Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (6): 1544-1552.DOI: 10.6048/j.issn.1001-4330.2024.06.029
• Animal Husbandry Veterinarian • Agricultural Eeconomy • Previous Articles Next Articles
FAN Shu(), SUN Guozhi, CAO Hang, SHI Xiangyun, SONG Xiangyi, ZHU Mengyao, LIU Lingling, LIU Wujun(
)
Received:
2023-10-30
Online:
2024-06-20
Published:
2024-08-08
Correspondence author:
LIU Wujun
Supported by:
樊殊(), 孙国智, 曹行, 史香云, 宋湘怡, 朱梦瑶, 刘玲玲, 刘武军(
)
通讯作者:
刘武军
作者简介:
樊殊(1998- ),女,新疆乌苏人,硕士研究生,研究方向为动物遗传育种,(E-mail)3088117818@qq.com
基金资助:
FAN Shu, SUN Guozhi, CAO Hang, SHI Xiangyun, SONG Xiangyi, ZHU Mengyao, LIU Lingling, LIU Wujun. Analysis of genetic effects of candidate genes for lambing numbers in different sheep breeds[J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1544-1552.
樊殊, 孙国智, 曹行, 史香云, 宋湘怡, 朱梦瑶, 刘玲玲, 刘武军. 不同绵羊品种的产羔数候选基因遗传效应分析[J]. 新疆农业科学, 2024, 61(6): 1544-1552.
基因 Gene | 位置 Position | 引物序列 Primer Sequence |
---|---|---|
FSHR | 75320741 | F1: CTTCGCAAACTGGAGGCGGCACAT R1: GCTGGACAGGGAAGACTCACTCCCG |
F2: AAAATCTTAAGAAGCTGCGGGCCAAGTCA R2: AGCTGGGTAGCGCTCTCCTTGTGAACTC | ||
COIL | 7321466 | F1: AGACTCAGACTCCGAGGAGGAATGGC |
R1: CATGGTCGTCCGTACAAAAGACAGACC | ||
F2: CTGGAAGATGATGTTCTGGAGGTCTTGC R2: AAATCGCCAAAGAAGAAGGAGAAACGTG | ||
GUCY1A1 | 43266624 | F1: AGACGCTCGGCTGCCCTGTGA R1: GGGAGTGGGCCAGCAGCGAC F2: GGCAGGCACTCACCTCTGGGAAAA R2: CCTGGACTCCCTGGTCACCAGCAT |
Tab.1 Primer information
基因 Gene | 位置 Position | 引物序列 Primer Sequence |
---|---|---|
FSHR | 75320741 | F1: CTTCGCAAACTGGAGGCGGCACAT R1: GCTGGACAGGGAAGACTCACTCCCG |
F2: AAAATCTTAAGAAGCTGCGGGCCAAGTCA R2: AGCTGGGTAGCGCTCTCCTTGTGAACTC | ||
COIL | 7321466 | F1: AGACTCAGACTCCGAGGAGGAATGGC |
R1: CATGGTCGTCCGTACAAAAGACAGACC | ||
F2: CTGGAAGATGATGTTCTGGAGGTCTTGC R2: AAATCGCCAAAGAAGAAGGAGAAACGTG | ||
GUCY1A1 | 43266624 | F1: AGACGCTCGGCTGCCCTGTGA R1: GGGAGTGGGCCAGCAGCGAC F2: GGCAGGCACTCACCTCTGGGAAAA R2: CCTGGACTCCCTGGTCACCAGCAT |
基因 Gene | 基因型 Genotype | 基因型频率Genotype frequency | 等位基因 Alleles | 等位基因频率 Allele frequency | ||||||
---|---|---|---|---|---|---|---|---|---|---|
多浪 | 德国美利奴 | 萨福克 | 湖羊 | 多浪 | 德国美利奴 | 萨福克 | 湖羊 | |||
Coil | CC | 0.034 | 0.02 | 0.478 | 0.073 | C | 0.360 | 0.336 | 0.523 | 0.401 |
CG | 0.652 | 0.63 | 0.21 | 0.655 | G | 0.640 | 0.664 | 0.417 | 0.599 | |
GG | 0.314 | 0.35 | 0.312 | 0.272 | ||||||
FSHR | CC | 0.608 | 0.539 | 0.828 | 0.683 | C | 0.804 | 0.773 | 0.914 | 0.842 |
CT | 0.392 | 0.461 | 0.172 | 0.317 | T | 0.196 | 0.227 | 0.086 | 0.158 | |
TT | 0 | 0 | 0 | 0 | ||||||
GUCY1A1 | GG | 0.797 | 0.796 | 0.783 | 0.92 | G | 0.896 | 0.898 | 0.892 | 0.96 |
GA | 0.203 | 0.204 | 0.217 | 0.08 | A | 0.104 | 0.102 | 0.108 | 0.04 | |
AA | 0 | 0 | 0 | 0 | ||||||
BMPRIB | ++ | 0.87 | 0.9 | 1 | 0.01 | + | 0.935 | 0.95 | 1 | 0.235 |
B+ | 0.13 | 0.1 | 0 | 0.45 | B | 0.065 | 0.05 | 0 | 0.765 | |
BB | 0 | 0 | 0 | 0.54 |
Tab.3 Genotype frequency and allele frequency of COIL、FSHR、GUCY1A1 and BMPRIB genes in four sheep breeds
基因 Gene | 基因型 Genotype | 基因型频率Genotype frequency | 等位基因 Alleles | 等位基因频率 Allele frequency | ||||||
---|---|---|---|---|---|---|---|---|---|---|
多浪 | 德国美利奴 | 萨福克 | 湖羊 | 多浪 | 德国美利奴 | 萨福克 | 湖羊 | |||
Coil | CC | 0.034 | 0.02 | 0.478 | 0.073 | C | 0.360 | 0.336 | 0.523 | 0.401 |
CG | 0.652 | 0.63 | 0.21 | 0.655 | G | 0.640 | 0.664 | 0.417 | 0.599 | |
GG | 0.314 | 0.35 | 0.312 | 0.272 | ||||||
FSHR | CC | 0.608 | 0.539 | 0.828 | 0.683 | C | 0.804 | 0.773 | 0.914 | 0.842 |
CT | 0.392 | 0.461 | 0.172 | 0.317 | T | 0.196 | 0.227 | 0.086 | 0.158 | |
TT | 0 | 0 | 0 | 0 | ||||||
GUCY1A1 | GG | 0.797 | 0.796 | 0.783 | 0.92 | G | 0.896 | 0.898 | 0.892 | 0.96 |
GA | 0.203 | 0.204 | 0.217 | 0.08 | A | 0.104 | 0.102 | 0.108 | 0.04 | |
AA | 0 | 0 | 0 | 0 | ||||||
BMPRIB | ++ | 0.87 | 0.9 | 1 | 0.01 | + | 0.935 | 0.95 | 1 | 0.235 |
B+ | 0.13 | 0.1 | 0 | 0.45 | B | 0.065 | 0.05 | 0 | 0.765 | |
BB | 0 | 0 | 0 | 0.54 |
基因 Gene | 品种 Varieties | P | 纯合度 Ho | 杂合度 He | 有效等位基因数 Ne | 多态性信息 PIC |
---|---|---|---|---|---|---|
Coil | 多浪羊 | <0.05 | 0.539 | 0.461 | 1.85 | 0.355 |
德国美利奴羊 | <0.05 | 0.554 | 0.446 | 1.805 | 0.346 | |
萨福克羊 | <0.05 | 0.514 | 0.486 | 1.946 | 0.368 | |
湖羊 | >0.05 | 0.520 | 0.480 | 1.924 | 0.365 | |
FSHR | 多浪羊 | <0.05 | 0.685 | 0.316 | 1.46 | 0.265 |
德国美利奴羊 | <0.05 | 0.649 | 0.351 | 1.54 | 0.289 | |
萨福克羊 | >0.05 | 0.843 | 0.157 | 1.187 | 0.145 | |
湖羊 | <0.05 | 0.733 | 0.267 | 1.363 | 0.231 | |
GUCY1A1 | 多浪羊 | <0.05 | 0.817 | 0.182 | 1.233 | 0.166 |
德国美利奴羊 | >0.05 | 0.817 | 0.183 | 1.224 | 0.166 | |
萨福克羊 | >0.05 | 0.807 | 0.193 | 1.239 | 0.174 | |
湖羊 | >0.05 | 0.923 | 0.077 | 1.083 | 0.074 | |
BMPRIB | 多浪羊 | >0.05 | 0.878 | 0.121 | 1.14 | 0.114 |
德国美利奴羊 | >0.05 | 0.906 | 0.094 | 1.1 | 0.09 | |
湖羊 | <0.05 | 0.64 | 0.36 | 1.56 | 0.300 |
Tab.4 COIL、FSHR、GUCY1A1 and BMPRIB genes in 4 sheep breeds Ho,He,Ne and PIC
基因 Gene | 品种 Varieties | P | 纯合度 Ho | 杂合度 He | 有效等位基因数 Ne | 多态性信息 PIC |
---|---|---|---|---|---|---|
Coil | 多浪羊 | <0.05 | 0.539 | 0.461 | 1.85 | 0.355 |
德国美利奴羊 | <0.05 | 0.554 | 0.446 | 1.805 | 0.346 | |
萨福克羊 | <0.05 | 0.514 | 0.486 | 1.946 | 0.368 | |
湖羊 | >0.05 | 0.520 | 0.480 | 1.924 | 0.365 | |
FSHR | 多浪羊 | <0.05 | 0.685 | 0.316 | 1.46 | 0.265 |
德国美利奴羊 | <0.05 | 0.649 | 0.351 | 1.54 | 0.289 | |
萨福克羊 | >0.05 | 0.843 | 0.157 | 1.187 | 0.145 | |
湖羊 | <0.05 | 0.733 | 0.267 | 1.363 | 0.231 | |
GUCY1A1 | 多浪羊 | <0.05 | 0.817 | 0.182 | 1.233 | 0.166 |
德国美利奴羊 | >0.05 | 0.817 | 0.183 | 1.224 | 0.166 | |
萨福克羊 | >0.05 | 0.807 | 0.193 | 1.239 | 0.174 | |
湖羊 | >0.05 | 0.923 | 0.077 | 1.083 | 0.074 | |
BMPRIB | 多浪羊 | >0.05 | 0.878 | 0.121 | 1.14 | 0.114 |
德国美利奴羊 | >0.05 | 0.906 | 0.094 | 1.1 | 0.09 | |
湖羊 | <0.05 | 0.64 | 0.36 | 1.56 | 0.300 |
基因 Gene | 基因型 Genoptype (Mean±SD) | 品种Varieties | |||
---|---|---|---|---|---|
多浪羊 | 德国美利奴羊 | 萨福克羊 | 湖羊 | ||
Coil | CC | 2.00±0.000A | 1.333±0.577c | 1.35±0.479B | 1.86±0.351B |
CG | 1.38±0.489B | 1.592±0.784b | 1.64±0.489A | 2.00±0.175A | |
GG | 1.13±0.339C | 1.868±0.761a | 1.73±0.0.446A | 2.04±0.189A | |
FSHR | CC | 1.16±0.367b | 1.518±0.739b | 1.22±0.413B | 1.96±0.186B |
CT | 1.35±0.481a | 1.913±0.799a | 1.52±0.509A | 2.03±0.180A | |
TT | / | / | / | / | |
GUCY1A1 | GG | 1.57±0.496b | 1.55±0.499A | 1.27±0.444 | 2.04±0.294 |
GA | 1.74±0.443a | 1.23±0.430B | 1.27±0.452 | 2.00±0.447 | |
AA | / | / | / | / | |
BMPRIB | ++ | 2.01±0.21b | 1.78±0.645 | / | 1.33±0.577B |
B+ | 2.15±0.69a | 2.14±0.69 | / | 2.07±0.33A | |
BB | / | / | / | 2.11±0.317A |
Tab.5 Analysis of the association between genotype and lambing number of COIL,FSHR,GUCY1A1 and BMPRIB gene in 4 sheep breeds
基因 Gene | 基因型 Genoptype (Mean±SD) | 品种Varieties | |||
---|---|---|---|---|---|
多浪羊 | 德国美利奴羊 | 萨福克羊 | 湖羊 | ||
Coil | CC | 2.00±0.000A | 1.333±0.577c | 1.35±0.479B | 1.86±0.351B |
CG | 1.38±0.489B | 1.592±0.784b | 1.64±0.489A | 2.00±0.175A | |
GG | 1.13±0.339C | 1.868±0.761a | 1.73±0.0.446A | 2.04±0.189A | |
FSHR | CC | 1.16±0.367b | 1.518±0.739b | 1.22±0.413B | 1.96±0.186B |
CT | 1.35±0.481a | 1.913±0.799a | 1.52±0.509A | 2.03±0.180A | |
TT | / | / | / | / | |
GUCY1A1 | GG | 1.57±0.496b | 1.55±0.499A | 1.27±0.444 | 2.04±0.294 |
GA | 1.74±0.443a | 1.23±0.430B | 1.27±0.452 | 2.00±0.447 | |
AA | / | / | / | / | |
BMPRIB | ++ | 2.01±0.21b | 1.78±0.645 | / | 1.33±0.577B |
B+ | 2.15±0.69a | 2.14±0.69 | / | 2.07±0.33A | |
BB | / | / | / | 2.11±0.317A |
[1] | Davis G H. Major genes affecting ovulation rate in sheep[J]. Genetics Selection Evolution, 2005, 37(Suppl. 1): S11-S23. |
[2] | Gootwine E, Rozov A, Bor A, et al. Carrying the FecB (Booroola) mutation is associated with lower birth weight and slower post-weaning growth rate for lambs, as well as a lighter mature bodyweight for ewes[J]. Reproduction, Fertility and Development, 2006, 18(4): 433. |
[3] | 祝振硕. 湖羊多胎性状候选基因BMPR-IB多态性研究及检测技术优化[D]. 杨凌: 西北农林科技大学, 2016. |
ZHU Zhenshuo. Study of BMPR-IB Gene as Candidate Gene for Prolificacy in Hu Sheep And Optimization of Molecular Detection Methods for It[D]. Yangling: Northwest A & F University, 2016. | |
[4] | 樊庆灿, 叶禄林, 柳楠, 等. 小尾寒羊FecB基因型与产羔数相关的研究[J]. 安徽农业科学, 2011, 39(20): 12216-12218. |
FAN Qingcan, YE Lulin, LIU Nan, et al. Relevance between BMPR-IB genotypes and litter size in small tailed Han sheep[J]. Journal of Anhui Agricultural Sciences, 2011, 39(20): 12216-12218. | |
[5] | Chong Y Q, Liu G Q, Jiang X P. Effect of BMPRIB gene on litter size of sheep in China: a meta-analysis[J]. Animal Reproduction Science, 2019, 210: 106175. |
[6] | Walker M P, Tian L P, Matera A G. Reduced viability, fertility and fecundity in mice lacking the Cajal body marker protein, coilin[J]. PLoS One, 2009, 4(7): e6171. |
[7] |
Lancellotti Schwarz K R, Lisboa Pires P R, Mesquita L G, et al. Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes[J]. Theriogenology, 2014, 81(4): 556-564.
DOI PMID |
[8] | Howles C M. Role of LH and FSH in ovarian function[J]. Molecular and Cellular Endocrinology, 2000, 161(1/2): 25-30. |
[9] | 马海玉. 新疆地方绵羊产羔数性状特异基因的鉴定及功能分析[D]. 乌鲁木齐: 新疆农业大学, 2020. |
MA Haiyu. Identification and Functional Analysis of Specific Genes for Litter Size Traits in Xinjiang Local Sheep[D]. Urumqi: Xinjiang Agricultural University, 2020. | |
[10] |
Chu M X, Guo X H, Feng C J, et al. Polymorphism of 5' regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep[J]. Molecular Biology Reports, 2012, 39(4): 3721-3725.
DOI PMID |
[11] |
Wang W M, Liu S J, Li F D, et al. Polymorphisms of the ovine BMPR-IB, BMP-15 and FSHR and their associations with litter size in two Chinese indigenous sheep breeds[J]. International Journal of Molecular Sciences, 2015, 16(5): 11385-11397.
DOI PMID |
[12] |
Pan X Y, Liu S J, Li F D, et al. Molecular characterization, expression profiles of the ovine FSHR gene and its association with litter size[J]. Molecular Biology Reports, 2014, 41(12): 7749-7754.
DOI PMID |
[13] |
Maddirevula S, Awartani K, Coskun S, et al. A genomics approach to females with infertility and recurrent pregnancy loss[J]. Human Genetics, 2020, 139(5): 605-613.
DOI PMID |
[14] |
Valerio A, Nisoli E. Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging[J]. Frontiers in Cell and Developmental Biology, 2015, 3: 6.
DOI PMID |
[15] |
Nakamura Y, Yamagata Y, Sugino N, et al. Nitric oxide inhibits oocyte meiotic maturation[J]. Biology of Reproduction, 2002, 67(5): 1588-1592.
PMID |
[16] | Guo Y X, Nie H T, Sun L W, et al. Effects of diet and arginine treatment during the luteal phase on ovarian NO/PGC-1α signaling in ewes[J]. Theriogenology, 2017, 96: 76-84. |
[17] | 喇永富, 李发弟, 杨勤, 等. FecB基因在5个中国地方绵羊品种中的多态性及其与产羔数的关联分析[J]. 中国草食动物科学, 2020, 40(2): 12-17. |
LA Yongfu, LI Fadi, YANG Qin, et al. Genetic polymorphism of FecB gene and effect in five Chinese local sheep breeds[J]. China Herbivore Science, 2020, 40(2): 12-17. | |
[18] | 王钧. 5个绵羊品种BMPR-IB基因多态性的研究[D]. 兰州: 甘肃农业大学, 2013. |
WANG Jun. Polymorphism of BMPR-IB Gene in Five Sheep Breeds[D]. Lanzhou: Gansu Agricultural University, 2013. | |
[19] | 柏雪梅, 薛亚欣, 邢凤, 等. 策勒黑羊和多浪羊FecB基因多态性及其与产羔数的相关性研究[J]. 黑龙江畜牧兽医, 2020,(1): 7-10. |
BAI Xuemei, XUE Yaxin, XING Feng, et al. Association of FecB gene polymorphism with litter size in Cele Black sheep and Duolang sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020,(1): 7-10. | |
[20] | 刘学峰, 张立春, 朱贵, 等. 绵羊FecB基因KASP检测方法的建立及其在肉羊育种中的应用[J]. 黑龙江畜牧兽医, 2020,(7): 58-61, 66, 159. |
LIU Xuefeng, ZHANG Lichun, ZHU Gui, et al. Establishment of KASP detection method for fecB gene in sheep and its application in mutton breeding[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020,(7): 58-61, 66, 159. | |
[21] | 杨永林, 杨华, 张云生, 等. 多胎萨福克羊新品系的选育[J]. 中国草食动物科学, 2014, 34(S1): 162-166. |
YANG Yonglin, YANG Hua, ZHANG Yunsheng, et al. Breeding of a new line of multiparous Suffolk sheep[J]. China Herbivore Science, 2014, 34(S1): 162-166. |
[1] | ZHAO Chen, WANG Yan, Abuxiaheman Mubalake, QIN Rongyan, CHEN Xiangyu, LIANG Jiandi, WANG Lele, ZHANG Zhijun, WANG Chengmin, WANG Wenqi, Shalitanati . Effects of compound additives on growth performance, rumen fermentation and apparent nutrient digestibility of sheep in cold season [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2054-2062. |
[2] | CHEN Shenglei, SUN Guozhi, ZHANG Guowei, MA Haiyu, LIU Lingling, ZHANG Weizhong, LIU Wujun. Estimation of genetic parameters and analysis of the effects of non-genetic factors on major economic traits in Suffolk sheep [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1814-1820. |
[3] | YUE Chenggung, LI Zhonghui, LIU Chenxi, HE Sangang, MA Haiye, LIU Xuan, LI Jingping, LI Wenrong. Effects of different gene editing types on traits of FGF5 gene-edited sheep wool [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 734-741. |
[4] | YANG Cunming, ZHANG Xiaoxue, ZHANG Menghua, ZHAO Zhiwen, LI Fengjie, HUANG Xixia, LI Jie, Aizimaiti Awuti, HE Junmin, LI Xue, LI Tingting, TANG Li, ZHANG Wenjing, TIAN Yuezhen, TIAN Kechuan. Analysis of correlation and difference of target traits in fine wool sheep breeding [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 514-520. |
[5] | TANG Li, TIAN Kechuan, ZHANG Xinning, LIU Li, Abulikemu Adili, YANG Zhi, YANG Cunming, ZHANG Xiaoxue, HUANG Xixia, TIAN Yuezhen. Clustering and principal component analysis of Hotan sheep body weight indexes in different growth stages [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2853-2860. |
[6] | Bayinhua , LIANG Long, HE Pengfei, LI Jiaying, HE Xin, HE Sangang, LI Wenrong. Comparison of early growth performance of offspring of kazakh sheep with different hybrid combinations [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2331-2340. |
[7] | CHEN Kaixu, GUO Cuijie, YANG Fan, REN Feier, LI Xiaobin, LIU Wujun. Genetic diversity analysis of xinjiang sheep with fine wool based on whole-genome Re-sequencing [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1292-1300. |
[8] | GAO Fan, MA Zhongjie, XU Guishan, WANG Yan, PENG Wanwan, FENG Xinwei, YUAN Guohong. Effects of different proportion of grape seeds in diet on intestinal bacterial flora structure of Duolang sheep [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 1020-1027. |
[9] | JIN Xiaoye, YE Feng, LIU Liya, MA Xiaojing, LI Xin, SHU Zhan, CHEN Zhuo, ZHONG Qi. Investigation of Grazing Sheep Brucellosis and Implementation of Prevention Measures [J]. Xinjiang Agricultural Sciences, 2023, 60(2): 479-484. |
[10] | CHEN Xi, ZENG Xiancun, HU Bo, LIU Tong, DAI Liying, NAN Shanshan. Effects of Tannin Additive on Performance and Serum Biochemical Parameters of Fattening Sheep [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2318-2323. |
[11] | HE Zonglong, HOU Chenxi, HONG Wenjuan, YAO Lidan, Jueken Aniwashi. Study on Slaughter Performance and Six- Month -Old Mutton Composition of Hetian Multi-fetal Red Sheep [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 2073-2080. |
[12] | HOU Chenxi, HONG Wenjuan, HE Zonglong, Jueken Aniwashi. Analysis of DNA Methylation and mRNA Expression Level of LEF1 Gene in Skin Tissues of Bashbay Sheep with Different Wool Colors [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2742-2478. |
[13] | HONG Wenjuan, HOU Chenxi, HE Zonglong, Jueken Aniwashi. Expression and Regulation Analysis of LEF1, YWHAZ and WNT2 Genes in Bashibai Sheep Skins with Different Coat Colors [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2749-2757. |
[14] | GUO Yanhua, PI Wenhui. Use of the CRISPR-Cas9 System in Sheep Fibroblasts to Lead Fluorescent Tags into ACTG1 Gene [J]. Xinjiang Agricultural Sciences, 2021, 58(9): 1747-1755. |
[15] | YU Lijuan, ZHANG Yanhua, Lazate Ainiwaer, XU Xinming, Maerziya Yasen, DI Jiang. Screening microRNAs Related to Wool Crimp in Chinese Merino Sheep [J]. Xinjiang Agricultural Sciences, 2021, 58(3): 573-580. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||