Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (2): 318-325.DOI: 10.6048/j.issn.1001-4330.2024.02.007
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics • Previous Articles Next Articles
YANG Minghua(), LIAO Biyong, LIU Qiang, FENG Guorui, Dawulai Jiekeshan, Buayixiamu Namanti, LIU Qi, Aierjuma Tuluhan, PENG Yuncheng(
)
Received:
2023-06-29
Online:
2024-02-20
Published:
2024-03-19
Correspondence author:
PENG Yuncheng(1965-),male, from Linquan, Anhui, extension researcher,research direction:maize breeding and cultivation,(E-mail)Supported by:
杨明花(), 廖必勇, 刘强, 冯国瑞, 达吾来·杰克山, 布阿依夏木·那曼提, 刘琪, 艾尔居玛·吐卢汗, 彭云承(
)
通讯作者:
彭云承(1965-),男,安徽临泉人,推广研究员,研究方向为玉米育种及栽培,(E-mail)作者简介:
杨明花(1983-),女,四川威远人,副研究员,硕士,研究方向为玉米遗传育种及栽培,(E-mail)xjymh123@163.com
基金资助:
CLC Number:
YANG Minghua, LIAO Biyong, LIU Qiang, FENG Guorui, Dawulai Jiekeshan, Buayixiamu Namanti, LIU Qi, Aierjuma Tuluhan, PENG Yuncheng. Comprehensive evaluation of dehydration of maize hybrid combinations based on principal component analysis[J]. Xinjiang Agricultural Sciences, 2024, 61(2): 318-325.
杨明花, 廖必勇, 刘强, 冯国瑞, 达吾来·杰克山, 布阿依夏木·那曼提, 刘琪, 艾尔居玛·吐卢汗, 彭云承. 基于主成分分析的玉米杂交组合脱水性综合评价[J]. 新疆农业科学, 2024, 61(2): 318-325.
性状 Traits | 株高 Plant height (cm) | 穗高 Ear height (cm) | 穗长 Ear length (cm) | 秃尖长 Corn bald tip (cm) | 穗粗 Ear diameter (cm) | 穗行数 Ear row number | 行粒数 Row grain number | 轴粗 Axle diameter (cm) | 百粒重 100-grain weight (g) | 生育期 Growth period (d) | 单株粒重 Grain weight per plant (g) | 苞叶 含水率 Bracts water content (%) | 穗轴 含水率 Spike shaft water content (%) | 籽粒脱水 含水率 Grain dehydration moisture content (%) | 籽粒 脱水速率 Grain dehydration rate (%) | 收获时籽粒 含水率 At harvest time grain water content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值MAX | 307.50 | 131.94 | 22.85 | 2.66 | 5.35 | 17.55 | 42.87 | 2.83 | 40.99 | 105.67 | 246.82 | 48.12 | 51.53 | 45.48 | 0.77 | 21.23 |
最小值MIN | 254.14 | 82.36 | 14.39 | 0.18 | 4.26 | 14.20 | 30.70 | 2.04 | 28.72 | 100.33 | 117.25 | 13.65 | 24.22 | 8.95 | 0.32 | 10.50 |
标准差 SD | 13.803 | 11.225 | 1.700 | 0.695 | 0.257 | 0.957 | 3.235 | 0.191 | 2.809 | 1.411 | 27.482 | 6.852 | 5.727 | 7.443 | 0.10 | 2.99 |
平均数 Average | 285.23 | 107.26 | 18.12 | 1.09 | 4.82 | 15.80 | 37.28 | 2.51 | 35.72 | 103.25 | 178.87 | 28.24 | 38.37 | 27.64 | 0.59 | 16.15 |
变异系数 Coefficient CV | 4.91 | 10.61 | 9.52 | 64.63 | 5.41 | 6.15 | 8.80 | 7.69 | 7.98 | 1.39 | 15.58 | 24.61 | 15.14 | 27.31 | 17.86 | 18.78 |
Tab.1 Variation coefficient of grain dewatering rate and agronomic traits in mature maize hybrid combinations
性状 Traits | 株高 Plant height (cm) | 穗高 Ear height (cm) | 穗长 Ear length (cm) | 秃尖长 Corn bald tip (cm) | 穗粗 Ear diameter (cm) | 穗行数 Ear row number | 行粒数 Row grain number | 轴粗 Axle diameter (cm) | 百粒重 100-grain weight (g) | 生育期 Growth period (d) | 单株粒重 Grain weight per plant (g) | 苞叶 含水率 Bracts water content (%) | 穗轴 含水率 Spike shaft water content (%) | 籽粒脱水 含水率 Grain dehydration moisture content (%) | 籽粒 脱水速率 Grain dehydration rate (%) | 收获时籽粒 含水率 At harvest time grain water content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值MAX | 307.50 | 131.94 | 22.85 | 2.66 | 5.35 | 17.55 | 42.87 | 2.83 | 40.99 | 105.67 | 246.82 | 48.12 | 51.53 | 45.48 | 0.77 | 21.23 |
最小值MIN | 254.14 | 82.36 | 14.39 | 0.18 | 4.26 | 14.20 | 30.70 | 2.04 | 28.72 | 100.33 | 117.25 | 13.65 | 24.22 | 8.95 | 0.32 | 10.50 |
标准差 SD | 13.803 | 11.225 | 1.700 | 0.695 | 0.257 | 0.957 | 3.235 | 0.191 | 2.809 | 1.411 | 27.482 | 6.852 | 5.727 | 7.443 | 0.10 | 2.99 |
平均数 Average | 285.23 | 107.26 | 18.12 | 1.09 | 4.82 | 15.80 | 37.28 | 2.51 | 35.72 | 103.25 | 178.87 | 28.24 | 38.37 | 27.64 | 0.59 | 16.15 |
变异系数 Coefficient CV | 4.91 | 10.61 | 9.52 | 64.63 | 5.41 | 6.15 | 8.80 | 7.69 | 7.98 | 1.39 | 15.58 | 24.61 | 15.14 | 27.31 | 17.86 | 18.78 |
性状 Trait | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.000 | |||||||||||||||
X2 | 0.536** | 1.000 | ||||||||||||||
X3 | 0.002 | -0.207 | 1.000 | |||||||||||||
X4 | -0.240 | 0.010 | -0.206 | 1.000 | ||||||||||||
X5 | 0.059 | 0.068 | 0.136 | 0.050 | 1.000 | |||||||||||
X6 | -0.021 | 0.172 | -0.134 | 0.212 | 0.300 | 1.000 | ||||||||||
X7 | 0.329* | 0.033 | 0.571** | 0.233 | 0.352* | -0.028 | 1.000 | |||||||||
X8 | -0.159 | -0.011 | 0.276 | 0.091 | 0.252 | 0.213 | 0.084 | 1.000 | ||||||||
X9 | 0.231 | 0.066 | 0.465** | -0.159 | 0.457** | -0.064 | 0.641** | 0.381* | 1.000 | |||||||
X10 | 0.017 | 0.376* | -0.121 | -0.005 | -0.202 | 0.198 | -0.282 | -0.252 | -0.413* | 1.000 | ||||||
X11 | 0.297 | 0.010 | 0.458** | -0.456 | 0.149 | -0.079 | 0.459** | -0.180 | 0.249 | 0.127 | 1.000 | |||||
X12 | 0.074 | 0.035 | -0.016 | -0.185 | 0.132 | -0.099 | -0.082 | -0.061 | 0.061 | 0.11 | 0.308 | 1.000 | ||||
X13 | 0.144 | -0.078 | 0.226 | 0.130 | 0.022 | -0.377 | -0.045 | 0.020 | 0.044 | -0.228 | -0.05 | -0.122 | 1.000 | |||
X14 | -0.217 | -0.037 | -0.060 | -0.016 | 0.314 | 0.189 | -0.005 | 0.273 | -0.034 | -0.042 | -0.308 | 0.078 | -0.127 | 1.000 | ||
X15 | -0.349* | 0.089 | 0.007 | -0.123 | -0.375* | 0.022 | -0.302* | -0.145 | -0.201 | -0.607** | -0.003 | 0.287 | -0.429** | 0.142 | 1.000 | |
X16 | 0.524** | 0.112 | -0.011 | 0.186 | 0.401** | 0.116 | 0.376** | 0.120 | 0.271 | 0.502** | -0.049 | -0.141 | 0.228 | -0.016 | -0.820** | 1.000 |
Tab.2 Correlation analysis between grain moisture content and agronomic traits of mature maize hybrid progenies
性状 Trait | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1.000 | |||||||||||||||
X2 | 0.536** | 1.000 | ||||||||||||||
X3 | 0.002 | -0.207 | 1.000 | |||||||||||||
X4 | -0.240 | 0.010 | -0.206 | 1.000 | ||||||||||||
X5 | 0.059 | 0.068 | 0.136 | 0.050 | 1.000 | |||||||||||
X6 | -0.021 | 0.172 | -0.134 | 0.212 | 0.300 | 1.000 | ||||||||||
X7 | 0.329* | 0.033 | 0.571** | 0.233 | 0.352* | -0.028 | 1.000 | |||||||||
X8 | -0.159 | -0.011 | 0.276 | 0.091 | 0.252 | 0.213 | 0.084 | 1.000 | ||||||||
X9 | 0.231 | 0.066 | 0.465** | -0.159 | 0.457** | -0.064 | 0.641** | 0.381* | 1.000 | |||||||
X10 | 0.017 | 0.376* | -0.121 | -0.005 | -0.202 | 0.198 | -0.282 | -0.252 | -0.413* | 1.000 | ||||||
X11 | 0.297 | 0.010 | 0.458** | -0.456 | 0.149 | -0.079 | 0.459** | -0.180 | 0.249 | 0.127 | 1.000 | |||||
X12 | 0.074 | 0.035 | -0.016 | -0.185 | 0.132 | -0.099 | -0.082 | -0.061 | 0.061 | 0.11 | 0.308 | 1.000 | ||||
X13 | 0.144 | -0.078 | 0.226 | 0.130 | 0.022 | -0.377 | -0.045 | 0.020 | 0.044 | -0.228 | -0.05 | -0.122 | 1.000 | |||
X14 | -0.217 | -0.037 | -0.060 | -0.016 | 0.314 | 0.189 | -0.005 | 0.273 | -0.034 | -0.042 | -0.308 | 0.078 | -0.127 | 1.000 | ||
X15 | -0.349* | 0.089 | 0.007 | -0.123 | -0.375* | 0.022 | -0.302* | -0.145 | -0.201 | -0.607** | -0.003 | 0.287 | -0.429** | 0.142 | 1.000 | |
X16 | 0.524** | 0.112 | -0.011 | 0.186 | 0.401** | 0.116 | 0.376** | 0.120 | 0.271 | 0.502** | -0.049 | -0.141 | 0.228 | -0.016 | -0.820** | 1.000 |
性状 Trait | 因子1 Component 1 | 因子2 Component 2 | 因子3 Component 3 | 因子4 Component 4 | 因子5 Component 5 | 因子6 Component 6 | 因子7 Component 7 | 因子8 Component 8 |
---|---|---|---|---|---|---|---|---|
X1 | 0.35 | -0.27 | 0.25 | -0.28 | -0.07 | 0.07 | -0.12 | -0.03 |
X2 | 0.12 | -0.28 | 0.42 | -0.03 | 0.12 | 0.39 | -0.27 | -0.14 |
X3 | 0.27 | 0.16 | -0.36 | 0.14 | 0.34 | 0.24 | -0.02 | 0.23 |
X4 | -0.21 | 0.22 | 0.27 | -0.21 | 0.18 | 0.24 | 0.41 | -0.02 |
X5 | 0.23 | 0.28 | 0.23 | 0.23 | -0.20 | 0.14 | 0.34 | 0.26 |
X6 | -0.03 | 0.06 | 0.44 | 0.33 | 0.32 | -0.12 | 0.30 | 0.08 |
X7 | 0.44 | 0.09 | -0.08 | 0.08 | 0.17 | -0.23 | -0.05 | 0.13 |
X8 | 0.05 | 0.41 | 0.08 | 0.22 | 0.16 | 0.33 | -0.30 | -0.36 |
X9 | 0.37 | 0.25 | -0.06 | 0.09 | 0.05 | 0.12 | -0.05 | -0.37 |
X10 | -0.14 | -0.42 | 0.11 | 0.25 | 0.27 | 0.33 | 0.00 | 0.27 |
X11 | 0.31 | -0.25 | -0.27 | 0.18 | 0.07 | 0.06 | 0.36 | 0.09 |
X12 | 0.06 | -0.17 | -0.08 | 0.27 | -0.63 | 0.33 | 0.28 | -0.27 |
X13 | 0.04 | 0.16 | -0.17 | -0.47 | -0.09 | 0.51 | -0.02 | 0.40 |
X14 | -0.05 | 0.23 | 0.20 | 0.34 | -0.37 | -0.04 | -0.43 | 0.49 |
X15 | 0.41 | -0.27 | 0.17 | -0.03 | -0.04 | -0.13 | -0.11 | 0.07 |
X16 | 0.27 | 0.21 | 0.32 | -0.36 | -0.13 | -0.17 | 0.18 | 0.05 |
特征值 Eigen value | 3.71 | 2.47 | 2.04 | 1.78 | 1.12 | 1.00 | 0.93 | 0.78 |
百分率 Percentage (%) | 23.19 | 15.45 | 12.77 | 11.11 | 6.98 | 6.26 | 5.79 | 4.84 |
累计百分率 Accumulated percentage (%) | 23.19 | 38.65 | 51.42 | 62.52 | 69.51 | 75.76 | 81.55 | 86.39 |
权重Weight | 0.27 | 0.18 | 0.15 | 0.13 | 0.08 | 0.07 | 0.07 | 0.06 |
Tab.3 Principal component load matrix of S7 generation hybrid combination
性状 Trait | 因子1 Component 1 | 因子2 Component 2 | 因子3 Component 3 | 因子4 Component 4 | 因子5 Component 5 | 因子6 Component 6 | 因子7 Component 7 | 因子8 Component 8 |
---|---|---|---|---|---|---|---|---|
X1 | 0.35 | -0.27 | 0.25 | -0.28 | -0.07 | 0.07 | -0.12 | -0.03 |
X2 | 0.12 | -0.28 | 0.42 | -0.03 | 0.12 | 0.39 | -0.27 | -0.14 |
X3 | 0.27 | 0.16 | -0.36 | 0.14 | 0.34 | 0.24 | -0.02 | 0.23 |
X4 | -0.21 | 0.22 | 0.27 | -0.21 | 0.18 | 0.24 | 0.41 | -0.02 |
X5 | 0.23 | 0.28 | 0.23 | 0.23 | -0.20 | 0.14 | 0.34 | 0.26 |
X6 | -0.03 | 0.06 | 0.44 | 0.33 | 0.32 | -0.12 | 0.30 | 0.08 |
X7 | 0.44 | 0.09 | -0.08 | 0.08 | 0.17 | -0.23 | -0.05 | 0.13 |
X8 | 0.05 | 0.41 | 0.08 | 0.22 | 0.16 | 0.33 | -0.30 | -0.36 |
X9 | 0.37 | 0.25 | -0.06 | 0.09 | 0.05 | 0.12 | -0.05 | -0.37 |
X10 | -0.14 | -0.42 | 0.11 | 0.25 | 0.27 | 0.33 | 0.00 | 0.27 |
X11 | 0.31 | -0.25 | -0.27 | 0.18 | 0.07 | 0.06 | 0.36 | 0.09 |
X12 | 0.06 | -0.17 | -0.08 | 0.27 | -0.63 | 0.33 | 0.28 | -0.27 |
X13 | 0.04 | 0.16 | -0.17 | -0.47 | -0.09 | 0.51 | -0.02 | 0.40 |
X14 | -0.05 | 0.23 | 0.20 | 0.34 | -0.37 | -0.04 | -0.43 | 0.49 |
X15 | 0.41 | -0.27 | 0.17 | -0.03 | -0.04 | -0.13 | -0.11 | 0.07 |
X16 | 0.27 | 0.21 | 0.32 | -0.36 | -0.13 | -0.17 | 0.18 | 0.05 |
特征值 Eigen value | 3.71 | 2.47 | 2.04 | 1.78 | 1.12 | 1.00 | 0.93 | 0.78 |
百分率 Percentage (%) | 23.19 | 15.45 | 12.77 | 11.11 | 6.98 | 6.26 | 5.79 | 4.84 |
累计百分率 Accumulated percentage (%) | 23.19 | 38.65 | 51.42 | 62.52 | 69.51 | 75.76 | 81.55 | 86.39 |
权重Weight | 0.27 | 0.18 | 0.15 | 0.13 | 0.08 | 0.07 | 0.07 | 0.06 |
组合名称 Combination name | 综合评价 得分值 Compre- hensive evalua- tion value | 排名 Ranking | 组合名称 Combination name | 综合评价 得分值 Compre- hensive evalua- tion value | 排名 Ranking | 组合名称 Combination name | 综合评价 得分值 Compre- hensive evalua- tion value | 排名 Ranking |
---|---|---|---|---|---|---|---|---|
1×S7-1 | 0.50 | 25 | 2×S7-4 | 0.65 | 10 | 3×S7-7 | 0.62 | 11 |
1×S7-2 | 0.52 | 22 | 2×S7-5 | 0.57 | 18 | 3×S7-8 | 0.53 | 21 |
1×S7-3 | 0.58 | 16 | 2×S7-6 | 0.32 | 35 | 3×S7-9 | 0.78 | 1 |
1×S7-4 | 0.44 | 27 | 2×S7-7 | 0.74 | 3 | 4×S7-1 | 0.4 | 31 |
1×S7-5 | 0.38 | 32 | 2×S7-8 | 0.41 | 30 | 4×S7-2 | 0.41 | 29 |
1×S7-6 | 0.25 | 36 | 2×S7-9 | 0.65 | 9 | 4×S7-3 | 0.50 | 23 |
1×S7-7 | 0.57 | 19 | 3×S7-1 | 0.50 | 24 | 4×S7-4 | 0.71 | 4 |
1×S7-8 | 0.48 | 26 | 3×S7-2 | 0.76 | 2 | 4×S7-5 | 0.70 | 5 |
1×S7-9 | 0.55 | 20 | 3×S7-3 | 0.57 | 17 | 4×S7-6 | 0.58 | 15 |
2×S7-1 | 0.35 | 34 | 3×S7-4 | 0.65 | 8 | 4×S7-7 | 0.58 | 14 |
2×S7-2 | 0.68 | 7 | 3×S7-5 | 0.69 | 6 | 4×S7-8 | 0.36 | 33 |
2×S7-3 | 0.42 | 28 | 3×S7-6 | 0.61 | 13 | 4×S7-9 | 0.61 | 12 |
Tab.4 Comprehensive evaluation of principal component analysis and ranking
组合名称 Combination name | 综合评价 得分值 Compre- hensive evalua- tion value | 排名 Ranking | 组合名称 Combination name | 综合评价 得分值 Compre- hensive evalua- tion value | 排名 Ranking | 组合名称 Combination name | 综合评价 得分值 Compre- hensive evalua- tion value | 排名 Ranking |
---|---|---|---|---|---|---|---|---|
1×S7-1 | 0.50 | 25 | 2×S7-4 | 0.65 | 10 | 3×S7-7 | 0.62 | 11 |
1×S7-2 | 0.52 | 22 | 2×S7-5 | 0.57 | 18 | 3×S7-8 | 0.53 | 21 |
1×S7-3 | 0.58 | 16 | 2×S7-6 | 0.32 | 35 | 3×S7-9 | 0.78 | 1 |
1×S7-4 | 0.44 | 27 | 2×S7-7 | 0.74 | 3 | 4×S7-1 | 0.4 | 31 |
1×S7-5 | 0.38 | 32 | 2×S7-8 | 0.41 | 30 | 4×S7-2 | 0.41 | 29 |
1×S7-6 | 0.25 | 36 | 2×S7-9 | 0.65 | 9 | 4×S7-3 | 0.50 | 23 |
1×S7-7 | 0.57 | 19 | 3×S7-1 | 0.50 | 24 | 4×S7-4 | 0.71 | 4 |
1×S7-8 | 0.48 | 26 | 3×S7-2 | 0.76 | 2 | 4×S7-5 | 0.70 | 5 |
1×S7-9 | 0.55 | 20 | 3×S7-3 | 0.57 | 17 | 4×S7-6 | 0.58 | 15 |
2×S7-1 | 0.35 | 34 | 3×S7-4 | 0.65 | 8 | 4×S7-7 | 0.58 | 14 |
2×S7-2 | 0.68 | 7 | 3×S7-5 | 0.69 | 6 | 4×S7-8 | 0.36 | 33 |
2×S7-3 | 0.42 | 28 | 3×S7-6 | 0.61 | 13 | 4×S7-9 | 0.61 | 12 |
[1] | 王琦琪, 陈印军. 中国黑龙江、吉林两省与美国玉米生产成本比较分析[J]. 世界农业, 2018,(2):135-141. |
WANG Qiqi, CHEN Yinjun. Comparative analysis of corn production costs between China's Heilongjiang and Jilin provinces and the United States[J]. World Agriculture, 2018,(2):135-141. | |
[2] | 赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策[J]. 中国农业科技导报, 2013, 15(3):1-6. |
ZHAO Jiuran, WANG Ronghuan. The development process, existing problems and countermeasures of China's corn production[J]. Journal of Agricultural Science and Technology, 2013, 15(3):1-6. | |
[3] | 李少昆. 美国玉米生产技术特点与启示[J]. 玉米科学, 2013, 21(3):1-5. |
LI Shaokun. Characteristics and enlightenment of American corn production technology[J]. Journal of Maize Sciences, 2013, 21(3):1-5. | |
[4] |
王克如, 李少昆. 玉米机械粒收破碎率研究进展[J]. 中国农业科学, 2017, 50(11):2018-2026.
DOI |
WANG Keru, LI Shaokun. Research progress of corn grain mechanical harvest fragmentation rate[J]. Scientia Agricultura Sinica, 2017, 50(11):2018-2026.
DOI |
|
[5] |
张凤启, 王邑双, 丁勇, 等. 玉米籽粒脱水速率研究进展[J]. 农学学报, 2018, 8(11):4-8.
DOI |
ZHANG Fengqi, WANG Yishuang, DING Yong, et al. Research progress in dehydration rate of corn grain[J]. Journal of Agriculture, 2018, 8(11):4-8. | |
[6] | 孙乐秀. 玉米自交系机械化收获相关性状及其SNP标记关联分析[D]. 泰安: 山东农业大学, 2015. |
SUN Lexiu. Correlation analysis of mechanical harvest related traits and SNP markers of maize inbred lines[D]. Tai'an: Shandong Agricultural University, 2015. | |
[7] |
王志红, 周福民, 郭华, 等. 玉米籽粒脱水速率研究分析及种质改良策略[J]. 农学学报, 2015, 5(7):15-18.
DOI |
WANG Zhihong, ZHOU Fumin, GUO Hua, et al. Research and analysis of corn grain dehydration rate and germplasm improvement strategy[J]. Journal of Agriculture, 2015, 5(7):15-18. | |
[8] | 闫淑琴, 李德新. 玉米子粒脱水速度的遗传及相关分析和技术措施对脱水的影响[J]. 黑龙江农业科学, 1994,(6):9-11. |
YAN Shuqin, LI Dexin. Genetic and correlation analysis of corn grain dehydration rate and the impact of technical measures on dehydration[J]. Heilongjiang Agricultural Science, 1994,(6):9-11. | |
[9] | Zuber M S. Effect of the Y-y factor pair on yield and other agronomic characters in corn[D]. Iowa State College, 1950. |
[10] |
Crane P L, Miles S R, Newman J E. Factors associated with varietal differences in rate of field drying in corn[J]. Agronomy Journal, 1959, 51(6):318-320.
DOI URL |
[11] | 李凤海, 郭佳丽, 于涛, 等. 不同熟期玉米杂交种及其亲本子粒脱水速率的比较研究[J]. 玉米科学, 2012, 20(6):17-20,24. |
LI Fenghai, GUO Jiali, YU Tao, et al. Comparative study on grain dehydration rate of maize hybrids and their parents at different maturity[J]. Journal of Maize Sciences, 2012, 20(6):17-20, 24. | |
[12] | 闫淑琴, 苏俊, 李春霞, 等. 玉米籽粒灌浆、脱水速率的相关与通径分析[J]. 黑龙江农业科学, 2007,(4):1-4. |
YAN Shuqin, SU Jun, LI Chunxia, et al. Correlation and path analysis of corn grain filling and dehydration rate[J]. Heilongjiang Agricultural Sciences, 2007,(4):1-4. | |
[13] | Miller M F, Hughes H D. Cooperative variety tests of corn:variety tests of corn at Columbia, MO[J]. Missouri Mississippi Agricultural Experiment Station Bulletin, 1910:144-156. |
[14] | 谭福忠, 韩翠波, 邹双利, 等. 极早熟玉米品种籽粒脱水特性的初步研究[J]. 中国农学通报, 2008, 24(7):161-168. |
TAN Fuzhong, HAN Cuibo, ZOU Shuangli, et al. Preliminary study on grain dehydration characteristics of very early maturing maize varieties[J]. Chinese Agricultural Science Bulletin, 2008, 24(7):161-168. | |
[15] | 赵宽厚. 早熟玉米高代系宜机收特性研究[D]. 呼和浩特: 内蒙古农业大学, 2018. |
ZHAO Kuanhou. Study on the characteristics of early maturing maize high-generation lines suitable for machine harvest[D]. Hohhot: Inner Mongolia Agricultural University, 2018. | |
[16] | 王平, 徐加利, 闫保罗, 等. 基于主成分-聚类-逐步回归分析的夏玉米品种光温利用能力综合评价[J]. 山东农业科学, 2020, 52(10):71-77. |
WANG Ping, XU Jiali, YAN Baoluo, et al. Comprehensive evaluation of light and temperature utilization capacity of summer maize varieties based on principal component-cluster-stepwise regression analysis[J]. Shandong Agricultural Sciences, 2020, 52(10):71-77. | |
[17] | 经菊, 郑常祥, 陈柔屹, 等. 贵州玉米杂交组合的主成分分析[J]贵州农业科学, 2009, 37(8):4-6. |
JING Ju, ZHENG Changxiang, CHEN Rouyi, et al. Principal component analysis of maize hybrid combinations in Guizhou[J]. Guizhou Agricultural Sciences, 2009, 37(8):4-6 | |
[18] |
李璐璐, 明博, 谢瑞芝, 等. 玉米品种穗部性状差异及其对籽粒脱水的影响[J]. 中国农业科学, 2018, 51(10):1855-1867.
DOI |
LI Lulu, MING Bo, XIE Ruizhi, et al. Differences in ear traits of maize varieties and their effects on grain dehydration[J]. Scientia Agricultura Sinica, 2018, 51(10):1855-1867. | |
[19] |
Purdy J L, Crane P L. Inheritance of drying rate in“mature”corn(Zea mays L.)[J]. Crop Science, 1967, 7(4):294-297.
DOI URL |
[20] | 张树光, 冯学民, 高树仁, 等. 玉米成熟期籽粒含水量与果穗性状的关系[J]. 中国农学通报, 1994, 10(2):15-17. |
ZHANG Shuguang, FENG Xuemin, GAO Shuren, et al. The relationship between grain water content and ear traits in mature maize[J]. Chinese Agricultural Science Bulletin, 1994, 10(2):15-17. | |
[21] | 吕香玲. 玉米籽粒含水量及脱水速率的遗传与性状相关[D]. 沈阳: 沈阳农业大学, 2000. |
LYU Xiangling. Genetic and trait correlation of water content and dehydration rate of corn grain[D]. Shenyang: Shenyang Agricultural University, 2000. | |
[22] | 杨村. 玉米籽粒水分含量及脱水速率的遗传研究[D]. 沈阳: 沈阳农业大学,1997. |
YANG Cun. Genetic study on water content and dehydration rate of corn grain[D]. Shenyang: Shenyang Agricultural University,1997. | |
[23] | 张立国, 范骐骥, 陈喜昌, 等. 玉米生理成熟后籽粒脱水速率与主要农艺性状的相关分析[J]. 黑龙江农业科学, 2012,(3):1-5. |
ZHANG Liguo, FAN Qiji, CHEN Xichang, et al. Correlation analysis between grain dehydration rate and main agronomic traits after physiological maturity of maize[J]. Heilongjiang Agricultural Sciences, 2012,(3):1-5. | |
[24] | 张采波, 余庭跃, 文守云, 等. 成熟期玉米籽粒含水量与主要农艺性状的相关分析[J]. 种子, 2019, 38(8):34-38. |
ZHANG Caibo, YU Tingyue, WEN Shouyun, et al. Correlation analysis between moisture content of corn grain and main agronomic traits at maturity[J]. Seed, 2019, 38(8):34-38. |
[1] | ZHANG Shuai, GAO Guowen, WU Lili, ZHAO Haiyan, WANG Xiaowu, FU Kaiyun, JIA Zunzun, Tuerxun Ahemaiti, DING Xinhua, LI Kemei, GUO Wenchao. Evaluation of the synergistic application of seed coating agents, synergists, and micro fertilizers for the prevention and control of corn stem rot disease [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 19-27. |
[2] | DAI Aimei, YE Mengdi, DING Zhimei, WANG Zhihui, QIAO Xiaoyan, WANG Xiaowu, FU Kaiyun, JIA Zunzun, YE Xiaoqin, Tuerxun Ahemati, KANG Jian, DING Xinhua, GUO Wenchao. Evaluation on the efficacy and safety of dif ferent application methods of flumioxazinone in controlling weeds in corn field [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 28-34. |
[3] | YUAN Zihan, ZHAO Wenhui, WANG Xiaowu, Tuerxun Ahemaiti, DING Xinhua, ZHANG Shuai, FU Kaiyun, JIA Zunzun, GUO Wenchao. Screening of Corn Stalk Rot control bacteria and evaluation of control effects [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 35-48. |
[4] | GONG Xuehua, WANG Xiaowu, FU Kaiyun, JIA Zunzun, TURSUN Ahmat, QIAO Xiaoyan, YE Xiaoqin, GUO Wenchao, DING Xinhua. Effects of weed seeds bank and environmental factors on weed seeds germination in oasis irrigation areas of Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 49-59. |
[5] | ZHANG Lei, SUN Shiren, XIE Xiaoqing, WANG Yejian, LI Dong, TANG Huaijun, LIU Cheng. Present situation of maize irrigation water and scientific water-saving irrigation strategy in Emin County [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 81-84. |
[6] | YANG Minghua, LIAO Biyong, LIU Qiang, PENG Yuncheng, Dawulai Jiekeshan, FENG Guorui, TANG Shimin. Study on variation of grain nutritional quality of glutinous maize [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2087-2093. |
[7] | LIU Jing, DU Mingchuan, ZHANG Wenting, BAO Haijuan, JING Meiling, DU Wenhua. Screening of triticale germplasm in different areas of Qinghai [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2183-2190. |
[8] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[9] | LIU Huijie, WANG Junhao, GONG Zhaolong, LIANG Yajun, WANG Junduo, LI Xueyuan, ZHENG Juyun, WANG Jichuan. Identification of salt tolerance of 197 upland cotton varieties at germination stage [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1574-1581. |
[10] | YANG Caixia, GU Wei, GUAN Yuan, QU Jingtao, DANG Dongdong, WU Penghao, ZHENG Hongjian. Variation analysis of sweetness gene Sugary1 (Su1) sequence in Sweet corn [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1605-1614. |
[11] | ZHONG Huili, WU Jun, LU Xiangsheng. Effects of different growth stage application combinations of amendments on secondary salinized soil properties and sweet corn yield in Hexi Corrido [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1615-1625. |
[12] | Abudukadier Kurban, PAN Jinghai, CHEN Youqiang, LIU Huajun, DONG Xinjiu, BAI Xiaoshan, LI Sizhong, GAO Weishi, LI Xiaohui. Comprehensive evaluation of adaptability of late sowing sugar-beet varieties based on yield correlation [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1368-1377. |
[13] | YANG Junyan, YAN Miao, WU Haibo, YANG Wenli, WANG Haojie, MAO Jiancai, ZHAI Wenqiang, LI Junhua. The impact of high temperature on different thick -skinned melon varieties and comprehensive evaluation of its heat resistance [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1386-1396. |
[14] | FU Hao, ZHANG Xuejun, SHI Zenglu, CHENG Jinpeng, WU Haifeng, YU Yongliang, RAO Zhiqiang. Design and experiment of corn precision no-till planter in drip irrigation area [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1094-1101. |
[15] | LIU Wanqin, YI Yuanyang, PENG Xiaowu, XIE Fang, GU Meiying, ZHANG Zhidong. Effect of cephalosporin residue organic fertilizer on resistant bacteria and related resistance genes in maize soil [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 1003-1010. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||