Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (1): 234-242.DOI: 10.6048/j.issn.1001-4330.2025.01.027
• Animal Husbandry Veterinarian·Prataculture • Previous Articles Next Articles
YUAN Yilin1(), YAN An1(
), NING Songrui2, HOU Zhengqing1, ZHANG Zhenfei1, XIAO Shuting1, SUN Zhe1, XIA Wenqiu1
Received:
2024-07-19
Online:
2025-01-20
Published:
2025-03-11
Correspondence author:
YAN An
Supported by:
袁以琳1(), 颜安1(
), 宁松瑞2, 侯正清1, 张振飞1, 肖淑婷1, 孙哲1, 夏雯秋1
通讯作者:
颜安
作者简介:
袁以琳(1994-),男,河南驻马店人,硕士研究生,研究方向为农业信息化,(E-mail)171043013@qq.com
基金资助:
CLC Number:
YUAN Yilin, YAN An, NING Songrui, HOU Zhengqing, ZHANG Zhenfei, XIAO Shuting, SUN Zhe, XIA Wenqiu. Aboveground biomass estimation of Zhaosu mountain meadow based on visible light images with different resolution[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 234-242.
袁以琳, 颜安, 宁松瑞, 侯正清, 张振飞, 肖淑婷, 孙哲, 夏雯秋. 基于可见光不同分辨率影像下的昭苏山地草甸地上生物量估算[J]. 新疆农业科学, 2025, 62(1): 234-242.
主要参数 Main parameters | 参数值 Parameter value |
---|---|
最大起飞重量 Maximum takeoff weight(g) | 1367 |
续航时间 Endurance(min) | 24~27 |
横、纵向重叠率 Horizontal and vertical overlap rates(%) | 80 |
最大起飞海拔 Maximum takeoff altitude/m | 6000 |
最大分辨率/(像素×像素) Maximum resolution (pixels × pixels) | 4000×3000 |
波段类型 Band type | R、G、B |
Tab.1 Main parameters of the UAV remote sensing image acquisition system
主要参数 Main parameters | 参数值 Parameter value |
---|---|
最大起飞重量 Maximum takeoff weight(g) | 1367 |
续航时间 Endurance(min) | 24~27 |
横、纵向重叠率 Horizontal and vertical overlap rates(%) | 80 |
最大起飞海拔 Maximum takeoff altitude/m | 6000 |
最大分辨率/(像素×像素) Maximum resolution (pixels × pixels) | 4000×3000 |
波段类型 Band type | R、G、B |
植被指数 Vegetation indexes | 计算公式 Calculation formula |
---|---|
EXG GRVI MGRVI RXR RGBVI NDI VARI EXGR | 2G-R-B[ (G-R)/(G+R)[ (G2-R2)/(G2+R2)[ 1.4×R-G[ (G2-B×R)/(G2+B×R)[ (R-G)/(R+G+0.01)[ (G-R)/(G+R-B)[ 3G=2.4R-B[ |
Tab.2 Visible light vegetation index and calculation formula
植被指数 Vegetation indexes | 计算公式 Calculation formula |
---|---|
EXG GRVI MGRVI RXR RGBVI NDI VARI EXGR | 2G-R-B[ (G-R)/(G+R)[ (G2-R2)/(G2+R2)[ 1.4×R-G[ (G2-B×R)/(G2+B×R)[ (R-G)/(R+G+0.01)[ (G-R)/(G+R-B)[ 3G=2.4R-B[ |
序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
---|---|---|---|---|---|---|---|---|---|---|
影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
1 | VARI | 0.53 | EXG | 0.623 | EXG | 0.644 | EXG | 0.561 | EXG | 0.560 |
2 | EXGR | 0.48 | VARI | 0.605 | EXGR | 0.603 | VARI | 0.494 | VARI | 0.532 |
3 | GRVI | 0.47 | EXGR | 0.555 | VARI | 0.582 | MGRVI | 0.487 | EXGR | 0.428 |
4 | NDI | 0.35 | GRVI | 0.491 | EXR | 0.314 | EXGR | 0.442 | GRVI | 0.386 |
5 | EXR | 0.34 | NDI | 0.410 | MGRVI | 0.202 | EXR | 0.158 | MGRVI | 0.342 |
6 | MGRVI | 0.30 | MGRVI | 0.392 | NDI | 0.180 | RGBVI | 0.104 | RGBVI | 0.226 |
7 | RGBVI | 0.29 | EXR | 0.288 | RGBVI | 0.097 | GRVI | 0.104 | NDI | 0.215 |
8 | EXG | 0.25 | RGBVI | 0.162 | GRVI | 0.097 | NDI | 0.087 | EXR | 0.147 |
Tab.3 Correlation between image index and grassland AGB at different heights
序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
---|---|---|---|---|---|---|---|---|---|---|
影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 影像指数 Image- index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
1 | VARI | 0.53 | EXG | 0.623 | EXG | 0.644 | EXG | 0.561 | EXG | 0.560 |
2 | EXGR | 0.48 | VARI | 0.605 | EXGR | 0.603 | VARI | 0.494 | VARI | 0.532 |
3 | GRVI | 0.47 | EXGR | 0.555 | VARI | 0.582 | MGRVI | 0.487 | EXGR | 0.428 |
4 | NDI | 0.35 | GRVI | 0.491 | EXR | 0.314 | EXGR | 0.442 | GRVI | 0.386 |
5 | EXR | 0.34 | NDI | 0.410 | MGRVI | 0.202 | EXR | 0.158 | MGRVI | 0.342 |
6 | MGRVI | 0.30 | MGRVI | 0.392 | NDI | 0.180 | RGBVI | 0.104 | RGBVI | 0.226 |
7 | RGBVI | 0.29 | EXR | 0.288 | RGBVI | 0.097 | GRVI | 0.104 | NDI | 0.215 |
8 | EXG | 0.25 | RGBVI | 0.162 | GRVI | 0.097 | NDI | 0.087 | EXR | 0.147 |
序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
---|---|---|---|---|---|---|---|---|---|---|
纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
1 | mea_G | 0.496 | mea_B | 0.493 | mea_B | 0.466 | ang_B | 0.401 | ent_B | 0.421 |
2 | mea_B | 0.490 | ang_B | 0.460 | con_G | 0.360 | ang_R | 0.348 | dis_G | 0.352 |
3 | cor_B | 0.440 | ent_G | 0.455 | ang_G | 0.345 | hom_R | 0.353 | ang_G | 0.370 |
4 | hom_G | 0.434 | hom_R | 0.454 | ent_B | 0.312 | hom_G | 0.305 | ent_G | 0.339 |
5 | con_B | 0.425 | ent_G | 0.445 | ent_G | 0.305 | dis_B | 0.301 | cor_R | 0.316 |
6 | dis_R | 0.419 | ang_R | 0.361 | hom_B | 0.332 | var_B | 0.299 | dis_B | 0.279 |
7 | ang_R | 0.407 | ent_R | 0.263 | ang_R | 0.331 | var_G | 0.267 | ang_R | 0.254 |
8 | ent_B | 0.406 | dis_B | 0.257 | ent_R | 0.215 | con_B | 0.264 | ent_R | 0.169 |
Tab.4 Correlation between texture characteristics and grassland AGB at different heights
序号 Serial number | 10 m | 30 m | 50 m | 70 m | 90 m | |||||
---|---|---|---|---|---|---|---|---|---|---|
纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | 纹理指数 Texture index | 相关系数 绝对值|r| Absolute value of correlation coefficient |r| | |
1 | mea_G | 0.496 | mea_B | 0.493 | mea_B | 0.466 | ang_B | 0.401 | ent_B | 0.421 |
2 | mea_B | 0.490 | ang_B | 0.460 | con_G | 0.360 | ang_R | 0.348 | dis_G | 0.352 |
3 | cor_B | 0.440 | ent_G | 0.455 | ang_G | 0.345 | hom_R | 0.353 | ang_G | 0.370 |
4 | hom_G | 0.434 | hom_R | 0.454 | ent_B | 0.312 | hom_G | 0.305 | ent_G | 0.339 |
5 | con_B | 0.425 | ent_G | 0.445 | ent_G | 0.305 | dis_B | 0.301 | cor_R | 0.316 |
6 | dis_R | 0.419 | ang_R | 0.361 | hom_B | 0.332 | var_B | 0.299 | dis_B | 0.279 |
7 | ang_R | 0.407 | ent_R | 0.263 | ang_R | 0.331 | var_G | 0.267 | ang_R | 0.254 |
8 | ent_B | 0.406 | dis_B | 0.257 | ent_R | 0.215 | con_B | 0.264 | ent_R | 0.169 |
飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
10 | 0.27 | 0.725 | 21.988 | 14.326 | 0.775 | 28.861 | 39.564 |
30 | 0.82 | 0.717 | 22.310 | 15.183 | 0.767 | 31.774 | 42.197 |
50 | 1.36 | 0.702 | 22.857 | 16.046 | 0.732 | 34.738 | 43.184 |
70 | 1.91 | 0.687 | 23.455 | 15.770 | 0.713 | 36.737 | 44.537 |
90 | 2.45 | 0.638 | 25.206 | 18.700 | 0.658 | 37.664 | 46.753 |
Tab.5 Grassland AGB estimation results of image spectral information at different altitudes
飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
10 | 0.27 | 0.725 | 21.988 | 14.326 | 0.775 | 28.861 | 39.564 |
30 | 0.82 | 0.717 | 22.310 | 15.183 | 0.767 | 31.774 | 42.197 |
50 | 1.36 | 0.702 | 22.857 | 16.046 | 0.732 | 34.738 | 43.184 |
70 | 1.91 | 0.687 | 23.455 | 15.770 | 0.713 | 36.737 | 44.537 |
90 | 2.45 | 0.638 | 25.206 | 18.700 | 0.658 | 37.664 | 46.753 |
飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
10 | 0.27 | 0.770 | 15.128 | 11.481 | 0.864 | 53.173 | 34.239 |
30 | 0.82 | 0.759 | 15.713 | 11.569 | 0.685 | 68.558 | 40.446 |
50 | 1.36 | 0.744 | 16.325 | 13.265 | 0.785 | 52.034 | 37.692 |
70 | 1.91 | 0.730 | 16.966 | 13.531 | 0.649 | 66.944 | 59.994 |
90 | 2.45 | 0.652 | 18.264 | 15.603 | 0.636 | 67.881 | 61.365 |
Tab.6 Inversion results of image texture features on biomass at different heights
飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
10 | 0.27 | 0.770 | 15.128 | 11.481 | 0.864 | 53.173 | 34.239 |
30 | 0.82 | 0.759 | 15.713 | 11.569 | 0.685 | 68.558 | 40.446 |
50 | 1.36 | 0.744 | 16.325 | 13.265 | 0.785 | 52.034 | 37.692 |
70 | 1.91 | 0.730 | 16.966 | 13.531 | 0.649 | 66.944 | 59.994 |
90 | 2.45 | 0.652 | 18.264 | 15.603 | 0.636 | 67.881 | 61.365 |
飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
10 | 0.27 | 0.887 | 14.060 | 10.281 | 0.851 | 48.446 | 37.805 |
30 | 0.82 | 0.812 | 15.870 | 12.652 | 0.845 | 51.138 | 43.215 |
50 | 1.36 | 0.780 | 16.726 | 14.426 | 0.771 | 57.256 | 49.459 |
70 | 1.91 | 0.702 | 17.465 | 15.993 | 0.746 | 64.572 | 52.257 |
90 | 2.45 | 0.653 | 19.016 | 17.315 | 0.713 | 68.310 | 55.183 |
Tab.7 Grassland AGB estimation results of image spectral information+texture features at different heights
飞行高度 Flight height (m) | 图像分辨率 Image resolution (cm) | 建模集 Training set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (g·m2) | MAE | R2 | RMSE (g·m2) | MAE | ||
10 | 0.27 | 0.887 | 14.060 | 10.281 | 0.851 | 48.446 | 37.805 |
30 | 0.82 | 0.812 | 15.870 | 12.652 | 0.845 | 51.138 | 43.215 |
50 | 1.36 | 0.780 | 16.726 | 14.426 | 0.771 | 57.256 | 49.459 |
70 | 1.91 | 0.702 | 17.465 | 15.993 | 0.746 | 64.572 | 52.257 |
90 | 2.45 | 0.653 | 19.016 | 17.315 | 0.713 | 68.310 | 55.183 |
[1] | 刘伟, 周华坤, 周立. 不同程度退化草地生物量的分布模式[J]. 中国草地, 2005, 27(2): 9-15. |
LIU Wei, ZHOU Huakun, ZHOU Li. Biomass distribution pattern of degraded grassland in alpine meadow[J]. Grassland of China, 2005, 27(2): 9-15. | |
[2] |
赖炽敏, 赖日文, 薛娴, 等. 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算[J]. 中国沙漠, 2019, 39(5): 127-134.
DOI |
LAI Chimin, LAI Riwen, XUE Xian, et al. Estimation of aboveground biomass of different degraded alpine grassland based on vegetation coverage and height[J]. Journal of Desert Research, 2019, 39(5): 127-134.
DOI |
|
[3] | 李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19): 207-213. |
LI Zongnan, CHEN Zhongxin, WANG Limin, et al. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 207-213. | |
[4] |
陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13): 2220-2229.
DOI |
CHEN Pengfei, LIANG Fei. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229.
DOI |
|
[5] |
干友民, 成平, 周纯兵, 等. 若尔盖亚高山草甸地上生物量与植被指数关系研究[J]. 自然资源学报, 2009, 24(11): 1963-1972.
DOI |
GAN Youmin, CHENG Ping, ZHOU Chunbing, et al. Study on pertinence between the vegetation indexes and the aboveground biomass of sub-alpine meadow of zoige county[J]. Journal of Natural Resources, 2009, 24(11): 1963-1972.
DOI |
|
[6] |
李淑贞, 徐大伟, 范凯凯, 等. 基于无人机与卫星遥感的草原地上生物量反演研究[J]. 遥感技术与应用, 2022, 37(1): 272-278.
DOI |
LI Shuzhen, XU Dawei, FAN Kaikai, et al. Research of grassland aboveground biomass inversion based on UAV and satellite remoting sensing[J]. Remote Sensing Technology and Application, 2022, 37(1): 272-278. | |
[7] | 张正健, 李爱农, 边金虎, 等. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62. |
ZHANG Zhengjian, LI Ainong, BIAN Jinhu, et al. Estimating aboveground biomass of grassland in zoige by visible vegetation index derived from unmanned aerial vehicle image[J]. Remote Sensing Technology and Application, 2016, 31(1): 51-62. | |
[8] | 杨琦, 叶豪, 黄凯, 等. 利用无人机影像构建作物表面模型估测甘蔗LAI[J]. 农业工程学报, 2017, 33(8): 104-111. |
YANG Qi, YE Hao, HUANG Kai, et al. Estimation of leaf area index of sugarcane using crop surface model based on UAV image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 104-111. | |
[9] | Yue J B, Feng H K, Jin X L, et al. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera[J]. Remote Sensing, 2018, 10(7): 1138. |
[10] |
卜灵心, 来全, 刘心怡. 不同机器学习算法在草原草地生物量估算上的适应性研究[J]. 草地学报, 2022, 30(11): 3156-3164.
DOI |
BU Lingxin, LAI Quan, LIU Xinyi. Adaptation of different machine learning algorithms for grassland biomass estimation[J]. Acta Agrestia Sinica, 2022, 30(11): 3156-3164.
DOI |
|
[11] | 刘武超, 罗研, 马瞳宇, 等. 高分辨率遥感影像多特征灌丛提取方法研究[J]. 测绘与空间地理信息, 2022, 45(S1): 111-113. |
LIU Wuchao, LUO Yan, MA Tongyu, et al. Study on extraction method of multi-feature shrub from high-resolution remote sensing image[J]. Geomatics & Spatial Information Technology, 2022, 45(S1): 111-113. | |
[12] | 李健, 江洪, 罗文彬, 等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南农业大学学报, 2023, 44(1): 93-101. |
LI Jian, JIANG Hong, LUO Wenbin, et al. Potato LAI estimation by fusing UAV multi-spectral and texture features[J]. Journal of South China Agricultural University, 2023, 44(1): 93-101. | |
[13] | 杨福芹, 冯海宽, 肖天豪, 等. 融合无人机影像光谱与纹理特征的冬小麦氮营养指数估算[J]. 农业现代化研究, 2020, 41(4): 718-726. |
YANG Fuqin, FENG Haikuan, XIAO Tianhao, et al. Nitrogen nutrition index estimation in winter wheat by UAV spectral information and texture feature fusion[J]. Research of Agricultural Modernization, 2020, 41(4): 718-726. | |
[14] |
刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测[J]. 中国农业科学, 2018, 51(16): 3060-3073.
DOI |
LIU Chang, YANG Guijun, LI Zhenhai, et al. Biomass estimation in winter wheat by UAV spectral information and texture information fusion[J]. Scientia Agricultura Sinica, 2018, 51(16): 3060-3073.
DOI |
|
[15] | 朱永基, 殷飞笺, 王晗, 等. 随机森林方法支持下Sentinel-2A MSI多种特征的冬小麦识别分析[J]. 安徽科技学院学报, 2022, 36(1): 25-31. |
ZHU Yongji, YIN Feijian, WANG Han, et al. Winter wheat identification based on multiple features of sentinel-2AMSI data and random forest method[J]. Journal of Anhui Science and Technology University, 2022, 36(1): 25-31. | |
[16] | 黎松松, 王宁欣, 郑伟, 等. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
LI Songsong, WANG Ningxin, ZHENG Wei, et al. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 23-37. | |
[17] | 杨婷婷. 荒漠草原生物量动态及碳储量空间分布研究——以苏尼特右旗为例[D]. 呼和浩特: 内蒙古农业大学, 2013. |
YANG Tingting. Study on biomass dynamics and spatial distribution of carbon storage in desert grassland— a case study of sunite right banner[D]. Hohhot: Inner Mongolia Agricultural University, 2013. | |
[18] | 郭涛, 颜安, 耿洪伟. 基于无人机影像的小麦株高与LAI预测研究[J]. 麦类作物学报, 2020, 40(9): 1129-1140. |
GUO Tao, YAN An, GENG Hongwei. Prediction of wheat plant height and leaf area index based on UAV image[J]. Journal of Triticeae Crops, 2020, 40(9): 1129-1140. | |
[19] | 刘杨, 冯海宽, 孙乾, 等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究[J]. 光谱学与光谱分析, 2021, 41(5): 1470-1476. |
LIU Yang, FENG Haikuan, SUN Qian, et al. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1470-1476. | |
[20] | 李天驰, 冯海宽, 田坤云, 等. 基于PROSAIL模型和无人机高光谱数据的冬小麦LAI反演[J]. 麦类作物学报, 2022, 42(11): 1408-1418. |
LI Tianchi, FENG Haikuan, TIAN Kunyun, et al. Retrieval of winter wheat leaf area index by PROSAIL model and hyperspectral data[J]. Journal of Triticeae Crops, 2022, 42(11): 1408-1418. | |
[21] | 甘甜, 李雷, 李红叶, 等. 基于多源遥感数据和机器学习算法的冬小麦产量预测研究[J]. 麦类作物学报, 2022, 42(11): 1419-1428. |
GAN Tian, LI Lei, LI Hongye, et al. Winter wheat yield prediction based on multi-source remote sensing data and machine learning algorithms[J]. Journal of Triticeae Crops, 2022, 42(11): 1419-1428. | |
[22] | 钟滨, 廖永皓, 蔡海生. 基于光谱与纹理特征的高分二号竹林信息提取——以庐山自然保护区为例[J]. 测绘与空间地理信息, 2020, 43(12): 8-13. |
ZHONG Bin, LIAO Yonghao, CAI Haisheng. Extraction bamboo forest from GF-2 satellite based on spectral and texture features: taking Lushan nature reserve as an example[J]. Geomatics & Spatial Information Technology, 2020, 43(12): 8-13. |
[1] | GENG Meiju, WANG Xinhui, LIU Xiaoying, LYU Pei. Effects of sealing on fungal communities in desert grasslands [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1250-1258. |
[2] | HOU Zhengqing, YAN An, XIE Kaiyun, YUAN Yilin, XIA Wenqiu, XIAO Shuting, ZHANG Zhenfei, SUN Zhe. Estimation of above ground biomass of drone Diarthron tianschanicum based on multi feature fusion [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2527-2536. |
[3] | LIU Liang, PENG Jian, LI Gangyong, HAN Wanqiang, LIU Yujia, GUAN Jingyun, LIU Chengcai, ZHENG Jianghua. Analysis of dynamic remote sensing monitoring changes in Kulusitai grassland in Xinjiang from 2010 to 2021 [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 230-240. |
[4] | XIA Tingting, Subinuer Wumaierjiang, YU Zhaowen, LI Hong, LYU Wenjun, Tuerxunnayi Reyimu. Effects of different utilization methods on the biomass distribution of mountain meadows in the middle of northern slope of Tianshan Mountain [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 974-981. |
[5] | HOU Zhixiong, JING Changqing, CHEN Chen, WANG Gongxin, GUO Wenzhang, ZHAO Weikang. Spatiotemporal Variation of Vegetation Coverage of Natural Grassland in Northern Xinjiang in Recent 20 Years and Its Relationship with Meteorological Factors [J]. Xinjiang Agricultural Sciences, 2023, 60(2): 464-471. |
[6] | ZHANG Xianhua, LI Jiangyan, WU Yongmei, ZHU Jinzhong. Study on Community Dynamics of Iris ruthenica Ker.-Gawl.Meadow in the Middle of the Northern Slope of the Tianshan Mountains [J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1522-1529. |
[7] | YUN Jing, ZHENG Fengling, AN Shazhou, Asiya Manlike, LI Chao, , TIAN Cong. Hyperspectral Inversion of Leaf Area Index in Mountain Steppe Ecosystems Based on the PROSAIL Model [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 451-457. |
[8] | LÜ Wenjun, Tuerxunnayi Reyimu, Xueretijiang Maitinuri, ZHANG Qingqing. Analysis on the Characteristics of Plant Communities in Mountain Meadow Grassland under Nomadic and Settled Grazing [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 231-241. |
[9] | WU Run, ZHANG Yongjuan, CAO Juan, AN Shazhou, CUI Guoying, YAN Ruirui. Changes of the Characteristics of Vegetation Community during Restoration of Degraded Grasslands in Urumqi [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 940-949. |
[10] | Xueretijiang Maitinuri, YANG Jing-jing, Tuerxunnayi Reyimu, ZHANG Qing-qing. Relationship between Vegetation Diversity and Productivity under Different Grazing Intensities in Mountain Meadow Grassland [J]. Xinjiang Agricultural Sciences, 2019, 56(11): 2123-2132. |
[11] | ZHANG Fan-fan, YANG Kai-hu, YU Lei, LU Wei-hua, YANG Guo-lin, HE Hai-xiu. Dynamic Research on the Edible Forage Production of Main Grassland Types in Shaertao Mountain, Xinjiang [J]. Xinjiang Agricultural Sciences, 2018, 55(9): 1737-1746. |
[12] | YANG Jing-jing, Tuerxunnayi Reyimu, ZHANG Qing-qing, Amanula Yimingniyazi, Xueretijiang Maitinuri. Effects of Grazing Intensity on Plant Community Characteristics of Seriphidium transiliense Desert Grassland [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1542-1550. |
[13] | WANG Wei,RAN Hua-rong,AN Sha-zhou ,GUO Ji-ming,LIU Yan-li. Study on Reasonable Grazing Intensity in Nalati Mountain Meadow Steppe [J]. Xinjiang Agricultural Sciences, 2018, 55(3): 556-563. |
[14] | ZHANG Qing-qing;YU Hui;AN Sha-zhou;Tuerxunnayi Reyimu;JING Chang-qing. Study on Grassland Eco-economic Function Regionalization in Manas River Basin [J]. , 2017, 54(5): 969-977. |
[15] | DONG lei;AN Sha-zhou;DONG Yi-qiang;ZHANG Ai-ning;ZHANG Rui-si;XIA Xiao-wei;Kasidaer·Nuerdanbike. The Succession of Plant Biodiversity in Different Degraded of Bayinbluk Alpine Grasslands [J]. , 2017, 54(4): 756-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||