Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (6): 1461-1467.DOI: 10.6048/j.issn.1001-4330.2024.06.020
• Plant Protection • Soil Fertilizero Water Saving Irrigation • Previous Articles Next Articles
GENG Songyi(), SUN Hongtao, ZHAO Weiqi, WANG Mei, MA Rong(
)
Received:
2023-10-15
Online:
2024-06-20
Published:
2024-08-08
Correspondence author:
MA Rong
Supported by:
通讯作者:
马荣
作者简介:
耿松毅(1997-),男,山西太原人,硕士研究生,研究方向为森林保护,(E-mail)1053106354@qq.com
基金资助:
CLC Number:
GENG Songyi, SUN Hongtao, ZHAO Weiqi, WANG Mei, MA Rong. Survey of the occurrence of apple tree Valsa canker and screening of new control agents[J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1461-1467.
耿松毅, 孙洪涛, 赵伟琦, 王梅, 芦屹, 马荣. 苹果树腐烂病发生及新型防治药剂筛选[J]. 新疆农业科学, 2024, 61(6): 1461-1467.
处理 Treatments | 防治效果 Effectiveness of prevention(%) | |
---|---|---|
幼果期 Young fruit stage | 果实膨大期 Fruit expansion period | |
氨基寡糖素500倍液 Amino-oligosaccharide 500× | 88.89±1.44 a | 91.67±1.38a |
氨基寡糖素1 000倍液 Amino-oligosaccharide 1 000× | 77.78±1.67 a | 83.33±1.26 a |
氨基寡糖素1 500倍液 Amino-oligosaccharide 1 500× | 55.56±7.12b | 50.00±4.79 b |
Tab.1 Amino-oligosaccharide control effect
处理 Treatments | 防治效果 Effectiveness of prevention(%) | |
---|---|---|
幼果期 Young fruit stage | 果实膨大期 Fruit expansion period | |
氨基寡糖素500倍液 Amino-oligosaccharide 500× | 88.89±1.44 a | 91.67±1.38a |
氨基寡糖素1 000倍液 Amino-oligosaccharide 1 000× | 77.78±1.67 a | 83.33±1.26 a |
氨基寡糖素1 500倍液 Amino-oligosaccharide 1 500× | 55.56±7.12b | 50.00±4.79 b |
处理 Treatments | 防治效果 Effectiveness of prevention(%) |
---|---|
戊挫醇200倍液 Tebuconazole 200× | 83.3±0.68 a |
戊挫醇200倍液+透翠100倍液 Tebuconazole 200×+ Turquoise 100× | 87.5±1.74 a |
代森铵200倍液 Amobam 200× | 84.2±1.32 a |
代森铵200倍液+透翠100倍液 Amobam 200×+ Turquoise 100× | 87.5±0.88 a |
枯草芽孢杆菌200倍液 Bacillus subtilis 200× | 62.5±3.47 b |
枯草芽孢杆菌200倍液+透翠100倍液 Bacillus subtilis 200×+ Turquoise 100× | 50±4.90 b |
CK | - |
Tab.2 Effectiveness of three pharmacy and additives for the control
处理 Treatments | 防治效果 Effectiveness of prevention(%) |
---|---|
戊挫醇200倍液 Tebuconazole 200× | 83.3±0.68 a |
戊挫醇200倍液+透翠100倍液 Tebuconazole 200×+ Turquoise 100× | 87.5±1.74 a |
代森铵200倍液 Amobam 200× | 84.2±1.32 a |
代森铵200倍液+透翠100倍液 Amobam 200×+ Turquoise 100× | 87.5±0.88 a |
枯草芽孢杆菌200倍液 Bacillus subtilis 200× | 62.5±3.47 b |
枯草芽孢杆菌200倍液+透翠100倍液 Bacillus subtilis 200×+ Turquoise 100× | 50±4.90 b |
CK | - |
处理 Treatments | 防治效果 Effectiveness of prevention (%) | 助剂校正防效 Auxiliary agent to correct the effectiveness of prevention (%) |
---|---|---|
戊唑醇200倍液+透翠100倍液 Tebuconazole 200×+ Turquoise 100× | 83.3 | 20.89 |
代森铵200倍液+透翠100倍液 Amobam 200×+ Turquoise 100× | 84.2 | 25.15 |
枯草芽孢杆菌200倍液+ 透翠100倍液 Bacillus subtilis 200×+ Turquoise 100× | 62.5 | -33.3 |
Tab.3 Three pharmacy and additives to correct the effect
处理 Treatments | 防治效果 Effectiveness of prevention (%) | 助剂校正防效 Auxiliary agent to correct the effectiveness of prevention (%) |
---|---|---|
戊唑醇200倍液+透翠100倍液 Tebuconazole 200×+ Turquoise 100× | 83.3 | 20.89 |
代森铵200倍液+透翠100倍液 Amobam 200×+ Turquoise 100× | 84.2 | 25.15 |
枯草芽孢杆菌200倍液+ 透翠100倍液 Bacillus subtilis 200×+ Turquoise 100× | 62.5 | -33.3 |
处理 Treatments | 防治效果 Effectiveness of prevention(%) |
---|---|
戊唑醇200倍液Tebuconazole 200× | 83.3±0.68 a |
枯草芽孢杆菌200倍液Bacillus subtilis 200× | 62.5±3.47 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液5∶1混配 Tebuconazole 200× and Bacillus subtilis 200× 5∶1 mix | 81.2±1.85 ab |
戊唑醇200倍液+枯草芽孢杆菌200倍液2∶1混配 Tebuconazole 200× and Bacillus subtilis 200× 2∶1 mix | 73.5±3.43 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液1∶1混配 Tebuconazole 200× and Bacillus subtilis 200× 1∶1 mix | 72.2±5.01 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液1∶2混配 Tebuconazole 200× and Bacillus subtilis 200× 1∶2 mix | 72.5±5.50 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液1∶5混配 Tebuconazole 200× and Bacillus subtilis 200× 1∶5 mix | 69.2±7.56 b |
戊挫醇200倍液+透翠100倍液Tebuconazole 200×+ Turquoise 100× | 87.5±1.74 a |
枯草芽孢杆菌200倍液+透翠100倍液Bacillus subtilis 200×+ Turquoise 100× | 50±4.90 b |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液5∶1混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 5∶1 mix | 83.2±1.21 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液2∶1混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 2∶1 mix | 79.2±1.23 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶1混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶1 mix | 78.9±2.10 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶2混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶2 mix | 80.5±1.79 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶5混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶5 mix | 71.4±3.56 b |
代森铵200倍液Amobam 200× | 84.2±1.32 a |
枯草芽孢杆菌200倍液Bacillus subtilis 200× | 62.5±3.47 b |
代森铵200倍液+枯草芽孢杆菌200倍液5∶1混配 Amobam 200× and Bacillus subtilis 200× 5∶1 mix | 74.5±1.23 a |
代森铵200倍液+枯草芽孢杆菌200倍液2∶1混配 Amobam 200× and Bacillus subtilis 200× 2∶1 mix | 73.8±3.86 b |
代森铵200倍液+枯草芽孢杆菌200倍液1∶1混配 Amobam 200× and Bacillus subtilis 200× 1∶1 mix | 73.6±4.35 b |
代森铵200倍液+枯草芽孢杆菌200倍液1∶2混配 Amobam 200× and Bacillus subtilis 200× 1∶2 mix | 76.1±1.42 a |
代森铵200倍液+枯草芽孢杆菌200倍液1∶5混配 Amobam 200× and Bacillus subtilis 200× 1∶5 mix | 74.3±0.92 a |
代森铵200倍液+透翠100倍液Amobam 200×+ Turquoise 100× | 87.5±0.88 a |
枯草芽孢杆菌200倍液+透翠100倍液Bacillus subtilis 200×+ Turquoise 100× | 50±4.90 b |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液5∶1混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 5∶1 mix | 76.2±1.15 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液2∶1混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 2∶1 mix | 72.5±0.60 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶1混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶1 mix | 72.7±1.33 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶2混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶2 mix | 75.2±1.21 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶5混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶5 mix | 73.1±0.71 a |
Tab.4 The effect of pharmacy mixture contro
处理 Treatments | 防治效果 Effectiveness of prevention(%) |
---|---|
戊唑醇200倍液Tebuconazole 200× | 83.3±0.68 a |
枯草芽孢杆菌200倍液Bacillus subtilis 200× | 62.5±3.47 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液5∶1混配 Tebuconazole 200× and Bacillus subtilis 200× 5∶1 mix | 81.2±1.85 ab |
戊唑醇200倍液+枯草芽孢杆菌200倍液2∶1混配 Tebuconazole 200× and Bacillus subtilis 200× 2∶1 mix | 73.5±3.43 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液1∶1混配 Tebuconazole 200× and Bacillus subtilis 200× 1∶1 mix | 72.2±5.01 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液1∶2混配 Tebuconazole 200× and Bacillus subtilis 200× 1∶2 mix | 72.5±5.50 b |
戊唑醇200倍液+枯草芽孢杆菌200倍液1∶5混配 Tebuconazole 200× and Bacillus subtilis 200× 1∶5 mix | 69.2±7.56 b |
戊挫醇200倍液+透翠100倍液Tebuconazole 200×+ Turquoise 100× | 87.5±1.74 a |
枯草芽孢杆菌200倍液+透翠100倍液Bacillus subtilis 200×+ Turquoise 100× | 50±4.90 b |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液5∶1混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 5∶1 mix | 83.2±1.21 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液2∶1混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 2∶1 mix | 79.2±1.23 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶1混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶1 mix | 78.9±2.10 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶2混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶2 mix | 80.5±1.79 a |
戊挫醇200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶5混配 Tebuconazole 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶5 mix | 71.4±3.56 b |
代森铵200倍液Amobam 200× | 84.2±1.32 a |
枯草芽孢杆菌200倍液Bacillus subtilis 200× | 62.5±3.47 b |
代森铵200倍液+枯草芽孢杆菌200倍液5∶1混配 Amobam 200× and Bacillus subtilis 200× 5∶1 mix | 74.5±1.23 a |
代森铵200倍液+枯草芽孢杆菌200倍液2∶1混配 Amobam 200× and Bacillus subtilis 200× 2∶1 mix | 73.8±3.86 b |
代森铵200倍液+枯草芽孢杆菌200倍液1∶1混配 Amobam 200× and Bacillus subtilis 200× 1∶1 mix | 73.6±4.35 b |
代森铵200倍液+枯草芽孢杆菌200倍液1∶2混配 Amobam 200× and Bacillus subtilis 200× 1∶2 mix | 76.1±1.42 a |
代森铵200倍液+枯草芽孢杆菌200倍液1∶5混配 Amobam 200× and Bacillus subtilis 200× 1∶5 mix | 74.3±0.92 a |
代森铵200倍液+透翠100倍液Amobam 200×+ Turquoise 100× | 87.5±0.88 a |
枯草芽孢杆菌200倍液+透翠100倍液Bacillus subtilis 200×+ Turquoise 100× | 50±4.90 b |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液5∶1混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 5∶1 mix | 76.2±1.15 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液2∶1混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 2∶1 mix | 72.5±0.60 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶1混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶1 mix | 72.7±1.33 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶2混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶2 mix | 75.2±1.21 a |
代森铵200倍液+透翠100倍液与枯草芽孢杆菌200倍液+透翠100倍液1∶5混配 Amobam 200×+ Turquoise 100× and Bacillus subtilis 200×+ Turquoise 100× 1∶5 mix | 73.1±0.71 a |
[1] | 李保华, 王彩霞, 董向丽. 我国苹果主要病害研究进展与病害防治中的问题[J]. 植物保护, 2013, 39(5): 46-54. |
LI Baohua, WANG Caixia, DONG Xiangli. Research progress in apple diseases and problems in the disease management in China[J]. Plant Protection, 2013, 39(5): 46-54. | |
[2] | 杜琴. 新疆主要林木腐烂病菌种类鉴定及其防治方法研究[D]. 石河子: 石河子大学, 2013. |
DU Qin. Identification to Pathogen of Main Woods Canker in Xinjiang and Its Control Technology Study[D]. Shihezi: Shihezi University, 2013. | |
[3] | 焦浩, 范艳云, 高小宁, 等. 8种药剂对苹果树腐烂病的田间防效评价[J]. 河南农业科学, 2015, 44(10): 95-99. |
JIAO Hao, FAN Yanyun, GAO Xiaoning, et al. Control efficacy of eight fungicides on apple Valsa canker[J]. Journal of Henan Agricultural Sciences, 2015, 44(10): 95-99. | |
[4] | 翟世玉, 殷辉, 周建波, 等. 枯草芽胞杆菌发酵液对苹果树腐烂病的防治效果[J]. 植物保护, 2019, 45(5): 226-231, 274. |
ZHAI Shiyu, YIN Hui, ZHOU Jianbo, et al. Control efficacy of Bacillus subtilis fermentation broth against apple Valsa canker[J]. Plant Protection, 2019, 45(5): 226-231, 274. | |
[5] | Zhang J X, Gu Y B, Chi F M, et al. Bacillus amyloliquefaciens GB1 can effectively control apple valsa canker[J]. Biological Control, 2015, 88: 1-7. |
[6] | 胡清玉, 刘力伟, 刘欣, 等. 木美土里生物菌肥对苹果树腐烂病的防治作用评价[J]. 中国果树, 2015,(4): 52-55. |
HU Qingyu, LIU Liwei, LIU Xin, et al. Evaluation on the control effect of biological bacterial fertilizer on apple tree rot in Mumei soil[J]. China Fruits, 2015,(4): 52-55. | |
[7] | 党海月, 张妮妮, 朱明旗, 等. 阿泰灵对苹果锈果类病毒病田间防效及机制研究[J]. 西北农业学报, 2022, 31(1): 123-128. |
DANG Haiyue, ZHANG Nini, ZHU Mingqi, et al. Field effect and mechanism of atailing on apple scar skin viroid[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(1): 123-128. | |
[8] |
陈志谊. 芽孢杆菌类生物杀菌剂的研发与应用[J]. 中国生物防治学报, 2015, 31(5): 723-732.
DOI |
CHEN Zhiyi. Research and application of bio-fungicide with Bacillus spp[J]. Chinese Journal of Biological Control, 2015, 31(5): 723-732.
DOI |
|
[9] |
杨阿丽, 陈佰鸿, 毛娟, 等. 生物药剂和化学药剂对苹果树腐烂病菌的抑制效应[J]. 中国农学通报, 2015, 31(16): 173-181.
DOI |
YANG Ali, CHEN Baihong, MAO Juan, et al. Inhibition effect of chemicals and biological fungicides on the Valsa ceratosperma[J]. Chinese Agricultural Science Bulletin, 2015, 31(16): 173-181. | |
[10] | 殷辉, 周建波, 吕红, 等. 枯草芽孢杆菌LF17与甲基硫菌灵协同防治苹果树腐烂病的效果研究[J]. 中国果树, 2021,(1): 28-32. |
YIN Hui, ZHOU Jianbo L? Hong, et al. Synergistic effect of antagonistic bacteria LF17 and thiophanate-methyl against apple Valsa canker[J]. China Fruits, 2021,(1): 28-32. | |
[11] | 刘淑娟, 陈秀蓉, 袁宏波, 等. 芽孢杆菌(Bacillus spp.)与甲基硫菌灵混配对茄腐镰孢菌(Fusarium solani)的抑制作用[J]. 植物保护, 2008, 34(5): 149-152. |
LIU Shujuan, CHEN Xiurong, YUAN Hongbo, et al. Inhibitory effect of mixture of Bacillus spp. and thiophanate-methyl on Fusarium solani[J]. Plant Protection, 2008, 34(5): 149-152. | |
[12] | 周寒. 杀菌剂和生防菌协调控制苹果采后轮纹病及作用机制[D]. 合肥: 安徽农业大学, 2009. |
ZHOU Han. The Coordinated Control of Fungicides and Antagonist to Postharvest Apple Ring Rot and Mechanism of the Disease[D]. Hefei: Anhui Agricultural University, 2009. | |
[13] | 卢靖乐. 噻呋酰胺和枯草芽孢杆菌(Bacillus subtilis)NJ-18菌株联合防治稻、麦纹枯病的研究[D]. 南京: 南京农业大学, 2013. |
LU Jing(Le|Yue). Synergism between Thifluzamide and Bacillus Subtilis Nj-18in Controlling Rhizoctonia Solani and R. Cerealis[D]. Nanjing: Nanjing Agricultural University, 2013. | |
[14] | 郑莫非. 3种杀菌剂及其复配剂对香梨树腐烂病防效评价及2种诱抗剂增效作用[D]. 阿拉尔: 塔里木大学, 2022. |
ZHENG Mofei. Evaluation on the Control Effect of Three Fungicides and Their Mixtures on Fragrant Pear Tree Canker and the Synergistic Effect of Two Elicitors[D]. Ala’er: Tarim University, 2022. | |
[15] | 杜战涛, 李正鹏, 高小宁, 等. 陕西省苹果树腐烂病周年消长及分生孢子传播规律研究[J]. 果树学报, 2013, 30(5): 819-822. |
DU Zhantao, LI Zhengpeng, GAO Xiaoning, et al. Study on the conidia dispersal and the disease dynamics of apple tree canker caused by Valsa Mali var. Mali in Shaanxi[J]. Journal of Fruit Science, 2013, 30(5): 819-822. | |
[16] | 陈策, 王金有, 史秀琴, 等. 苹果树腐烂病的发病过程和药剂防治研究[J]. 植物保护学报, 1981, 8(1): 35-40. |
CHEN Ce, WANG Jinyou, SHI Xiuqin, et al. A preliminary study on the development of valsa canker (valsa Mali miyabe et yamada) of apple trees and the method of chemical control[J]. Journal of Plant Protection, 1981, 8(1): 35-40. | |
[17] | 刘安泰, 张朝敏, 李紫腾, 等. 有机硅助剂在苹果炭疽叶枯病化学防控中的减药增效作用评价[J]. 植物保护, 2022, 48(1): 284-290, 319. |
LIU Antai, ZHANG Chaomin, LI Ziteng, et al. Evaluation of increasing control effect and reducing fungicide effect of organosilicon adjuvant on chemical control of Glomerella apple leaf spot[J]. Plant Protection, 2022, 48(1): 284-290, 319. | |
[18] | 李永宏, 黄清臻. 新复极差法在生物统计中的应用[J]. 医学动物防制, 2002, 18(5): 270-272. |
LI Yonghong, HUANG Qingzhen. Application of the new complex polar difference method in biostatistics[J]. Chinese Journal of Pest Control, 2002, 18(5): 270-272. | |
[19] | 杨普云, 李萍, 王战鄂, 等. 植物免疫诱抗剂氨基寡糖素的应用效果与前景分析[J]. 中国植保导刊, 2013, 33(3): 20-21. |
YANG Puyun, LI Ping, WANG Zhane, et al. Application effect and prospect analysis of plant immune elicitor aminoglycoside[J]. China Plant Protection, 2013, 33(3): 20-21. | |
[20] | 王帅, 刘召阳, 高小宁, 等. 10种生物源杀菌剂对苹果树腐烂病菌的室内活性评价[J]. 西北林学院学报, 2019, 34(1): 150-156. |
WANG Shuai, LIU Zhaoyang, GAO Xiaoning, et al. Antifungal Activity of 10 Biological Fungicides Against Valsa Mali[J]. Journal of Northwest Forestry University, 2019, 34(1): 150-156. | |
[21] | 渠非, 吴晓政, 黄丽丽, 等. 苹果重大枝干病害综合防控技术[J]. 现代园艺, 2020, 43(22): 23-25. |
QU Fei, WU Xiaozheng, HUANG Lili, et al. Comprehensive prevention and control technology of major apple branch diseases[J]. Xiandai Horticulture, 2020, 43(22): 23-25. | |
[22] | 黄曦, 许兰兰, 黄荣韶, 等. 枯草芽孢杆菌在抑制植物病原菌中的研究进展[J]. 生物技术通报, 2010,(1): 24-29. |
HUANG Xi, XU Lanlan, HUANG Rongshao, et al. Research advance in controlling plant diseases by Bacillus subtilis[J]. Biotechnology Bulletin, 2010,(1): 24-29. |
[1] | YUAN Zihan, ZHAO Wenhui, WANG Xiaowu, Tuerxun Ahemaiti, DING Xinhua, ZHANG Shuai, FU Kaiyun, JIA Zunzun, GUO Wenchao. Screening of Corn Stalk Rot control bacteria and evaluation of control effects [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 35-48. |
[2] | CAO Zhujun, ZHANG Zhenyu, KANG Ning, ZHAO Qian, HU Hongying. Research of parasitoids of Sphaerolecanium prunastri fonscolombe in the western Tianshan wild fruit forest [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 971-983. |
[3] | MENG Zhuo, TANG Xiaowen, ZHANG Guangjie, XU Andong, YAN Yu, FU Rao, QIANG Song, JIANG Pingan, MA Deying. Effects of two application methods of insect-sand compound microbial agent on cotton growth and control of Verticillium wilt [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2861-2871. |
[4] | YANG Haitao, XI Ouyan, ZHAO Qian, CAO Zhujun, HU Hongying. Investigation of parasitoids of Didesmococcus koreanus Borchsenius [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2273-2280. |
[5] | WEN Xia, TIAN Lichao, GAO Guizhen. Functional response of Chilomenes quadriplagiata to Tinocallis kahawaluokalani [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2266-2272. |
[6] | ZHAO Yingying, ZHANG Jungao, LI Jin, LIANG Jing, GAO Xiangyu, GU Aixing, LIE Bin. Preliminary Study on the Synergistic Effects of Bacillus subtilis KXZ-33 and Chemical Pesticides against Cotton Fusarium wilt [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1216-1222. |
[7] | LI Yanbing, GUO Xiaohu, Nuershiwake Adalbieke, Patima Wumuerhan, MA Deying. Effects of Artificial Migration of Harmonia Axyridis and Chemical Control on the Control Effect of Cotton Aphid and the Population Dynamics of Natural Enemies [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1173-1179. |
[8] | LIU Haiyang, WANG Wei, ZHANG Renfu, Wenqiemu Abulizi, YAO Ju. A Brief Analysis of the Factors Restricting the Effectiveness of Controlling Cotton Verticillium wilt by Using Biocontrol Bacteria in the Field [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 155-161. |
[9] | DU Pengcheng , LIU Haiyang, ZHANG Jungao, LI Jin, ZHOU Xiaoyun, LIU Mengli, LEI Bin, GUO Qingyuan. Screening and Identification of Biocontrol Bacteria against Cotton Root Rot Diseases at Seedling Stage [J]. Xinjiang Agricultural Sciences, 2020, 57(4): 686-693. |
[10] | LI Xue-ling , LUO Yan-liang, LI Hui, XIE Xin, MA Ruo-han, LIU Yong-Jian, WANG Pei-ling, LU Yan-hui. Regulation and Control Effects of Suaeda Strips on the Population Occurrence of Hippomidia variegata in Cotton Fields [J]. Xinjiang Agricultural Sciences, 2019, 56(1): 13-22. |
[11] | ZHU Dan, LU Jia-xiong, ZHONG Wen, LI Qin, GUO Wen-chao, HU Hong-ying. An Investigation into the Parasitic Wasps as Natural Enemies of Colorado Potato Beetle in Xinjiang [J]. Xinjiang Agricultural Sciences, 2017, 54(12): 2248-2254. |
[12] | WANG Dong-sheng;Tuerxun;GUO Wen-chao;HE Jiang;DING Xin-hua. Influence of Different Host Plants on Parasitic Function of Encarsia formosa Gahan [J]. , 2015, 52(4): 699-704. |
[13] | . Effects of Different Control Methods in Melon-cotton Intercropping Field on Aphis gossypii (Glover) and Its Main Enemy Population Dynamics [J]. , 2015, 52(11): 2097-2102. |
[14] | ZHAN Fa-qiang;HOU Min;YANG Rong;LONG Xuan-qi. Identification, Colonization and Control Effect of an Antagonistic Bacterium against Fusarium wilt Tomato [J]. , 2013, 50(7): 1277-1287. |
[15] | CHEN Lin-feng;FAN Yong-mei;HAO Jing-zhe;YANG Cui-ping;JING Zhong-mei;ZHAO Guo-quan;PAN Wei-ping. Antagonism of the Three Biocontrol Bacteria Strains on Botrytis cinerea in Xinjiang [J]. , 2009, 46(6): 1252-1257. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||