Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (7): 1615-1625.DOI: 10.6048/j.issn.1001-4330.2024.07.007
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
ZHONG Huili1(), WU Jun2(
), LU Xiangsheng1
Received:
2023-08-09
Online:
2024-07-20
Published:
2024-09-04
Correspondence author:
WU Jun
Supported by:
通讯作者:
武均
作者简介:
钟辉丽(1990-),女,甘肃人,农艺师,硕士,研究方向为土壤改良及经济作物栽培,(E-mail)1073306149@qq.com
基金资助:
CLC Number:
ZHONG Huili, WU Jun, LU Xiangsheng. Effects of different growth stage application combinations of amendments on secondary salinized soil properties and sweet corn yield in Hexi Corrido[J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1615-1625.
钟辉丽, 武均, 陆祥生. 甜玉米不同生育期施用改良剂组合对其产量及河西走廊次生盐碱化土壤性质的影响[J]. 新疆农业科学, 2024, 61(7): 1615-1625.
处理 Treatments | 头水 First irrigate (4月22日) | 二水 Second irrigate (6月2日) | 三水 Third irrigate (6月14日) | 四水 Tourth irrigate (6月24日) | 五水 Fifth Irrigate (7月5日) | 六水 Sixth irrigate (7月17日) | 七水 Seventh irrigate (7月26日) | 八水 Eighth irrigate (8月4日) |
---|---|---|---|---|---|---|---|---|
播种期 | 苗期 | 拔节期 | 大喇叭口期 | 抽穗期 | 吐丝期 | 灌浆期 | 乳熟期 | |
T1(拔节期) | 37.5 | 30 | 15 | — | — | — | — | — |
T2(大喇叭口期) | 37.5 | 30 | — | 15 | — | — | — | — |
T3(抽穗期) | 37.5 | 30 | — | — | 15 | — | — | — |
T4(吐丝期) | 37.5 | 30 | — | — | — | 15 | — | — |
T5(灌浆期) | 37.5 | 30 | — | — | — | — | 15 | — |
T6(乳熟期) | 37.5 | 30 | — | — | — | — | — | 15 |
CK(不使用) | — | — | — | — | — | — | — | — |
Tab.1 The combination and dosage of improver in different sweet corn application period (kg/hm2)
处理 Treatments | 头水 First irrigate (4月22日) | 二水 Second irrigate (6月2日) | 三水 Third irrigate (6月14日) | 四水 Tourth irrigate (6月24日) | 五水 Fifth Irrigate (7月5日) | 六水 Sixth irrigate (7月17日) | 七水 Seventh irrigate (7月26日) | 八水 Eighth irrigate (8月4日) |
---|---|---|---|---|---|---|---|---|
播种期 | 苗期 | 拔节期 | 大喇叭口期 | 抽穗期 | 吐丝期 | 灌浆期 | 乳熟期 | |
T1(拔节期) | 37.5 | 30 | 15 | — | — | — | — | — |
T2(大喇叭口期) | 37.5 | 30 | — | 15 | — | — | — | — |
T3(抽穗期) | 37.5 | 30 | — | — | 15 | — | — | — |
T4(吐丝期) | 37.5 | 30 | — | — | — | 15 | — | — |
T5(灌浆期) | 37.5 | 30 | — | — | — | — | 15 | — |
T6(乳熟期) | 37.5 | 30 | — | — | — | — | — | 15 |
CK(不使用) | — | — | — | — | — | — | — | — |
等级 Level | 成熟度 Maturity | 外观指标 Appearance of indicators | 果穗长度 Spike length (mm) | 单价(元/穗) Unit price(Yuan /ear) |
---|---|---|---|---|
一级Level 1 | 完熟期 | 籽粒排列整齐、无虫蛀、无残损、 无霉变、新鲜、无失水。切除秃尖 | L≥180 | 0.68 |
二级Level 2 | 完熟期 | 160≤L<180 | 0.43 | |
三级Level 3 | 完熟期 | L<160 | 0.20 |
Tab.2 Sweet corn grade standard and purchase unit price in 2021
等级 Level | 成熟度 Maturity | 外观指标 Appearance of indicators | 果穗长度 Spike length (mm) | 单价(元/穗) Unit price(Yuan /ear) |
---|---|---|---|---|
一级Level 1 | 完熟期 | 籽粒排列整齐、无虫蛀、无残损、 无霉变、新鲜、无失水。切除秃尖 | L≥180 | 0.68 |
二级Level 2 | 完熟期 | 160≤L<180 | 0.43 | |
三级Level 3 | 完熟期 | L<160 | 0.20 |
处理 Treatments | 测定值Value | 较对照增减百分数(%) | ||||||
---|---|---|---|---|---|---|---|---|
出苗数 Emergence number (株/hm2) | 出苗率 Emergence efficiency (%) | 成苗数 Seedling survive number (株/hm2) | 成苗率 Seedling survive rate (%) | 出苗数 Emergence number | 出苗率 Emergence efficiency | 成苗数 Seedling survive number | 成苗率 Seedling survive rate | |
T1 | 61 086±944a | 98.32±1.52a | 58 613±565a | 94.34±0.91a | 12.6 | 12.6 | 19.9 | 19.9 |
T2 | 60 459±633a | 97.31±1.02a | 58 123±441a | 93.55±0.71a | 11.4 | 11.4 | 18.9 | 18.9 |
T3 | 59 458±882a | 95.70±1.42a | 57 433±273a | 92.44±0.44a | 9.6 | 9.6 | 17.5 | 17.5 |
T4 | 61 023±367a | 98.22±0.59a | 58 016±289a | 93.38±0.47a | 12.5 | 12.5 | 18.7 | 18.7 |
T5 | 60 117±671a | 96.76±1.08a | 57 164±814a | 92.01±1.31a | 10.8 | 10.8 | 16.9 | 16.9 |
T6 | 60 123±633a | 96.77±1.02a | 58 370±1740a | 93.95±2.80a | 10.8 | 10.8 | 19.4 | 19.4 |
CK | 54 252±764b | 87.32±1.23b | 48 896±596b | 78.70±0.96b | 0 | 0 | 0 | 0 |
Tab.3 Chenges of different treatments on seedling emergence and seedling formation of sweet maize
处理 Treatments | 测定值Value | 较对照增减百分数(%) | ||||||
---|---|---|---|---|---|---|---|---|
出苗数 Emergence number (株/hm2) | 出苗率 Emergence efficiency (%) | 成苗数 Seedling survive number (株/hm2) | 成苗率 Seedling survive rate (%) | 出苗数 Emergence number | 出苗率 Emergence efficiency | 成苗数 Seedling survive number | 成苗率 Seedling survive rate | |
T1 | 61 086±944a | 98.32±1.52a | 58 613±565a | 94.34±0.91a | 12.6 | 12.6 | 19.9 | 19.9 |
T2 | 60 459±633a | 97.31±1.02a | 58 123±441a | 93.55±0.71a | 11.4 | 11.4 | 18.9 | 18.9 |
T3 | 59 458±882a | 95.70±1.42a | 57 433±273a | 92.44±0.44a | 9.6 | 9.6 | 17.5 | 17.5 |
T4 | 61 023±367a | 98.22±0.59a | 58 016±289a | 93.38±0.47a | 12.5 | 12.5 | 18.7 | 18.7 |
T5 | 60 117±671a | 96.76±1.08a | 57 164±814a | 92.01±1.31a | 10.8 | 10.8 | 16.9 | 16.9 |
T6 | 60 123±633a | 96.77±1.02a | 58 370±1740a | 93.95±2.80a | 10.8 | 10.8 | 19.4 | 19.4 |
CK | 54 252±764b | 87.32±1.23b | 48 896±596b | 78.70±0.96b | 0 | 0 | 0 | 0 |
处理 Treatments | 测定值 Value | 较CK增加百分数 | ||||||
---|---|---|---|---|---|---|---|---|
株高 (cm) | 茎粗 (mm) | 穗位高 (cm) | 植株鲜重 (kg) | 株高 (%) | 茎粗 (%) | 穗位高 (%) | 植株鲜重 (%) | |
T1 | 259.93a | 27.94a | 117.36a | 1.21a | 0.8 | 9.4 | 8 | 44 |
T2 | 256.00a | 27.78a | 116.80a | 0.97d | -0.7 | 8.8 | 7.5 | 15.5 |
T3 | 259.20a | 27.27a | 115.73a | 1.01c | 0.5 | 6.8 | 6.5 | 20.2 |
T4 | 261.63a | 26.84ab | 114.20ab | 1.09b | 1.4 | 5.1 | 5.1 | 29.8 |
T5 | 255.42a | 26.69b | 110.87b | 0.97d | -1 | 4.5 | 2.1 | 15.5 |
T6 | 256.17a | 26.21b | 110.07b | 0.91e | -0.7 | 2.7 | 1.3 | 8.3 |
CK | 257.93a | 25.53c | 108.63b | 0.84f | 0 | 0 | 0 | 0 |
Tab.4 Chenges of different treatments on the growth of sweet corn
处理 Treatments | 测定值 Value | 较CK增加百分数 | ||||||
---|---|---|---|---|---|---|---|---|
株高 (cm) | 茎粗 (mm) | 穗位高 (cm) | 植株鲜重 (kg) | 株高 (%) | 茎粗 (%) | 穗位高 (%) | 植株鲜重 (%) | |
T1 | 259.93a | 27.94a | 117.36a | 1.21a | 0.8 | 9.4 | 8 | 44 |
T2 | 256.00a | 27.78a | 116.80a | 0.97d | -0.7 | 8.8 | 7.5 | 15.5 |
T3 | 259.20a | 27.27a | 115.73a | 1.01c | 0.5 | 6.8 | 6.5 | 20.2 |
T4 | 261.63a | 26.84ab | 114.20ab | 1.09b | 1.4 | 5.1 | 5.1 | 29.8 |
T5 | 255.42a | 26.69b | 110.87b | 0.97d | -1 | 4.5 | 2.1 | 15.5 |
T6 | 256.17a | 26.21b | 110.07b | 0.91e | -0.7 | 2.7 | 1.3 | 8.3 |
CK | 257.93a | 25.53c | 108.63b | 0.84f | 0 | 0 | 0 | 0 |
处理 Treatments | 穗长 Spike length (cm) | 穗粗 Ear diameter (mm) | 秃尖长 Bald length (cm) | 穗行数 Rows per ear | 行粒数 Grains per row | 单果重 Single fruit weight (kg) | 成穗数 Fruit number (个/hm2) | 鲜穗产量 Fresh ear yield (kg/hm2) | |
---|---|---|---|---|---|---|---|---|---|
测定值 Value | T1 | 19.02±0.73b | 43.95±0.91bc | 2.70±0.27d | 14.67±0.67ab | 33.93±1.73b | 0.285±0.06de | 58 521±524a | 14 676.43±1 300.30d |
T2 | 19.29±1.05ab | 55.47±1.24a | 2.55±0.24e | 14.40±0.40ab | 35.25±1.28ab | 0.293±0.04d | 58 001±307a | 15 994.29±2 320.04cd | |
T3 | 19.18±1.12ab | 56.00±0.83a | 2.13±0.52f | 14.67±0.53ab | 35.53±1.13ab | 0.345±0.02b | 57 204±302a | 17 843.76±1 170.42b | |
T4 | 20.09±1.10a | 56.65±0.53a | 2.10±0.94f | 15.26±0.45a | 36.20±1.20a | 0.364±0.07a | 57 915±436a | 18 980.68±1 054.02a | |
T5 | 19.20±2.03ab | 46.03±2.61b | 3.37±0.79c | 14.51±0.93ab | 32.87±3.13bc | 0.322±0.02c | 55 005±789b | 17 964.04±1 646.93b | |
T6 | 19.36±1.16ab | 45.79±1.36b | 3.55±0.59b | 15.07±0.78a | 32.12±3.80bc | 0.310±0.02cd | 52 099±981bc | 16 733.24±1 144.08c | |
CK | 18.79±0.87b | 43.63±2.19b | 3.77±0.77a | 14.88±0.67a | 29.81±2.00c | 0.281±0.03de | 48 767±437c | 1 3703.53±1 463.01e | |
较对 照增减 Increase or decrease compared to the control (%) | T1 | 1.2 | 0.7 | -28.4 | -1.4 | 13.8 | 1.4 | 20.0 | 7.1 |
T2 | 2.7 | 27.1 | -32.4 | -3.2 | 18.2 | 4.3 | 18.9 | 16.7 | |
T3 | 2.1 | 28.4 | -43.5 | -1.4 | 19.2 | 22.8 | 17.3 | 30.2 | |
T4 | 6.9 | 29.8 | -44.3 | 2.6 | 21.4 | 29.5 | 18.8 | 38.5 | |
T5 | 2.2 | 5.5 | -10.6 | -2.5 | 10.3 | 14.6 | 12.8 | 31.1 | |
T6 | 3.0 | 5.0 | -5.8 | 1.3 | 7.7 | 10.3 | 6.8 | 22.1 | |
CK | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tab.5 Changes of different treatments on yield composition and yield of sweet maize corn
处理 Treatments | 穗长 Spike length (cm) | 穗粗 Ear diameter (mm) | 秃尖长 Bald length (cm) | 穗行数 Rows per ear | 行粒数 Grains per row | 单果重 Single fruit weight (kg) | 成穗数 Fruit number (个/hm2) | 鲜穗产量 Fresh ear yield (kg/hm2) | |
---|---|---|---|---|---|---|---|---|---|
测定值 Value | T1 | 19.02±0.73b | 43.95±0.91bc | 2.70±0.27d | 14.67±0.67ab | 33.93±1.73b | 0.285±0.06de | 58 521±524a | 14 676.43±1 300.30d |
T2 | 19.29±1.05ab | 55.47±1.24a | 2.55±0.24e | 14.40±0.40ab | 35.25±1.28ab | 0.293±0.04d | 58 001±307a | 15 994.29±2 320.04cd | |
T3 | 19.18±1.12ab | 56.00±0.83a | 2.13±0.52f | 14.67±0.53ab | 35.53±1.13ab | 0.345±0.02b | 57 204±302a | 17 843.76±1 170.42b | |
T4 | 20.09±1.10a | 56.65±0.53a | 2.10±0.94f | 15.26±0.45a | 36.20±1.20a | 0.364±0.07a | 57 915±436a | 18 980.68±1 054.02a | |
T5 | 19.20±2.03ab | 46.03±2.61b | 3.37±0.79c | 14.51±0.93ab | 32.87±3.13bc | 0.322±0.02c | 55 005±789b | 17 964.04±1 646.93b | |
T6 | 19.36±1.16ab | 45.79±1.36b | 3.55±0.59b | 15.07±0.78a | 32.12±3.80bc | 0.310±0.02cd | 52 099±981bc | 16 733.24±1 144.08c | |
CK | 18.79±0.87b | 43.63±2.19b | 3.77±0.77a | 14.88±0.67a | 29.81±2.00c | 0.281±0.03de | 48 767±437c | 1 3703.53±1 463.01e | |
较对 照增减 Increase or decrease compared to the control (%) | T1 | 1.2 | 0.7 | -28.4 | -1.4 | 13.8 | 1.4 | 20.0 | 7.1 |
T2 | 2.7 | 27.1 | -32.4 | -3.2 | 18.2 | 4.3 | 18.9 | 16.7 | |
T3 | 2.1 | 28.4 | -43.5 | -1.4 | 19.2 | 22.8 | 17.3 | 30.2 | |
T4 | 6.9 | 29.8 | -44.3 | 2.6 | 21.4 | 29.5 | 18.8 | 38.5 | |
T5 | 2.2 | 5.5 | -10.6 | -2.5 | 10.3 | 14.6 | 12.8 | 31.1 | |
T6 | 3.0 | 5.0 | -5.8 | 1.3 | 7.7 | 10.3 | 6.8 | 22.1 | |
CK | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
处理 Treatments | 一级品率 First-grade product rate (%) | 二级品率 Second-grade product rate (%) | 三级品率 Third- grade product rate (%) | 一级品率 First-grade product rate (%) | 二级品率 Second- grade product rate (%) | 三级品率 Third- grade product rate (%) | 合计 Total (%) |
---|---|---|---|---|---|---|---|
T1 | 20.10±4.94d | 47.23±6.47a | 32.61±5.13c | 20.1 | 47.23 | 32.61 | 100 |
T2 | 41.52±8.96b | 32.17±6.60d | 26.31±5.60d | 41.5 | 32.2 | 26.3 | 100 |
T3 | 45.61±5.12a | 40.20±6.00c | 14.19±2.35e | 45.6 | 40.2 | 14.2 | 100 |
T4 | 46.27±7.03a | 43.39±7.47b | 10.34±6.20f | 46.3 | 43.4 | 10.3 | 100 |
T5 | 26.85±7.72c | 22.73±4.40e | 50.42±7.53a | 26.9 | 22.7 | 50.4 | 100 |
T6 | 17.39±3.83e | 33.63±7.33d | 48.98±5.47ab | 17.4 | 33.6 | 49 | 100 |
CK | 13.12±4.97f | 45.55±3.10ab | 41.33±8.22b | 13.1 | 45.6 | 41.3 | 100 |
Tab.6 Changes of different treatments on commodity grade and ear number of sweet maize
处理 Treatments | 一级品率 First-grade product rate (%) | 二级品率 Second-grade product rate (%) | 三级品率 Third- grade product rate (%) | 一级品率 First-grade product rate (%) | 二级品率 Second- grade product rate (%) | 三级品率 Third- grade product rate (%) | 合计 Total (%) |
---|---|---|---|---|---|---|---|
T1 | 20.10±4.94d | 47.23±6.47a | 32.61±5.13c | 20.1 | 47.23 | 32.61 | 100 |
T2 | 41.52±8.96b | 32.17±6.60d | 26.31±5.60d | 41.5 | 32.2 | 26.3 | 100 |
T3 | 45.61±5.12a | 40.20±6.00c | 14.19±2.35e | 45.6 | 40.2 | 14.2 | 100 |
T4 | 46.27±7.03a | 43.39±7.47b | 10.34±6.20f | 46.3 | 43.4 | 10.3 | 100 |
T5 | 26.85±7.72c | 22.73±4.40e | 50.42±7.53a | 26.9 | 22.7 | 50.4 | 100 |
T6 | 17.39±3.83e | 33.63±7.33d | 48.98±5.47ab | 17.4 | 33.6 | 49 | 100 |
CK | 13.12±4.97f | 45.55±3.10ab | 41.33±8.22b | 13.1 | 45.6 | 41.3 | 100 |
处理 Treatments | 产出(元/hm2) Output (yuan/hm2) | 投入(元/hm2) Input (yuan/hm2) | 纯收益(元/hm2) Net value (yuan/hm2) | 产投比 Input- output ratio | 产出增减 Output (%) | 投入 增减 Input (%) | 纯收益 增减 Net value (%) |
---|---|---|---|---|---|---|---|
T1 | 23 166.99c | 16 762.50a | 6 404.49c | 1.38c | 29.1 | 14 | 98 |
T2 | 27 190.10b | 16 762.50a | 10 427.60b | 1.62b | 51.6 | 14 | 222.4 |
T3 | 27 697.23b | 16 762.50a | 10 934.73b | 1.65b | 54.4 | 14 | 238.1 |
T4 | 29 617.04a | 16 762.50a | 12 854.54a | 1.77a | 65.1 | 14 | 297.5 |
T5 | 22 107.60cd | 16 762.50a | 5 345.10d | 1.32c | 23.2 | 14 | 65.2 |
T6 | 22 046.96d | 16 762.50a | 5 284.46d | 1.32c | 22.9 | 14 | 63.4 |
CK | 17 933.63e | 14 700.00b | 3 233.63e | 1.22d | 0 | 0 | 0 |
Tab.7 Changes of different treatments on economic benefits of sweet maize
处理 Treatments | 产出(元/hm2) Output (yuan/hm2) | 投入(元/hm2) Input (yuan/hm2) | 纯收益(元/hm2) Net value (yuan/hm2) | 产投比 Input- output ratio | 产出增减 Output (%) | 投入 增减 Input (%) | 纯收益 增减 Net value (%) |
---|---|---|---|---|---|---|---|
T1 | 23 166.99c | 16 762.50a | 6 404.49c | 1.38c | 29.1 | 14 | 98 |
T2 | 27 190.10b | 16 762.50a | 10 427.60b | 1.62b | 51.6 | 14 | 222.4 |
T3 | 27 697.23b | 16 762.50a | 10 934.73b | 1.65b | 54.4 | 14 | 238.1 |
T4 | 29 617.04a | 16 762.50a | 12 854.54a | 1.77a | 65.1 | 14 | 297.5 |
T5 | 22 107.60cd | 16 762.50a | 5 345.10d | 1.32c | 23.2 | 14 | 65.2 |
T6 | 22 046.96d | 16 762.50a | 5 284.46d | 1.32c | 22.9 | 14 | 63.4 |
CK | 17 933.63e | 14 700.00b | 3 233.63e | 1.22d | 0 | 0 | 0 |
[1] | 杨晓玲, 丁文魁, 孙占峰, 等. 近60年河西走廊东部气象干旱演变特征[J]. 水土保持研究, 2022, 29(1):242-248. |
YANG Xiaoling, DING Wenkui, SUN Zhanfeng, et al. Evolution characteristics of meteorological drought in eastern Hexi Corridor in recent 60 years[J]. Study on soil and water conservation, 2022, 29(1):242-248. | |
[2] | 李菊, 张富仓, 王艳丽, 等. 灌水量和滴灌频率对甘肃省河西地区春玉米生长和水分利用的影响[J]. 中国农业大学学报, 2021, 26(10):8-20. |
LI Ju, ZHANG Fucang, WANG Yanli, et al. Effects of irrigation amount and drip irrigation frequency on growth and water use of spring maize in Hexi area of Gansu Province[J]. Journal of China Agricultural University, 2021, 26(10):8-20. | |
[3] | Yao W W, Ma X Y,Li, et al. Simulation of point source wetting pattern of subsurface drip irrigation[J]. Irrigation Science, 2011, 29(4):331-339. |
[4] | Elmaloglou S, Diamantopoulos E. Simulation of soil water dynamics under subsurface drip irrigation from line sources[J]. Water Resources Management, 2013, 27(12):4131-4148. |
[5] | 缑倩倩, 韩致文, 王国华. 中国西北干旱区灌区土壤盐渍化问题研究进展[J]. 中国农学通报, 2011, 27(29):246-250. |
GOU Qianqian, HAN Zhiwen, WANG Guohua. Research progress on soil salinization in arid areas of Northwest China[J]. Chinese Agricultural Science Bulletin, 2011, 27(29):246-250. | |
[6] | 刘新永, 田长彦. 棉花膜下滴灌盐分动态及平衡研究[J]. 水土保持学报, 2005, 19(6):84-87. |
LIU Xinyong, TIAN Changyan. Study on dynamic and balance of salt under mulch drip irrigation in cotton[J]. Journal of soil and water conservation, 2005, 19(6):84-87. | |
[7] | 王志春, 李取生, 李秀军, 等. 松嫩平原盐碱化土地治理与农业持续发展对策[J]. 中国生态农业学报, 2004, 12(2):161-163. |
Wang Zhichun, Li Qusheng, Li Xiujun, et al. Management of salinized land and countermeasures for sustainable agricultural development in Songnen Plain[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2):161-163. | |
[8] | 高伟, 邵玉翠, 杨军, 等. 盐碱地土壤改良剂筛选研究[J]. 中国农学通报, 2011, 27(21):154-160. |
Gao Wei, Shao Yucui, Yang Jun, et al. Screening of soil amendments for saline-alkali soil[J]. Chinese Agricultural Science Bulletin, 2011, 27(21):154-160. | |
[9] | 王斌, 马兴旺, 单娜娜, 等. 新疆盐碱地土壤改良剂的选择与应用[J]. 干旱区资源与环境, 2004, 28(72):111-115. |
Wang Bin, Ma Xingwang, Shan Nana, et al. Selection and application of soil amendments in Xinjiang Saline-alkali land[J]. Journal of Arid Land Resources and Environment, 2004, 28(72):111-115. | |
[10] | 梁继华, 黄白红, 田学辉. 不同土壤改良剂对玉米产量及根际土壤微生物和酶活性的影响[J]. 山东农业科学. 2022, 54(1):80-85. |
Liang Jihua, Huang Baihong, Tian Xuehui. Effects of Different soil amendments on Maize yield and rhizosphere soil microbial and enzyme activities[J]. Journal of Shandong Agricultural Sciences. 2002, 54(1):80-85. | |
[11] | 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(1):18-24. |
Huang Jing, Kong Yali, Xu Qingshan, et al. Research progress on characteristics of saline soil and improvement measures[J]. Soil Science, 202, 54(1):18-24. | |
[12] | 刘洋, 侯志研. 不同土壤改良剂对风沙土壤养分及玉米产量的影响[J]. 辽宁农业科学, 2020,(1):40-44. |
Liu Yang, HOU Zhiyan. Effects of different soil amendments on soil nutrients of aeolian sand and maize yield[J]. Liaoning Agricultural Sciences, 2020,(1):40-44. | |
[13] | 张玉风, 林海涛, 王江涛, 等. 盐碱土壤调理剂对玉米生长及土壤的改良效果[J]. 中国土壤与肥料, 2017,(1):124-138. |
Zhang Yufeng, Lin Haitao, Wang Jiangtao, et al. Effects of saline-alkali soil conditioner on maize growth and soil improvement[J]. Soil and Fertilizer, 2017,(1):124-138. | |
[14] | 王涵, 张忠庆, 刘金华, 等. 不同改良剂对对苏打土的改良效果[J]. 吉林农业大学学报, 2020, 42(5):569-575. |
Wang Han, Zhang Zhongqing, Liu Jinhua, et al. Effect of different amendments on the improvement of soda soil[J]. Journal of Jilin Agricultural University, 20, 42(5):569-575. | |
[15] | 屈忠义, 孙慧慧, 杨博, 等. 不同改良剂对盐碱地土壤微生物与加工番茄产量的影响[J]. 农业机械学报. 2021, 52(4):311-318,350. |
Qu Zhongyi, Sun Huihui, Yang Bo, et al. Effects of different amendments on soil microorganisms and yield of processed tomato in saline-alkali soil[J]. Transactions of the Chinese Society for Agricultural Machinery. 2021, 52(4):311-318,350. | |
[16] | 钟辉丽, 陆祥生, 刘兴成, 等. 不同土壤改良剂对滴灌模式下次生盐碱化土壤改良效果研究[J]. 中国农学通报, 2021, 37(32):89-95. |
ZHONG Huili, LU Xiangsheng, LIU Xingcheng, et al. Effect of different soil amendments on secondary salinized soil under drip irrigation[J]. Chinese Agricultural Science Bulletin, 2021, 37(32):89-95. | |
[17] | 赵军, 杨珍. 不同盐碱地土壤改良剂对玉米生长及产量的影响[J]. 农业科技通讯, 2020,(10):79-81. |
Zhao Jun, Yang Zhen. Effects of soil amendments on growth and yield of maize in different saline-alkali soils[J]. Agricultural Science and Technology Bulletin, 2020,(10):79-81. | |
[18] | 侯志荣, 纪金生. 盐碱改良剂—禾康盐碱清除剂在棉地的使用效果[J]. 农业科技通讯, 2006,(2):30. |
Hou Zhirong, Ji Jinsheng. Application effect of Saline-alkali improved-Hekang saline-alkali scavenger in cotton field[J]. Agricultural Science and Technology Bulletin, 2006,(2):30. | |
[19] | 茹先古丽·力提甫. 禾康盐碱土壤调理剂对棉田应用效果试验[J]. 农村科技, 2013,(5):26-27. |
Ruxian Guli. Li Tifu. Application effect test of Hekang saline-alkali soil conditioner on cotton field[J]. Rural Science and Technology, 2013,(5):26-27. | |
[20] | 吴秀华. 水稻田应用禾康盐碱土壤调理剂示范总结[J]. 农业开发与装备, 2013,(5):45. |
Wu Xiuhua. Demonstration summary of application of Hekang Saline-alkali soil conditioner in paddy field[J]. Agricultural Development & Equipment, 2013,(5):45. | |
[21] | 纪立东, 杨建国, 樊丽琴, 等. BGA土壤调理剂在盐碱障碍型土壤上的应用效果研究[J]. 中国农学通报, 2012, 28(12):135-141. |
JI Lidong, YANG Jianguo, FAN Liqin, et al. Study on the application effect of BGA soil conditioner on saline-alkali barrier soil[J]. Chinese Agricultural Science Bulletin, 2012, 28(12):135-141. | |
[22] | 王文杰, 关宇, 祖元刚, 等. 施加改良剂对重度盐碱地土壤盐碱动态及草本植物生长的影响[J]. 生态学报, 2009, 29(6):2835-2844. |
WANG Wenjie, GUAN Yu, ZU Yuangang, et al. Effects of amendments on soil saline-alkali dynamics and herbaceous plant growth in heavily saline-alkali soil[J]. Acta ecologica sinica, 2009, 29(6):2835-2844. | |
[23] | 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 1999,213-227. |
HUANG Changyong. Soil science[M]. Bei Jing: China Agriculture Press, 1999,213-227. | |
[24] | 薛莲, 孙振荣, 蒲明, 等. 长效缓控复合肥与土壤改良剂配施对旱地春玉米产量及生育性状的影响[J]. 农业科技与信息, 2018,(15):14-15. |
Xue Lian, Sun Zhenrong, Pu Ming, et al. Effects of long-term slow control compound fertilizer combined with soil Amendment on yield and growth characters of spring maize in dryland[J]. Agricultural Science and Information, 2018,(15):14-15. | |
[25] | 王金芬, 刘雪梅, 王希英. 土壤盐碱改良剂施用量及施用时期研究[J]. 安徽农业科学. 2007, 35(1):148-149. |
WANG Jinfen, LIU Xuemei, WANG Xiying. Study on the application rate and application period of soil saline-alkali amendment[J]. Agricultural Sciences of Anhui. 2007, 35(1):148-149. | |
[26] | 肖国举, 罗成科, 张峰举, 等. 脱硫石膏施用时期和深度对改良碱化土壤效果的影响[J]. 干旱地区农业研究, 2009, 27(6):197-203. |
XIAO Guoju, LUO Chengke, ZHANG Fengju, et al. Effect of applying period and depth of desulphurized gypsum on soil improvement[J]. Agricultural Research in Arid regions, 2009, 27(6):197-203. | |
[27] | 郑普山, 冯悦晨, 郝保平, 等. 不同时期施用土壤改良剂对河灌区苏打盐碱地土壤及青贮玉米生长的影响[J]. 中国农学通报, 2013, 29(30):55-59. |
ZHENG Pushan, FENG Yuechen, HAO Baoping, et al. Effects of soil amendments applied at different periods on the growth of silage maize and soda-saline soil in river irrigation area[J]. Chinese Agricultural Science Bulletin, 2013, 29(30):55-59. | |
[28] | 王相平, 杨劲松, 张胜江, 等. 石膏和腐植酸配施对干旱盐碱区土壤改良及棉花生长的影响[J]. 土壤, 2020, 52(2):327-332. |
Wang Xiangping, Yang Jinsong, Zhang Shengjiang, et al. Effects of combined application of gypsum and humic acid on soil improvement and cotton growth in arid saline area[J]. Soil Science, 2020, 52(2):327-332. | |
[29] | 蔺吉祥, 李晓宇, 唐佳红, 等. 盐碱胁迫对小麦种子萌发、早期幼苗生长及 Na+、K+代谢的影响[J]. 麦类作物学报, 2011, 31(6):1148-1152. |
Lin Jixiang, Li Xiaoyu, Tang Jiahong, et al. Effects of Saline-alkali Stress on Seed germination,early seedling growth and Na+ and K+ metabolism in Wheat[J]. Journal of Wheat Crops, 2011, 31(6):1148-1152. | |
[30] | 张燕, 冯浩, 汪有科, 等. 新型土壤改良剂水分特性及其对玉米苗期的影响研究[J]. 干旱区资源与环境, 2004, 28(72):111-115. |
Zhang Yan, Feng Hao, Wang Youke, et al. Water characteristics of novel soil amendments and their effects on maize seedling stage[J]. Journal of Arid Land Resources and Environment, 2004, 28(72):111-115. | |
[31] | 韩政宇, 张江辉, 白云岗, 等. 土壤改良剂对南疆棉田“干播湿出”模式土壤性状和出苗率的影响研究究[J]. 节水灌溉, 2022,(8):46-52,59. |
HAN Z Y, ZHANG J H, BAI Y G, et al. Effects of soil amendments on soil properties and seedling emergence rate of dry sowing and wet emergence mode in cotton field in Southern Xinjiang[J]. Water Saving Irrigation, 2022,(8):46-52,59. | |
[32] | 杜康瑞, 段喜明, 赵晋忠, 等. 盐碱地改良剂与肥料混配对土壤对土壤PH值及生育性状的影响[J]. 华北农学报, 2019, 34(3):180-185. |
Du Kangrui, Duan Ximing, Zhao Jinzhong, et al. Effects of Saline-alkali soil amendment and fertilizer on soil PH value and growth characteristics[J]. Journal of North China Agricultural Sciences, 2019, 34(3):180-185. | |
[33] | 刘兴舟, 李猛, 陈瑞佶, 等. 夏玉米穗部性状对种植密度的响应研究[J]. 农学学报, 2020, 10(10):12-18. |
LIU Xingzhou, LI Meng, CHEN Ruiji, et al. Study on the response of summer maize ear traits to planting density[J]. Journal of agronomy, 2020, 10(10):12-18. | |
[34] | 张正, 董春林, 杨睿, 等. 不同类型玉米品种产量与穗部性状的相关性分析[J]. 中国种业, 2022, 2(23):80-84. |
ZHANG Zheng, DONG Chunlin, YANG Rui, et al. Correlation analysis between yield and ear traits of different maize varieties[J]. China Seed Industry, 2022, 2(23):80-84. | |
[35] | 王学君, 董晓霞, 董亮, 等. 盐碱土壤改良剂对盐碱地理化性状的影响[J]. 山东农业科学, 2016,(7):103-105. |
Wang Xuejun, Dong Xiaoxia, Dong Liang, et al. Effects of saline-alkali soil amendments on physicochemical properties of saline-alkali soil[J]. Shandong Agricultural Sciences, 2016,(7):103-105. | |
[36] | 崔文明, 张中东, 赵成萍, 等. 新型改良剂对盐碱地土壤性质和玉米生长的影响[J]. 山西农业大学学报(责任科学版), 2014, 34(6):531-534. |
Cui Wenming, Zhang Zhongdong, Zhao Chengping, et al. Effects of novel amendments on soil properties and maize growth in saline-alkali soil[J]. Journal of Shanxi Agricultural University(Responsible Science Edition), 2014, 34(6):531-534. | |
[37] | 马列, 刘金华, 杨靖民, 等. 新型复合改良剂对苏打盐碱土的改良效果研究[J]. 中国土壤与肥料, 2021,(5):144-149. |
Ma L, Liu J H, Yang J M, et al. Study on the improvement effect of new compound improvers on soda saline-alkali soil[J]. Soil and Fertilizer in China, 2021,(5):144-149. | |
[38] | Li Y B, Xu Q T. Study on the effect of the use of FGD gypsum into the alkalization soil to improve soil property[J]. Appl Mech Materials, 2014,448:482-487. |
[39] | 刘易, 冯耀祖, 黄建, 等. 土壤盐碱改良剂施用量及施用时期研究[J]. 干旱地区农业研究, 2015, 33(1):146-152. |
Liu Yi, Feng Yaozu, Huang Jian, et al. Study on application amount and application period of soil saline-alkali amendments[J]. Agricultural Research in the Arid Areas, 2015, 33(1):146-152. | |
[40] | 白旭明, 张文太, 张庆伟, 等. 北疆棉田施用土壤改良剂的增产控盐效果[J]. 江苏农业科学, 2020, 48(11):77-81. |
Bai Xuming, Zhang Wentai, Zhang Qingwei, et al. Effects of soil amendments on yield increase and salt control in cotton fields in northern Xinjiang[J]. Jiangsu Agricultural Sciences, 2020, 48(11):77-81. |
[1] | ZHANG Niao, WANG Hui, FENG Guojun, Zaituniguli Kuerban. Study on the agronomic traits and quality differences of grain sorghum in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2160-2167. |
[2] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[3] | SHI Lei, LÜ Ning, HE Shuai, YIN Feihu, GAO Zhijian, TAN Rongxin. Screening of the Water Drainage and Salt Control Mode of Subsurface Pipe and Shaft on the Secondary Salinization Soil and Its Effect Evaluation [J]. Xinjiang Agricultural Sciences, 2022, 59(3): 716-724. |
[4] | GUO Hang, ZHANG Rui, WANG Zhi, QIAO Kunyun, YAN Nana, ZHAO Duoyong. Study on the Regularity of the Quality Change of Korla Fragrant Pear during the Growth Period [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 377-384. |
[5] | MA Xiaomei,LI Baocheng,WANG Xin,ZHAO Suqin,LIU Yongchang, HAN Huanyong, ZHOU Xiaofeng, DONG Chengguang. Interaction Effects of Early-maturing Upland Cotton Varieties and Meteorological Factors on Cotton Fiber Quality [J]. Xinjiang Agricultural Sciences, 2021, 58(2): 216-226. |
[6] | Lei SONG, Yanchao WANG, Fanfan ZHANG, Xuzhe WANG, Jian ZHANG, Chunhui MA. Study on the Quality of Oat Silage in Different Harvest Periods [J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1938-1946. |
[7] | WANG Junduo, ZHENG Juyun, GONG Zhaolong, AI Xiantao, GUO Jiangping, Moming, LI Xueyuan, LIANG Yajun. Adaptability Evaluation of Cotton Varieties (Lines) Based on Growth Period and Agronomic Traits [J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1393-1403. |
[8] | Buhaliqiemu Abulizi, YUAN Jie, ZHU Xiaoxia, ZHANG Yanhong, CHEN Changqing, ZHAO Zhiqiang, JIA Chunping, WEN Xiaorong, KANG Mingtai, TANG Fusen, WANG Fengbin. Screening and Evaluation of High-quality and High-yield Rice Varieties in Xinjiang Rice Zone [J]. Xinjiang Agricultural Sciences, 2020, 57(11): 2108-2117. |
[9] | LIU Hua-jun, CHEN You-qiang, LIN Ming, BAI Xiao-shan, DENG Chao-hong, PAN Jing-hai, LI Cheng-ye. Selection of Superior Varieties (Lines) of Seed-watermelon Based on Growth Pperiod and Economic Yield [J]. Xinjiang Agricultural Sciences, 2018, 55(3): 430-438. |
[10] | LIU Ya-wei, ZHANG Yan-hui, ZHAO Fang, TAN Shi-xin, CHEN Jun-hong, YANG Kai-lun. Effects of Different Growth Stages on the Nutrient Composition of Red Clover [J]. Xinjiang Agricultural Sciences, 2017, 54(8): 1531-1539. |
[11] | TANG Huai-jun;XIE Xiao-qing;ZHAO Lian-jia;SUN Bao-cheng;LI Yu;WANG Tian-yu;LIU-Cheng. Study on the Evaluation and Identification of Maize Drought Resistance by Using the Method of Water Shortage Irrigation [J]. , 2017, 54(5): 804-810. |
[12] | PAN Xin;PAN Cun-de;HU Zhen-zhu. Leaf Spectral Characteristics and Its Sensitivity to N, P, K in Fruit Different Fruit Growth Periods of Juglans regia‘Xilnwen185’ [J]. , 2015, 52(4): 628-636. |
[13] | . Relationship between Product of Thermal Effectiveness (PTE) and Cotton Growth and Yield at Different Densities [J]. , 2015, 52(10): 1765-1772. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||