生产学,(E-mail)junm86@qq.com
作者简介:孟晨(1998-),男,硕士研究生,研究方向为动物生产学,(E-mail)2900974511@qq.com
基金资助:CLC Number:
MENG Chen, ZENG Yaqi, WANG Jianwen, YAO Xinkui, LUO Penghui, XIE Xiaoyu, LI Pengcheng, LIU Xiaoxiao, WANG Chuankun, MENG Jun. Whole genome resequencing screening of candidate genes for lactation yield in Kazakh horses[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 993-1001.
孟晨, 曾亚琦, 王建文, 姚新奎, 罗鹏辉, 解晓钰, 李鹏程, 刘晓晓, 王川坤, 孟军. 全基因组重测序筛选哈萨克马泌乳量候选基因[J]. 新疆农业科学, 2025, 62(4): 993-1001.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.04.024
| 分组 Group | 24 h平均泌乳量 24 h average lactation(kg) | 马匹 Horses | 每匹马24 h 泌乳量 Lactation of per horse in 24 h(kg) | 10:00泌乳量 10:00 Lactation (kg) | 13:00泌乳量 13:00 Lactation (kg) | 16:00泌乳量 16:00 Lactation (kg) | 19:00泌乳量 19:00 Lactation (kg) |
|---|---|---|---|---|---|---|---|
| 高泌乳 量组 HW | 15.84±1.13 | HW1 | 16.80 | 2.20 | 2.32* | 2.08 | 1.80 |
| HW2 | 16.96 | 2.48* | 2.00 | 2.10 | 1.90 | ||
| HW3 | 15.94 | 2.25* | 2.00 | 1.92 | 1.80 | ||
| HW4 | 16.40 | 2.30 | 2.66* | 1.73 | 1.51 | ||
| HW5 | 14.78 | 2.26* | 1.87 | 1.60 | 1.66 | ||
| HW6 | 14.18 | 2.26* | 1.50 | 1.74 | 1.59 | ||
| 低泌乳 量组 LW | 9.06±2.16 | LW1 | 11.26 | 1.51 | 1.63 | 1.44 | 1.05* |
| LW2 | 10.46 | 1.96 | 1.42 | 0.75* | 1.10 | ||
| LW3 | 9.40 | 1.74 | 1.00 | 1.06 | 0.90* | ||
| LW4 | 10.06 | 1.57 | 1.30 | 1.31 | 0.85* | ||
| LW5 | 7.84 | 1.24 | 0.90 | 1.12 | 0.66* | ||
| LW6 | 5.32 | 0.75 | 0.52* | 0.79 | 0.6 |
Tab.1 Horse sample collection form
| 分组 Group | 24 h平均泌乳量 24 h average lactation(kg) | 马匹 Horses | 每匹马24 h 泌乳量 Lactation of per horse in 24 h(kg) | 10:00泌乳量 10:00 Lactation (kg) | 13:00泌乳量 13:00 Lactation (kg) | 16:00泌乳量 16:00 Lactation (kg) | 19:00泌乳量 19:00 Lactation (kg) |
|---|---|---|---|---|---|---|---|
| 高泌乳 量组 HW | 15.84±1.13 | HW1 | 16.80 | 2.20 | 2.32* | 2.08 | 1.80 |
| HW2 | 16.96 | 2.48* | 2.00 | 2.10 | 1.90 | ||
| HW3 | 15.94 | 2.25* | 2.00 | 1.92 | 1.80 | ||
| HW4 | 16.40 | 2.30 | 2.66* | 1.73 | 1.51 | ||
| HW5 | 14.78 | 2.26* | 1.87 | 1.60 | 1.66 | ||
| HW6 | 14.18 | 2.26* | 1.50 | 1.74 | 1.59 | ||
| 低泌乳 量组 LW | 9.06±2.16 | LW1 | 11.26 | 1.51 | 1.63 | 1.44 | 1.05* |
| LW2 | 10.46 | 1.96 | 1.42 | 0.75* | 1.10 | ||
| LW3 | 9.40 | 1.74 | 1.00 | 1.06 | 0.90* | ||
| LW4 | 10.06 | 1.57 | 1.30 | 1.31 | 0.85* | ||
| LW5 | 7.84 | 1.24 | 0.90 | 1.12 | 0.66* | ||
| LW6 | 5.32 | 0.75 | 0.52* | 0.79 | 0.6 |
| 条件 Prerequisite | 位点数(个) Number of bits (pcs) |
|---|---|
| 位点总数 Locus amount | 20 234 241 |
| 性染色体及非 SNP 位点 Sex chromosomes and non-SNP loci | 2 895 788 |
| 位点缺失率>10%位点 Sites with a deletion rate>10% | 671 958 |
| 最小等位基因频率<0.05 的位点 Loci with a minor allete frequency<0.05 | 6 861 577 |
| 质控后位点 Post-quality control loci | 9 804 918 |
Tab.2 Quality analysis of whole genome sequencing data
| 条件 Prerequisite | 位点数(个) Number of bits (pcs) |
|---|---|
| 位点总数 Locus amount | 20 234 241 |
| 性染色体及非 SNP 位点 Sex chromosomes and non-SNP loci | 2 895 788 |
| 位点缺失率>10%位点 Sites with a deletion rate>10% | 671 958 |
| 最小等位基因频率<0.05 的位点 Loci with a minor allete frequency<0.05 | 6 861 577 |
| 质控后位点 Post-quality control loci | 9 804 918 |
| 染色体 编号 Chromosome number | 质控前位点(个) Pre-QC loci (number) | 质控后位点(个) Post-quality control loci (number) | 平均距离 Average distance (Kb) |
|---|---|---|---|
| 1 | 1 462 880 | 748 461 | 0.25 |
| 2 | 985 566 | 508 520 | 0.24 |
| 3 | 946 815 | 503 233 | 0.24 |
| 4 | 896 098 | 460 337 | 0.24 |
| 5 | 733 838 | 385 880 | 0.25 |
| 6 | 697 438 | 370 810 | 0.24 |
| 7 | 779 343 | 395 355 | 0.25 |
| 8 | 821 100 | 424 122 | 0.23 |
| 9 | 643 990 | 343 877 | 0.25 |
| 10 | 694 774 | 368 645 | 0.23 |
| 11 | 447 018 | 231 209 | 0.27 |
| 12 | 442 869 | 239 911 | 0.15 |
| 13 | 382 072 | 197 433 | 0.22 |
| 14 | 715 036 | 381 070 | 0.25 |
| 15 | 720 299 | 370 146 | 0.25 |
| 16 | 693 328 | 360 684 | 0.25 |
| 17 | 677 670 | 365 359 | 0.22 |
| 18 | 695 958 | 359 903 | 0.23 |
| 19 | 535 407 | 288 647 | 0.22 |
| 20 | 736 066 | 381 982 | 0.17 |
| 21 | 504 413 | 268 591 | 0.22 |
| 22 | 401 656 | 214 858 | 0.24 |
| 23 | 425 658 | 224 460 | 0.25 |
| 24 | 388 865 | 209 018 | 0.23 |
| 25 | 313 103 | 154 574 | 0.26 |
| 26 | 396 719 | 200 791 | 0.21 |
| 27 | 378 333 | 205 677 | 0.2 |
| 28 | 381 997 | 191 961 | 0.25 |
| 29 | 326 277 | 177 428 | 0.2 |
| 30 | 276 662 | 145 491 | 0.22 |
| 31 | 231 274 | 126 485 | 0.21 |
Tab.3 Summary of SNP density and distribution
| 染色体 编号 Chromosome number | 质控前位点(个) Pre-QC loci (number) | 质控后位点(个) Post-quality control loci (number) | 平均距离 Average distance (Kb) |
|---|---|---|---|
| 1 | 1 462 880 | 748 461 | 0.25 |
| 2 | 985 566 | 508 520 | 0.24 |
| 3 | 946 815 | 503 233 | 0.24 |
| 4 | 896 098 | 460 337 | 0.24 |
| 5 | 733 838 | 385 880 | 0.25 |
| 6 | 697 438 | 370 810 | 0.24 |
| 7 | 779 343 | 395 355 | 0.25 |
| 8 | 821 100 | 424 122 | 0.23 |
| 9 | 643 990 | 343 877 | 0.25 |
| 10 | 694 774 | 368 645 | 0.23 |
| 11 | 447 018 | 231 209 | 0.27 |
| 12 | 442 869 | 239 911 | 0.15 |
| 13 | 382 072 | 197 433 | 0.22 |
| 14 | 715 036 | 381 070 | 0.25 |
| 15 | 720 299 | 370 146 | 0.25 |
| 16 | 693 328 | 360 684 | 0.25 |
| 17 | 677 670 | 365 359 | 0.22 |
| 18 | 695 958 | 359 903 | 0.23 |
| 19 | 535 407 | 288 647 | 0.22 |
| 20 | 736 066 | 381 982 | 0.17 |
| 21 | 504 413 | 268 591 | 0.22 |
| 22 | 401 656 | 214 858 | 0.24 |
| 23 | 425 658 | 224 460 | 0.25 |
| 24 | 388 865 | 209 018 | 0.23 |
| 25 | 313 103 | 154 574 | 0.26 |
| 26 | 396 719 | 200 791 | 0.21 |
| 27 | 378 333 | 205 677 | 0.2 |
| 28 | 381 997 | 191 961 | 0.25 |
| 29 | 326 277 | 177 428 | 0.2 |
| 30 | 276 662 | 145 491 | 0.22 |
| 31 | 231 274 | 126 485 | 0.21 |
| 泌乳量 Lactation | |
|---|---|
| 总样本数(nbr.val) | 12 |
| 样本空值数(nbr.null) | 0 |
| 样本缺失数 (nbr.na) | 0 |
| 最小值(min) | 1 |
| 最大值(max) | 2 |
| 范围(range) | 3 |
| 总和(sum) | 1 |
| 中位数(median) | 18 |
| 平均值(mean) | 1.5 |
| 标准误 (SE.mean) | 1.5 |
| 95%置信区间(CI.mean.0.95) | 0.331 810 998 |
| 方差(var) | 0.272 727 273 |
| 标准差(std.dev) | 0.522 232 968 |
| 变异系数(coef.var) | 0.348 155 312 |
Tab.4 Summary statistics of normal distribution of lactation phenotypes
| 泌乳量 Lactation | |
|---|---|
| 总样本数(nbr.val) | 12 |
| 样本空值数(nbr.null) | 0 |
| 样本缺失数 (nbr.na) | 0 |
| 最小值(min) | 1 |
| 最大值(max) | 2 |
| 范围(range) | 3 |
| 总和(sum) | 1 |
| 中位数(median) | 18 |
| 平均值(mean) | 1.5 |
| 标准误 (SE.mean) | 1.5 |
| 95%置信区间(CI.mean.0.95) | 0.331 810 998 |
| 方差(var) | 0.272 727 273 |
| 标准差(std.dev) | 0.522 232 968 |
| 变异系数(coef.var) | 0.348 155 312 |
| 序号 Serial number | 功能区域 Functional area | 基因 Genetics | 染色体 Chromosomes | 物理位置 Physical location |
|---|---|---|---|---|
| 1 | intronic | ENTPD1 | 1 | 33528597 |
| 2 | intronic | HECTD2 | 1 | 37498809 |
| 3 | intergenic | ADGRL3 | 3 | 74573413 |
| 4 | intergenic | KIT,PDGFRA | 3 | 79652994 |
| 5 | intronic | CORIN | 3 | 82952198 |
| 6 | intergenic | PCDH7 | 3 | 94837131 |
| 7 | intergenic | LOC102147406 | 4 | 5869853 |
| 8 | intergenic | ATXN7L1 | 4 | 5869971 |
| 9 | intronic | LOC102149526 | 4 | 9504887 |
| 10 | intergenic | SLC4A3 | 6 | 9942952 |
| 11 | intergenic | EPHA2 | 6 | 9944478 |
| 12 | intronic | ARNTL2 | 6 | 53590565 |
| 13 | intergenic | CPNE8,KIF21A | 6 | 59445139 |
| 14 | intergenic | CTDSP2 | 6 | 76335925 |
| 15 | intergenic | ATP23 | 6 | 76336075 |
| 16 | intronic | GRIP1 | 6 | 83402935 |
| 17 | intronic | RAB3IP | 6 | 85764329 |
| 18 | intronic | RMDN1 | 9 | 2493008 |
| 19 | intergenic | NKAIN3,ASPH | 9 | 23193863 |
| 20 | intergenic | UBE2G1,SPNS3 | 11 | 48167086 |
| 21 | intronic | MYBBP1A | 11 | 48304960 |
| 22 | intergenic | MYH3 | 11 | 53491154 |
| 23 | intronic | LOC100073084 | 11 | 53503520 |
| 24 | intronic | ADPRM | 11 | 53507824 |
| 25 | intergenic | LOC102149895 | 12 | 3158022 |
| 26 | intergenic | LRRC4C | 12 | 3642716 |
| 27 | intergenic | LRRC4C | 12 | 5244667 |
| 28 | intergenic | API5 | 12 | 7220509 |
| 29 | intergenic | NR2C2 | 12 | 7220563 |
| 30 | intronic | TDGF1 | 16 | 5223745 |
| 31 | intergenic | OLFM4 | 17 | 31189044 |
| 32 | intergenic | COL4A1 | 17 | 31190347 |
| 33 | intronic | RNF144B,ID4 | 17 | 77524685 |
| 34 | intergenic | ITGA1,ISL1 | 20 | 18074903 |
| 35 | intergenic | UNC5D | 21 | 20195083 |
| 36 | intronic | ENTPD1 | 27 | 9520032 |
Tab.5 Summary of descriptions of some significant SNPs
| 序号 Serial number | 功能区域 Functional area | 基因 Genetics | 染色体 Chromosomes | 物理位置 Physical location |
|---|---|---|---|---|
| 1 | intronic | ENTPD1 | 1 | 33528597 |
| 2 | intronic | HECTD2 | 1 | 37498809 |
| 3 | intergenic | ADGRL3 | 3 | 74573413 |
| 4 | intergenic | KIT,PDGFRA | 3 | 79652994 |
| 5 | intronic | CORIN | 3 | 82952198 |
| 6 | intergenic | PCDH7 | 3 | 94837131 |
| 7 | intergenic | LOC102147406 | 4 | 5869853 |
| 8 | intergenic | ATXN7L1 | 4 | 5869971 |
| 9 | intronic | LOC102149526 | 4 | 9504887 |
| 10 | intergenic | SLC4A3 | 6 | 9942952 |
| 11 | intergenic | EPHA2 | 6 | 9944478 |
| 12 | intronic | ARNTL2 | 6 | 53590565 |
| 13 | intergenic | CPNE8,KIF21A | 6 | 59445139 |
| 14 | intergenic | CTDSP2 | 6 | 76335925 |
| 15 | intergenic | ATP23 | 6 | 76336075 |
| 16 | intronic | GRIP1 | 6 | 83402935 |
| 17 | intronic | RAB3IP | 6 | 85764329 |
| 18 | intronic | RMDN1 | 9 | 2493008 |
| 19 | intergenic | NKAIN3,ASPH | 9 | 23193863 |
| 20 | intergenic | UBE2G1,SPNS3 | 11 | 48167086 |
| 21 | intronic | MYBBP1A | 11 | 48304960 |
| 22 | intergenic | MYH3 | 11 | 53491154 |
| 23 | intronic | LOC100073084 | 11 | 53503520 |
| 24 | intronic | ADPRM | 11 | 53507824 |
| 25 | intergenic | LOC102149895 | 12 | 3158022 |
| 26 | intergenic | LRRC4C | 12 | 3642716 |
| 27 | intergenic | LRRC4C | 12 | 5244667 |
| 28 | intergenic | API5 | 12 | 7220509 |
| 29 | intergenic | NR2C2 | 12 | 7220563 |
| 30 | intronic | TDGF1 | 16 | 5223745 |
| 31 | intergenic | OLFM4 | 17 | 31189044 |
| 32 | intergenic | COL4A1 | 17 | 31190347 |
| 33 | intronic | RNF144B,ID4 | 17 | 77524685 |
| 34 | intergenic | ITGA1,ISL1 | 20 | 18074903 |
| 35 | intergenic | UNC5D | 21 | 20195083 |
| 36 | intronic | ENTPD1 | 27 | 9520032 |
| [1] | Yan T, Yao Y, Wu D Z, et al. BnaGVD: a genomic variation database of rapeseed (Brassica napus)[J]. Plant & Cell Physiology, 2021: pcaa169. |
| [2] | Liu X X, Zhang Y L, Li Y F, et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J]. Molecular Biology and Evolution, 2019, 36(11): 2591-2603. |
| [3] | Kijas J W, Lenstra J A, Hayes B, et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection[J]. PLoS Biology, 2012, 10(2): e1001258. |
| [4] |
Chen Z Q, Narum S R. Whole genome resequencing reveals genomic regions associated with thermal adaptation in redband trout[J]. Molecular Ecology, 2021, 30(1): 162-174.
DOI PMID |
| [5] | Wang K, Liu X F, Qi T, et al. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus)[J]. Genomics, 2021, 113(1): 142-150. |
| [6] | Li C Y, Liu K P, Dai J H, et al. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep[J]. Gene, 2022, 809: 146020. |
| [7] | Lan D L, Ji W H, Xiong X R, et al. Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait[J]. Integrative Zoology, 2021, 16(5): 685-695. |
| [8] | Li W T, Zhang M M, Li Q G, et al. Whole-genome resequencing reveals candidate mutations for pig prolificacy[J]. Proceedings Biological Sciences, 2017, 284(1869): 20172437. |
| [9] |
Amiri Ghanatsaman Z, Wang G D, Asadollahpour Nanaei H, et al. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication[J]. BMC Genomics, 2020, 21(1): 207.
DOI PMID |
| [10] |
Lawal R A, Al-Atiyat R M, Aljumaah R S, et al. Whole-genome resequencing of red junglefowl and indigenous village chicken reveal new insights on the genome dynamics of the species[J]. Frontiers in Genetics, 2018, 9: 264.
DOI PMID |
| [11] | Li X L, Yuan L F, Wang W M, et al. Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep[J]. Frontiers in Veterinary Science, 2022, 9: 1034211. |
| [12] | Heldin C H. Targeting the PDGF signaling pathway in tumor treatment[J]. Cell Communication and Signaling, 2013, 11: 97. |
| [13] | Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Genes & Development, 2008, 22(10): 1276-1312. |
| [14] |
Hoch R V, Soriano P. Roles of PDGF in animal development[J]. Development, 2003, 130(20): 4769-4784.
PMID |
| [15] |
Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J]. Cell, 2011, 146(5): 761-771.
DOI PMID |
| [16] | Lee Y H, Petkova A P, Mottillo E P, et al. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding[J]. Cell Metabolism, 2012, 15(4): 480-491. |
| [17] |
Berry R, Rodeheffer M S. Characterization of the adipocyte cellular lineage in vivo[J]. Nature Cell Biology, 2013, 15(3): 302-308.
DOI PMID |
| [18] | Jechlinger M, Sommer A, Moriggl R, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis[J]. The Journal of Clinical Investigation, 2006, 116(6): 1561-1570. |
| [19] | Joshi P A, Waterhouse P D, Kasaian K, et al. PDGFRα(+) stromal adipocyte progenitors transition into epithelial cells during lobulo-alveologenesis in the murine mammary gland[J]. Nature Communications, 2019, 10(1): 1760. |
| [20] |
Nilson L A, DiMaio D. Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein[J]. Molecular and Cellular Biology, 1993, 13(7): 4137-4145.
DOI PMID |
| [21] |
Camorani S, Esposito C L, Rienzo A, et al. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer[J]. Molecular Therapy, 2014, 22(4): 828-841.
DOI PMID |
| [22] | Xuan R, Wang J M, Zhao X D, et al. Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution[J]. International Journal of Molecular Sciences, 2022, 23(22): 14424. |
| [23] | Slepicka P F, Somasundara A V H, dos Santos C O. The molecular basis of mammary gland development and epithelial differentiation[J]. Seminars in Cell & Developmental Biology, 2021, 114: 93-112. |
| [24] | Liu S J, Cao H R, Guo D, et al. Pou2F3 silencing enhanced the proliferation of mammary epithelial cells in dairy goat via PI3K/AKT/mTOR signaling pathway[J]. Animal Biotechnology, 2022, 33(2): 321-329. |
| [25] | Frey R S, Singletary K W. Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells[J]. The Journal of Nutrition, 2003, 133(1): 226-231. |
| [26] |
Alex A, Bhandary E, McGuire K P. Anatomy and physiology of the breast during pregnancy and lactation[J]. Advances in Experimental Medicine and Biology, 2020, 1252: 3-7.
DOI PMID |
| [27] | Biswas S K, Banerjee S, Baker G W, et al. The mammary gland: basic structure and molecular signaling during development[J]. International Journal of Molecular Sciences, 2022, 23(7): 3883. |
| [28] |
Ieguchi K, Maru Y. Eph/ephrin signaling in the tumor microenvironment[J]. Advances in Experimental Medicine and Biology, 2021, 1270: 45-56.
DOI PMID |
| [29] |
Fonseca P A S, Suárez-Vega A, Esteban-Blanco C, et al. Epigenetic regulation of functional candidate genes for milk production traits in dairy sheep subjected to protein restriction in the prepubertal stage[J]. BMC Genomics, 2023, 24(1): 511.
DOI PMID |
| [30] |
Feigman M J, Moss M A, Chen C, et al. Pregnancy reprograms the epigenome of mammary epithelial cells and blocks the development of premalignant lesions[J]. Nature Communications, 2020, 11(1): 2649.
DOI PMID |
| [31] | Bussell K N. Regulation and functional analysis of EphA2 in normal and Ras-transformed mammary epithelium[D]. London, UK: University of London, University College London, 2001. |
| [32] |
Vaught D, Chen J, Brantley-Sieders D M. Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase[J]. Molecular Biology of the Cell, 2009, 20(10): 2572-2581.
DOI PMID |
| [33] | Salem A F, Gambini L, Billet S, et al. Prostate cancer metastases are strongly inhibited by agonistic Epha2 ligands in an orthotopic mouse model[J]. Cancers, 2020, 12(10): 2854. |
| [34] |
Brieher W M, Yap A S. Cadherin junctions and their cytoskeleton(s)[J]. Current Opinion in Cell Biology, 2013, 25(1): 39-46.
DOI PMID |
| [35] | Sand J M B, Madsen S F, Karsdal M A. Type IV collagen[M]// Biochemistry of collagens, laminins and elastin. Academic Press, 2024: 37-53. |
| [36] | Song X Y, Zhao M, Cao Q Q, et al. Transcriptome provides insights into bovine mammary regulatory mechanisms during the lactation cycle[J]. Journal of Applied Animal Research, 2022, 50(1): 275-288. |
| [37] | Wu X Y, Zhou X L, Xiong L, et al. Transcriptome analysis reveals the potential role of long non-coding RNAs in mammary gland of yak during lactation and dry period[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 579708. |
| [38] |
Chen W H, Lv X Y, Wang Y, et al. Transcriptional profiles of long non-coding RNA and mRNA in sheep mammary gland during lactation period[J]. Frontiers in Genetics, 2020, 11: 946.
DOI PMID |
| [1] | ZHANG Guowei, CHEN Bin, LIU Wujun. Comparative analysis of lactation patterns of Xinjiang Donkey in Eastern Xinjiang Region and Xinjiang Donkey in Southern Xinjiang Region [J]. Xinjiang Agricultural Sciences, 2025, 62(2): 484-493. |
| [2] | LAI Chengxia, YANG Yanlong, WANG Penglong, ZHU Mengyu, YANG Dong, LI Chunping, GE Fengwei, Mayila Yusuyin, YANG Ni, MA Jun. Pathogen colony’s morphological characteristics and pathogenicity identification of defioating cotton Verticillium wilt in some areas in northern Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 174-181. |
| [3] | JING Hongxin, LI Jiahao, GUO Qingyong, ZHONG Mingbin, ZAHNG Chengming, MA Zhuang, Abudoushalamu Aihemaiti, LI Xiaobin. Effects of supplemental feeding amino acids on growth and blood biochemical indices of lactating foals under grazing conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 241-252. |
| [4] | WU Ruichen, YAO Xinkui, MENG Jun, ZENG Yaqi, WANG Chuankun, Arafat Aihemati, Nurtayi Kurbantai. Effects of Different Dosages of Bamboo Leaf Extract on Blood Biochemical Indexes of Yili Horse during Lactation [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2772-2778. |
| [5] | GAO Cheng-cheng;LIU Ling-ling;HE Mei-sheng;WANG Jun;Akemare · Ale;ZHAO Xi;LIU Wu-jun. Effects of Different Feed Models on Milk Production of Yili Horse [J]. , 2016, 53(9): 1743-1750. |
| [6] | HE Liang-jun;LIAO Qiu-ping;DENG Hai-feng;DONG Hong;WU Zhuang-yuan;TIAN Fang;CHEN Jing-bo. Histological Differences in Kazakh Horse Testes at Different Development Stages [J]. , 2016, 53(2): 376-382. |
| [7] | HE Liang-jun;LIAO Qiu-ping;DENG Hai-feng;DONG Hong;WU Zhuang-yuan;Tian Fang;CHEN Jing-bo. Histological Differences in Kazakh Horse Testes at Different Development Stages [J]. , 2015, 52(8): 1541-1546. |
| [8] | . Research on the Correlation between Main Body Ruler Index and Main Slaughter Indexes in Kazakh Horse [J]. , 2013, 50(8): 1549-1553. |
| [9] | . Analysis of Fitting Effect on Different Models of Lactation Curve for Simmental Cattle in Xinjiang [J]. , 2013, 50(10): 1930-1936. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||