Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (3): 734-741.DOI: 10.6048/j.issn.1001-4330.2024.03.024
• Animal Husbandry Veterinarian·Agricultural Eeconomy • Previous Articles Next Articles
YUE Chenggung1(), LI Zhonghui1,2, LIU Chenxi1,2, HE Sangang1,2, MA Haiye3, LIU Xuan3, LI Jingping1, LI Wenrong1,2(
)
Received:
2023-07-09
Online:
2024-03-20
Published:
2024-04-19
Correspondence author:
LI Wenrong(1969 -),female,from Jiangsu, researcher,Ph.D, doctoral supervisor,majoring in animal genetics and breeding,(E-mail) Supported by:
岳成广1(), 李忠慧1,2, 刘晨曦1,2, 贺三刚1,2, 马海叶3, 刘璇3, 李婧平1, 李文蓉1,2(
)
通讯作者:
李文蓉(1969-),女,江苏人,研究员,博士,硕士生/博士生导师,研究方向为动物遗传育种,(E-mail)作者简介:
岳成广(1997-),男,河南人,硕士,研究方向为动物遗传育种,(E-mail)945372465@qq.com
基金资助:
CLC Number:
YUE Chenggung, LI Zhonghui, LIU Chenxi, HE Sangang, MA Haiye, LIU Xuan, LI Jingping, LI Wenrong. Effects of different gene editing types on traits of FGF5 gene-edited sheep wool[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 734-741.
岳成广, 李忠慧, 刘晨曦, 贺三刚, 马海叶, 刘璇, 李婧平, 李文蓉. 不同基因编辑类型对FGF5基因编辑羊羊毛性状的影响[J]. 新疆农业科学, 2024, 61(3): 734-741.
编辑方式 Edit Mode | 编辑序列 Edit Sequence | 基因型 Genotype | 突变类型 Mutation Type |
---|---|---|---|
FGF5-InDel | GAGAAGCGCCTCGCACCCAAAGGGCAGCCCGGACCGGCTGCCACCGAGAG GAACCC | WT | FGF5+/FGF5+ |
GAGAAGCGCCTCGCACC------------GAGAGGAACCC | -28 bp/-28 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC----------------GAGAGGAACCC GAGAAGCGCCTCGCACCCAAAGGt-----GCCCGGACCGGCTGCCACCGAGAGGAACCC | -28 bp/-2 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC---------------------GAGAGGAACCC GAGAAGCGCCTCGCACCT--------------------CGAGAGGAACCC | -28 bp/-26 bp | FGF5- /FGF5- | |
FGF5-HDR | AGCCACCTGATCCTCAGCGCCTGGGCTCAAGGGGAGAAGCGCCTCGCAC | wt | FGF5+/FGF5+ |
AGCCACCTGATCCTCAGCGCCTGGGCTTAAGGGGAGAAGCGCCTCGCACC | 置换 | FGF5-/FGF5- |
Tab.1 Sequence comparison of different editing genotypes of FGF5
编辑方式 Edit Mode | 编辑序列 Edit Sequence | 基因型 Genotype | 突变类型 Mutation Type |
---|---|---|---|
FGF5-InDel | GAGAAGCGCCTCGCACCCAAAGGGCAGCCCGGACCGGCTGCCACCGAGAG GAACCC | WT | FGF5+/FGF5+ |
GAGAAGCGCCTCGCACC------------GAGAGGAACCC | -28 bp/-28 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC----------------GAGAGGAACCC GAGAAGCGCCTCGCACCCAAAGGt-----GCCCGGACCGGCTGCCACCGAGAGGAACCC | -28 bp/-2 bp | FGF5-/FGF5- | |
GAGAAGCGCCTCGCACC---------------------GAGAGGAACCC GAGAAGCGCCTCGCACCT--------------------CGAGAGGAACCC | -28 bp/-26 bp | FGF5- /FGF5- | |
FGF5-HDR | AGCCACCTGATCCTCAGCGCCTGGGCTCAAGGGGAGAAGCGCCTCGCAC | wt | FGF5+/FGF5+ |
AGCCACCTGATCCTCAGCGCCTGGGCTTAAGGGGAGAAGCGCCTCGCACC | 置换 | FGF5-/FGF5- |
编辑方式 Edit mode | 家系 (Family) | F0父本(基因型) F0 sire (Genotype) | F0代选配类型 F0 type | F1代羔羊 (基因型) F1 lambs (Genotype) | F1父本 (基因型) F1 sire (Genotype) | F1代 选配类型 F1 type | F2代羔羊 (基因型) F2 lambs (Genotype) |
---|---|---|---|---|---|---|---|
FGF5-InDel | 1 | GM007 (-28 bp/-2 bp、G>T, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 -2 bp杂合 | GM18090 (-28 bp,杂合) | F0♂×WT♀ | -28 bp,杂合 WT/WT |
2 | GM009 (-28 bp/-28 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 | TG127 (-28 bp,杂合) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 WT/WT 其他 | |
3 | GM022 (-28 bp/-26 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 -26 bp,杂合 | \ | \ | \ | |
FGF5-HDR | 4 | GM18042 (置换, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | C>T,杂合 | \ | \ | \ |
Tab.2 Genotype information of parents and lambs
编辑方式 Edit mode | 家系 (Family) | F0父本(基因型) F0 sire (Genotype) | F0代选配类型 F0 type | F1代羔羊 (基因型) F1 lambs (Genotype) | F1父本 (基因型) F1 sire (Genotype) | F1代 选配类型 F1 type | F2代羔羊 (基因型) F2 lambs (Genotype) |
---|---|---|---|---|---|---|---|
FGF5-InDel | 1 | GM007 (-28 bp/-2 bp、G>T, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 -2 bp杂合 | GM18090 (-28 bp,杂合) | F0♂×WT♀ | -28 bp,杂合 WT/WT |
2 | GM009 (-28 bp/-28 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 | TG127 (-28 bp,杂合) | F0♂×WT♀ F0♂×F0♀ | -28 bp,杂合 WT/WT 其他 | |
3 | GM022 (-28 bp/-26 bp, FGF5-/FGF5-) | F0♂×WT♀ | -28 bp,杂合 -26 bp,杂合 | \ | \ | \ | |
FGF5-HDR | 4 | GM18042 (置换, FGF5-/FGF5-) | F0♂×WT♀ F0♂×F0♀ | C>T,杂合 | \ | \ | \ |
性状 Trait | 记录数 Recode | 最小值 Minimum | 最大值 Maximum | 平均值 Average | 标准差 Standard deviation | 变异系数 Coefficient of variation |
---|---|---|---|---|---|---|
羊毛自然长度Wool length(cm) | 180 | 7.00 | 15.50 | 10.49 | 1.24 | 11.82 |
伸直长度Wool straight length(cm) | 178 | 8.24 | 17.16 | 12.69 | 1.61 | 12.69 |
羊毛纤维直径Wool fiber diameter(μm) | 181 | 14.80 | 27.84 | 18.97 | 2.02 | 10.65 |
剪毛量Greasy fleece weight(kg) | 166 | 1.90 | 8.00 | 4.51 | 1.19 | 26.21 |
Tab.3 Descriptive statistics of traits in FGF5 gene-edited sheep wool
性状 Trait | 记录数 Recode | 最小值 Minimum | 最大值 Maximum | 平均值 Average | 标准差 Standard deviation | 变异系数 Coefficient of variation |
---|---|---|---|---|---|---|
羊毛自然长度Wool length(cm) | 180 | 7.00 | 15.50 | 10.49 | 1.24 | 11.82 |
伸直长度Wool straight length(cm) | 178 | 8.24 | 17.16 | 12.69 | 1.61 | 12.69 |
羊毛纤维直径Wool fiber diameter(μm) | 181 | 14.80 | 27.84 | 18.97 | 2.02 | 10.65 |
剪毛量Greasy fleece weight(kg) | 166 | 1.90 | 8.00 | 4.51 | 1.19 | 26.21 |
性状Trait | 编辑方式Edit Mode | ||
---|---|---|---|
FGF5-InDel | FGF5-HDR | WT | |
羊毛自然长度Wool length(cm) | 10.44±1.31A(147) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.57±1.62a(145) | 13.23±1.43bB(33) | 11.04±1.09cC(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.07±1.98(148) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.43±1.27A(133) | 4.86±0.74A(33) | 3.82±1.16B(29) |
Tab.4 Effect of different gene editing modes on wool traits
性状Trait | 编辑方式Edit Mode | ||
---|---|---|---|
FGF5-InDel | FGF5-HDR | WT | |
羊毛自然长度Wool length(cm) | 10.44±1.31A(147) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.57±1.62a(145) | 13.23±1.43bB(33) | 11.04±1.09cC(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.07±1.98(148) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.43±1.27A(133) | 4.86±0.74A(33) | 3.82±1.16B(29) |
性状 Trait | 基因型Genotype | |||
---|---|---|---|---|
-28 bp或-26 bp | -2 bp | 替换(C>T,61) | WT | |
羊毛自然长度Wool length(cm) | 10.50±1.22A(89) | 10.57±1.50A(30) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.73±1.55A(89) | 12.51±1.91A(30) | 13.29±1.43A(33) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.21±2.10(91) | 18.67±1.22(30) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.39±1.28a(86) | 4.75±1.34aB(29) | 4.86±0.74aB(33) | 3.82±1.16bC(29) |
Tab.5 Effect of different editing genotypes on wool traits
性状 Trait | 基因型Genotype | |||
---|---|---|---|---|
-28 bp或-26 bp | -2 bp | 替换(C>T,61) | WT | |
羊毛自然长度Wool length(cm) | 10.50±1.22A(89) | 10.57±1.50A(30) | 10.74±0.81A(33) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.73±1.55A(89) | 12.51±1.91A(30) | 13.29±1.43A(33) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 19.21±2.10(91) | 18.67±1.22(30) | 18.51±2.15(33) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 4.39±1.28a(86) | 4.75±1.34aB(29) | 4.86±0.74aB(33) | 3.82±1.16bC(29) |
性状 Trait | 突变类型Mutation type | ||
---|---|---|---|
-/- | -/+ | +/+ | |
羊毛自然长度Wool length(cm) | 10.50±1.54A(12) | 10.50±1.17A(77) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.21±1.83A(12) | 12.81±1.50A(77) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 18.97±1.90(13) | 19.25±2.14(78) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 3.97±1.49ab(12) | 4.47±1.24a(71) | 3.82±1.16b(29) |
Tab.6 Effect of different mutation types on wool traits
性状 Trait | 突变类型Mutation type | ||
---|---|---|---|
-/- | -/+ | +/+ | |
羊毛自然长度Wool length(cm) | 10.50±1.54A(12) | 10.50±1.17A(77) | 9.67±1.00B(29) |
伸直长度Wool straight length(cm) | 12.21±1.83A(12) | 12.81±1.50A(77) | 11.04±1.09B(29) |
羊毛纤维直径Wool fiber diameter(μm) | 18.97±1.90(13) | 19.25±2.14(78) | 18.38±2.24(29) |
剪毛量Greasy fleece weight(kg) | 3.97±1.49ab(12) | 4.47±1.24a(71) | 3.82±1.16b(29) |
[1] | 李忠慧. CRISPR/cas9基因编辑技术在羊毛品质改良中的应用[J]. 饲料博览, 2020,(11):32-34. |
LI Zhonghui. Application of CRISPR/cas9 gene editing technology in wool quality improvement[J]. Feed Review, 2020,(11):32-34. | |
[2] |
Zhao H Y, Hu R X, Li F D, et al. Five SNPs Within the FGF5 Gene Significantly Affect Both Wool Traits and Growth Performance in Fine-Wool Sheep(Ovis aries)[J]. Front Genet, 2021, 12:732097.
DOI URL |
[3] |
徐鑫, 刘明军. CRISPR/Cas9基因编辑技术在绵羊中的应用研究进展[J]. 中国畜牧兽医, 2022, 49(11):4129-4138.
DOI |
XU Xin, LIU Mingjun. Research progress on application of CRISPR/Cas9 genome editing systems in sheep[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(11):4129-4138. | |
[4] | 史玉洁, 李芳, 王昕. CRISPR技术应用于山羊和绵羊育种的研究进展[J]. 中国畜牧杂志, 2022, 58(4):16-21. |
SHI Yujie, LI Fang, WANG Xin. Research progress on application of CRISPR in goat and sheep breeding[J]. Chinese Journal of Animal Science, 2022, 58(4):16-21. | |
[5] | 曹俊霞, 王友亮, 王征旭. 精准调控CRISPR/Cas9基因编辑技术研究进展[J]. 遗传, 2020, 42(12):1168-1177. |
CAO Junxia, WANG Youliang, WANG Zhengxu. Advances in precise regulation of CRISPR/Cas9 gene editing technology[J]. Hereditas (Beijing), 2020, 42(12):1168-1177. | |
[6] | 王欢, 邹惠影, 朱化彬, 等. CRISPR/Cas9基因编辑技术在家畜育种新材料创制中的研究进展[J]. 畜牧兽医学报, 2021, 52(4):851-861. |
WANG Huan, ZOU Huiying, ZHU Huabin, et al. Advances in evaluation of livestock breeding new materials by using the CRISPR/Cas9 gene editing technology[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4):851-861. | |
[7] |
Fan Z Q, Perisse I V, Cotton C U, et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene[J]. JCI Insight, 2018, 3(19):e123529.
DOI URL |
[8] |
Yoshizawa Y, Wada K, Shiomi G, et al. A 1-bp deletion in Fgf5 causes male-dominant long hair in the Syrian hamster[J]. Mammalian Genome, 2015, 26(11):630-637.
DOI URL |
[9] |
Mizuno S, Iijima S, Okano T, et al. Retrotransposon-mediated Fgf5(go-Utr) mutant mice with long pelage hair[J]. Experimental Animals, 2011, 60(2):161-167.
PMID |
[10] |
Ota Y, Saitoh Y, Suzuki S, et al. Fibroblast Growth Factor 5 Inhibits Hair Growth by Blocking Dermal Papilla Cell Activation[J]. Biochemical and Biophysical Research Communications, 2002, 290(1):169-176.
DOI URL |
[11] |
Rosenquist T A, Martin G R. Fibroblast growth factor signalling in the hair growth cycle:expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle[J]. Developmental Dynamics:an Official Publication of the American Association of Anatomists, 1996, 205(4):379-386.
PMID |
[12] |
Li W R, Liu C X, Zhang X M, et al. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J]. The FEBS Journal, 2017, 284(17):2764-2773.
DOI URL |
[13] |
Ito C, Saitoh Y, Fujita Y, et al. Decapeptide with fibroblast growth factor(FGF)-5 partial sequence inhibits hair growth suppressing activity of FGF-5[J]. Journal of Cellular Physiology, 2003, 197(2):272-283.
DOI URL |
[14] |
He X L, Chao Y, Zhou G X, et al. Fibroblast growth factor 5-short(FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of Cashmere goats[J]. Gene, 2016, 575(2):393-398.
DOI URL |
[15] |
Zhang L H, He S G, Liu M J, et al. Molecular cloning,characterization,and expression of sheep FGF5 gene[J]. Gene, 2015, 555(2):95-100.
DOI URL |
[16] | 高原, 阿力玛, 李璐, 等. 靶除内蒙古白绒山羊FGF5基因对其毛被性状的影响[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(1):61-65. |
GAO Yuan, A Lima, LI Lu, et al. Effecs of knockout FGF5 in Inner Mongolian white Cashmere goats on fleece traits[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2016, 37(1):61-65. | |
[17] |
Hu R, Fan Z Y, Wang B Y, et al. RAPID COMMUNICATION:Generation of FGF5 knockout sheep via the CRISPR/Cas9 system[J]. J Anim Sci, 2017, 95(5):2019-2024.
DOI PMID |
[18] | 毛林军. FGF5基因编辑绵羊精液冷冻及体外胚胎的制备与分析[D]. 乌鲁木齐: 新疆农业大学, 2022. |
MAO Linjun. Preparation and analysis of frozen semen and in vitro embryos of FGF5 gene-edited sheep[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[19] | 胡慧宇. FGF5基因编辑细毛羊的遗传稳定性和自身健康评估[D]. 乌鲁木齐: 新疆农业大学, 2021. |
HU Huiyu. Evaluation of genetic stability and self-health safety by FGF5 gene edited fine-wool sheep[D]. Urumqi: Xinjiang Agricultural University, 2021. | |
[20] | 关鸣轩, 魏趁, 佀博学, 等. 苏博美利奴羊主要经济性状的遗传参数估计[J]. 中国畜牧杂志, 2022, 58(1):97-101. |
GUAN Mingxuan, WEI Chen, SI Boxue, et al. Estimation of genetic parameters of main economic traits of Subo Merino sheep[J]. Chinese Journal of Animal Science, 2022, 58(1):97-101. | |
[21] | 魏趁, 关鸣轩, 付雪峰, 等. 运用贝叶斯方法估计中国美利奴羊(新疆型)毛用性状及繁殖性状的遗传参数[J]. 畜牧兽医学报, 2020, 51(7):1537-1547. |
WEI Chen, GUAN Mingxuan, FU Xuefeng, et al. Estimates of genetic parameters for wool and reproductive traits in Chinese Merino sheep(Xinjiang type) by bayesian method[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7):1537-1547. | |
[22] | 乔国艳, 袁超, 李文辉, 等. 高山美利奴羊重要经济性状遗传参数估计[J]. 中国畜牧杂志, 2019, 55(10):58-62. |
QIAO Guoyan, YUAN Chao, LI Wenhui, et al. Estimation of genetic parameter for important economic traits of Alpine Merino sheep[J]. Chinese Journal of Animal Science, 2019, 55(10):58-62. | |
[23] |
Wang X, Niu Y, Zhou J, et al. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Animal Genetics, 2018, 49(1):43-51.
DOI PMID |
[24] | 尚利青, 宋绍征, 张婷, 等. MSTN基因突变纯合子兔的繁育和表型分析[J]. 生物工程学报, 2022, 38(5):1847-1858. |
SHANG Liqing, SONG Shaozheng, ZHANG Ting, et al. Propagation and phenotypic analysis of mutant rabbits with MSTN homozygous mutation[J]. Chinese Journal of Biotechnology, 2022, 38(5):1847-1858
DOI PMID |
|
[25] |
Xu Y X, Liu H M, Pan H L, et al. CRISPR/Cas9-mediated Disruption of Fibroblast Growth Factor 5 in Rabbits Results in a Systemic Long Hair Phenotype by Prolonging Anagen[J]. Genes, 2020, 11(3):297.
DOI URL |
[1] | WANG Chunsheng, LI Jianfeng, ZHANG Yueqiang, FAN Zheru, WANG Zhong, GAO Xin, SHI Jia, ZHANG Hongzhi, WANG Lihong, XIA Jianqiang, WANG Fangping, ZHAO Qi. Study on genotypic differences of anther culture ability in mainly cultivated spring wheat varieties in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2081-2086. |
[2] | WANG Kaidi, GAO Chenxu, PEI Wenfeng, YANG Shuxian, ZHANG Wenqing, SONG Jikun, MA Jianjiang, WANG Li, YU Jiwen, CHEN Quanjia. Identification of TRM gene family and fiber quality related excellent haplotype analysis in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 521-536. |
[3] | ZHOU Guangwei, HAN Dengxu, ZHU Qi, ZHANG Shaomin. Screening of spring maize genotypes tolerant to low-phosphorus and their phosphorus efficiency in Xinjiang [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 847-856. |
[4] | LIU Pengpeng, SANG Wei, XU Hongjun, CUI Fengjuan, HAN Xinnian, NIE Yingbin, KONG Dezhen, ZOU Bo, MU Peiyuan. Effects of Genotype and Environment on Protein Qualities of Winter Wheat in Xinjiang [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 45-54. |
[5] | ZHANG Da-wei, WEI Xin, XU Hai-jiang, LIU Zhong-shan, LI Chun-ping, MA Qing-qian, XU Jian-hui. Study on the Response of Cotton Varieties with Different Genotypes to Defoliants [J]. Xinjiang Agricultural Sciences, 2019, 56(1): 146-153. |
[6] | LIU Xiao-ting, LUO Yan, CHEN Jie, LIAN Ke-xun, LIU Gang, MA Zhao, ZHU Xiao-qing, GU Xin-li. Effects of Chinese Herbal Compound Polysaccharides on Immune Functions during the Brood Incubation Period in Different MHC B-Lβ II Genotype of Laying Hens [J]. Xinjiang Agricultural Sciences, 2018, 55(4): 763-773. |
[7] | ZHANG Xiao-li, XU Ye-ting, Aishajiang Maimaiti, XU Juan, DENG Li, WANG Ji-xun. Identification of S-genotypes of Native Pear Cultivars in Xinjiang [J]. Xinjiang Agricultural Sciences, 2018, 55(2): 246-252. |
[8] | WANG Zhong;FAN Zhe-ru;ZHANG Yue-qiang;LI Jian-feng;GAO Xin;WANG Zi-xia. Analysis of Influencing Factors on Embryo Rate of Haploid Embryos in Spring Wheat [J]. , 2016, 53(8): 1404-1408. |
[9] | . Using AIREML to Estimate Genetic Parameter of Chinese Merino Wool Traits [J]. , 2016, 53(12): 2344-2352. |
[10] | . Effects of Genotype and Environment on Quality Characters of Three Gluten Wheat Varieties [J]. , 2015, 52(8): 1382-1387. |
[11] | ZENG Bin;GAO Qi-ming;TIAN Jia;LI Jiang. Molecular Identification Analysis of S-Rnases Genotypes of Self-incompatibility of Almond Cultivars in Xinjiang [J]. , 2014, 51(8): 1400-1408. |
[12] | DI Li-na;NAN Hai-chen;XIA Li-ning. Detection and Analysis of β-lactamase and 16S rRNA methylase in Resistant Escherichia coli Isolates from A Hoggery in Xinjiang [J]. , 2014, 51(7): 1335-1341. |
[13] | LI Zhi-jun;LIU Wu-jun;QI Ju-zhong;MENG Jun;LIU Jia;GEN Ming;YAO Xin-kui. Test on Identifying Different Horse Breeds with Microsatellite Polymorphism [J]. , 2013, 50(9): 1692-1703. |
[14] | . Polymorphism Analysis of the Position (59578440) on Sheep X Chromosome and Its Relationship with Fat-tail (fat-rump) Trait [J]. , 2013, 50(12): 2311-2316. |
[15] | MENG Ling-zhen;CHEN Quan-jia;YANG Ting;Ayixiamu Guli;WANG Xi-dong;QU Yan-ying. Studies on Genetic Transformation of Agrobacterium mediated Bar Gene and Bt Gene [J]. , 2013, 50(12): 2189-2196. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||