Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (1): 234-242.DOI: 10.6048/j.issn.1001-4330.2025.01.027

• Animal Husbandry Veterinarian·Prataculture • Previous Articles     Next Articles

Aboveground biomass estimation of Zhaosu mountain meadow based on visible light images with different resolution

YUAN Yilin1(), YAN An1(), NING Songrui2, HOU Zhengqing1, ZHANG Zhenfei1, XIAO Shuting1, SUN Zhe1, XIA Wenqiu1   

  1. 1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
    2. Xi’an University of Technology, Xi’an 710048, China
  • Received:2024-07-19 Online:2025-01-20 Published:2025-03-11
  • Correspondence author: YAN An
  • Supported by:
    Major Scientific R & D Program Project of Xinjiang Uygur Autonomous Region(2022B02003);Demonstration of Integrated Key Technologies for High-Quality Forage Efficient Production

基于可见光不同分辨率影像下的昭苏山地草甸地上生物量估算

袁以琳1(), 颜安1(), 宁松瑞2, 侯正清1, 张振飞1, 肖淑婷1, 孙哲1, 夏雯秋1   

  1. 1.新疆农业大学资源与环境学院,乌鲁木齐 830052
    2.西安理工大学,西安 710048
  • 通讯作者: 颜安
  • 作者简介:袁以琳(1994-),男,河南驻马店人,硕士研究生,研究方向为农业信息化,(E-mail)171043013@qq.com
  • 基金资助:
    新疆维吾尔自治区重点研发任务专项计划(2022B02003);优质牧草高效生产与加工关键技术集成示范

Abstract:

【Objective】 Unmanned aerial vehicles (UAVs) equipped with digital cameras offer high mobility, flexibility, and resolution, making them advantageous for rapid and accurate AGB estimation. This study aims to investigate the impact of image resolution differences at various flight altitudes of UAVs on the accuracy of AGB estimation. 【Methods】 In this study, we conducted UAV flights at five different altitudes (10, 30, 50, 70, 90 m) over the Zhaosu mountain meadow in Xinjiang to explore the effects of image acquisition at different flight altitudes on AGB estimation accuracy by analyzing differences in spectral information and texture features. 【Results】 By extracting digital images collected at different flight altitudes, we analyzed their spectral information and texture features and correlated these features with measured AGB.The top 8 vegetation indices selected in this study and the top 8 texture features showed strong correlations with AGB. After integrating the three input variables’ variance inflation factor (VIF), we constructed an AGB estimation model using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). The study compared the model accuracy for estimating AGB using images of different resolutions. 【Conclusion】 The results indicate that: (1) The correlation between texture features and AGB is weaker than that of vegetation indices when image resolution ranges from 0.27 to 2.45 cm but both of them reach a significant level. As image resolution decreases, the difference in correlation between the two becomes more apparent. (2) At the same image resolution, the best AGB estimation results are achieved when spectral information is combined with texture features, followed by a model using a single texture feature, with a single spectral model performing the worst. (3) As image resolution increases, the accuracy of AGB estimation improves for models using spectral information, texture information, and spectral + texture information.

Key words: grassland; above-ground biomass; image resolution; spectral information; texture features

摘要:

【目的】 无人机搭载数码相机具有较高的机动性、灵活性和分辨能力,在快速、准确估算草地AGB等方面优势明显。【方法】 探讨无人机搭载的数码相机在不同飞行高度的影像分辨率差对草地AGB估算精度,在新疆昭苏山地草甸设置10、30、50、70和90 m 5个飞行高度,探究不同飞行高度下获取的影像在光谱信息、纹理特征等差异下对草地AGB估算精度的影响。【结果】 在相同的飞行高度下,采用光谱信息与纹理特征相结合的方法相较于单独使用光谱信息或纹理特征,可以提高AGB估算的精度,分别提高了22.34%、13.25%、11.11%、2.18%和2.35%。仅依赖数码图像的光谱信息来估算草地AGB容易导致饱和现象。然而,与光谱信息相比,草地的纹理特征受环境影响较小,在相同的图像分辨率下,所获得的模型效果更佳,弥补单一指标估算草地AGB的不足。【结论】 影像分辨率在0.27~2.45 cm时,纹理特征与草地AGB的相关性弱于植被指数,但均达到显著水平,随着图像清晰度减低,两者之间的关联性差异变得显著;在同种图像分辨率前提下,将光谱信息与纹理特征相结合可以实现最佳的草地AGB估算效果,单一的纹理特征模型次之,单一的光谱模型效果最差;随着图像分辨率的递增,对草地AGB的估算精度受到光谱信息、纹理信息以及光谱与纹理信息的影响呈现上升趋势。

关键词: 草地, 地上生物量, 影像分辨率, 光谱信息, 纹理特征

CLC Number: