Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (10): 2532-2540.DOI: 10.6048/j.issn.1001-4330.2023.10.023
• Plant Protection·Microbes·Soil Fertilizer • Previous Articles Next Articles
ZUO Xiaoxiao1(), YAN An1(
), NING Songrui2, YANG Li1, SUN Meng1, LU Qiancheng1
Received:
2023-01-03
Online:
2023-10-20
Published:
2023-11-01
Correspondence author:
YAN An (1983 -), Male, from Ziyang, Sichuan;Ph.D.supervisor, Mainly engaged in agricultural resources and environmental research,(E-mail)Supported by:
左筱筱1(), 颜安1(
), 宁松瑞2, 杨利1, 孙萌1, 卢前成1
通讯作者:
颜安(1983-),男,四川资阳人,教授,博士,硕士生导师,研究方向为农业资源与环境,(E-mail)作者简介:
左筱筱(1998-),女,四川内江人,硕士研究生,研究方向为土壤改良与培肥,(E-mail)zuoxiaoxiao710@163.com
基金资助:
CLC Number:
ZUO Xiaoxiao, YAN An, NING Songrui, YANG Li, SUN Meng, LU Qiancheng. Study on the effect of Bio-Organic fertilizer on promoting growth and increasing yield in saline alkali wheat field[J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2532-2540.
左筱筱, 颜安, 宁松瑞, 杨利, 孙萌, 卢前成. 盐碱麦田生物有机肥促生增产培肥效果[J]. 新疆农业科学, 2023, 60(10): 2532-2540.
处理 Treatments | 施量1 Application rate 1 (1 125 kg/hm2) | 施量2 Application rate 2 (2 250 kg/hm2) |
---|---|---|
CK | / | / |
A | A1 | A2 |
B | B1 | B2 |
C | C1 | C2 |
D | D1 | D2 |
Tab.1 Fertilization treatment design
处理 Treatments | 施量1 Application rate 1 (1 125 kg/hm2) | 施量2 Application rate 2 (2 250 kg/hm2) |
---|---|---|
CK | / | / |
A | A1 | A2 |
B | B1 | B2 |
C | C1 | C2 |
D | D1 | D2 |
Fig.1 Effects of different bio organic fertilizers on LAI value of Spring Wheat Note: different lowercase letters indicate significant differences among treatments (P < 0.05),the same as below
处理 Treatments | 穗长 Spike length (cm) | 穗数 Panicle number (104 /hm2) | 穗粒数 Grains per panicle (粒) | 千粒重 1000 grain weight (g) | 理论产量 Grain yield (kg/hm2) |
---|---|---|---|---|---|
CK | 8.03±0.10c | 487.28±18.99a | 18.30±0.58b | 31.33±1.00c | 2 969.33±111.25c |
A1 | 9.22±0.59b | 509.85±13.71a | 26.70±4.16a | 37.95±1.94ab | 4 541.14±299.60ab |
A2 | 9.75±0.24ab | 528.25±67.84a | 28.70±3.06a | 38.31±2.79ab | 4 870.87±172.79ab |
B1 | 9.11±0.15b | 510.93±48.23a | 24.00±1.00a | 35.93±2.00b | 4 212.25±214.39b |
B2 | 9.19±0.31b | 518.33±19.13a | 28.00±2.83a | 37.86±1.50ab | 4 565.46±234.36ab |
C1 | 9.22±0.21b | 559.15±72.48a | 24.30±1.53a | 36.10±1.43b | 4 517.22±380.55ab |
C2 | 9.55±0.02ab | 546.76±45.78a | 27.50±2.12a | 38.13±4.42ab | 4 798.89±514.37ab |
D1 | 9.51±0.14ab | 580.61±6.69a | 27.00±7.07a | 38.59±2.30ab | 4 774.79±232.06ab |
D2 | 9.84±0.10a | 541.05±26.29a | 28.00±2.83a | 40.14±2.88a | 5 194.13±224.64a |
Tab.2 Spring wheat yield and its components
处理 Treatments | 穗长 Spike length (cm) | 穗数 Panicle number (104 /hm2) | 穗粒数 Grains per panicle (粒) | 千粒重 1000 grain weight (g) | 理论产量 Grain yield (kg/hm2) |
---|---|---|---|---|---|
CK | 8.03±0.10c | 487.28±18.99a | 18.30±0.58b | 31.33±1.00c | 2 969.33±111.25c |
A1 | 9.22±0.59b | 509.85±13.71a | 26.70±4.16a | 37.95±1.94ab | 4 541.14±299.60ab |
A2 | 9.75±0.24ab | 528.25±67.84a | 28.70±3.06a | 38.31±2.79ab | 4 870.87±172.79ab |
B1 | 9.11±0.15b | 510.93±48.23a | 24.00±1.00a | 35.93±2.00b | 4 212.25±214.39b |
B2 | 9.19±0.31b | 518.33±19.13a | 28.00±2.83a | 37.86±1.50ab | 4 565.46±234.36ab |
C1 | 9.22±0.21b | 559.15±72.48a | 24.30±1.53a | 36.10±1.43b | 4 517.22±380.55ab |
C2 | 9.55±0.02ab | 546.76±45.78a | 27.50±2.12a | 38.13±4.42ab | 4 798.89±514.37ab |
D1 | 9.51±0.14ab | 580.61±6.69a | 27.00±7.07a | 38.59±2.30ab | 4 774.79±232.06ab |
D2 | 9.84±0.10a | 541.05±26.29a | 28.00±2.83a | 40.14±2.88a | 5 194.13±224.64a |
Fig.4 Effects of applying different bio organic fertilizers on the contents of soil organic matter, alkali hydrolyzable nitrogen, available phosphorus and available potassium
处理 Treat- ments | 细菌 Bacteria ( 106 cfu/g) | 真菌 Fungus ( 104 cfu/g) | 放线菌 Actinomycetes ( 105 cfu/g) |
---|---|---|---|
CK | 1.15±0.07d | 4.95±0.49a | 2.40±0.14e |
A1 | 2.85±0.07bc | 3.35±1.48b | 5.25±0.49bc |
A2 | 3.55±0.01b | 1.45±0.49cde | 5.55±0.91b |
B1 | 2.30±0.04c | 0.76±0.21e | 3.75±0.49d |
B2 | 2.70±0.06bc | 0.61±0.21e | 4.80±0.28bcd |
C1 | 2.35±0.01c | 0.93±0.01de | 4.20±1.13cd |
C2 | 3.25±0.08bc | 0.89±0.01e | 4.80±0.28bcd |
D1 | 3.40±0.04b | 2.65±0.77bc | 5.35±0.21bc |
D2 | 5.150±0.06a | 2.30±0.14bcd | 7.00±0.42a |
Tab.3 Effects of different bio organic fertilizers on the number of soil microorganisms
处理 Treat- ments | 细菌 Bacteria ( 106 cfu/g) | 真菌 Fungus ( 104 cfu/g) | 放线菌 Actinomycetes ( 105 cfu/g) |
---|---|---|---|
CK | 1.15±0.07d | 4.95±0.49a | 2.40±0.14e |
A1 | 2.85±0.07bc | 3.35±1.48b | 5.25±0.49bc |
A2 | 3.55±0.01b | 1.45±0.49cde | 5.55±0.91b |
B1 | 2.30±0.04c | 0.76±0.21e | 3.75±0.49d |
B2 | 2.70±0.06bc | 0.61±0.21e | 4.80±0.28bcd |
C1 | 2.35±0.01c | 0.93±0.01de | 4.20±1.13cd |
C2 | 3.25±0.08bc | 0.89±0.01e | 4.80±0.28bcd |
D1 | 3.40±0.04b | 2.65±0.77bc | 5.35±0.21bc |
D2 | 5.150±0.06a | 2.30±0.14bcd | 7.00±0.42a |
项目 Projects | 特征值 Characteristic value | 方差贡献率 Variance contribution rate (%) | 累积方差 贡献率 Cumulative variance contribution rate (%) |
---|---|---|---|
主成分1 Principal component 1 | 15.957 | 88.649 | 88.649 |
主成分2 Principal component 2 | 1.004 | 5.575 | 94.224 |
Tab.4 eigenvalues and variance contribution rate of principal component analysis
项目 Projects | 特征值 Characteristic value | 方差贡献率 Variance contribution rate (%) | 累积方差 贡献率 Cumulative variance contribution rate (%) |
---|---|---|---|
主成分1 Principal component 1 | 15.957 | 88.649 | 88.649 |
主成分2 Principal component 2 | 1.004 | 5.575 | 94.224 |
项目 Projects | 主成分1 Principal component 1 | 主成分2 Principal component 2 | ||
---|---|---|---|---|
载荷值 Load value | 特征向量 Feature vector | 载荷值 Load value | 特征向量 Feature vector | |
LAI(X1) | 0.946 | 0.237 | -0.133 | -0.133 |
SPAD(X2) | 0.946 | 0.237 | -0.104 | -0.104 |
产量(X3) | 0.978 | 0.245 | -0.127 | -0.126 |
0~10 cm pH(X4) | -0.987 | -0.247 | -0.067 | -0.067 |
10~20 cm pH(X5) | -0.962 | -0.241 | -0.160 | -0.160 |
0~10 cm电导率(X6) | -0.966 | -0.242 | 0.109 | 0.108 |
10~20 cm电导率(X7) | -0.973 | -0.244 | -0.070 | -0.069 |
0~10 cm有机质(X8) | 0.938 | 0.235 | 0.127 | 0.126 |
10~20 cm有机质(X9) | 0.894 | 0.224 | 0.077 | 0.077 |
0~10 cm碱解氮(X10) | 0.985 | 0.246 | -0.083 | -0.083 |
10~20 cm碱解氮(X11) | 0.967 | 0.242 | -0.144 | -0.144 |
0~10 cm速效钾(X12) | 0.981 | 0.246 | -0.054 | -0.054 |
10~20 cm速效钾(X13) | 0.956 | 0.239 | 0.122 | 0.122 |
0~10 cm速效磷(X15) | 0.985 | 0.246 | 0.022 | 0.022 |
10~20 cm速效磷(X16) | 0.970 | 0.243 | 0.023 | 0.023 |
细菌(X17) | 0.943 | 0.236 | 0.294 | 0.293 |
真菌(X18) | -0.514 | -0.129 | 0.832 | 0.831 |
放线菌(X19) | 0.954 | 0.239 | 0.254 | 0.253 |
Tab.5 load value and eigenvector of principal component analysis
项目 Projects | 主成分1 Principal component 1 | 主成分2 Principal component 2 | ||
---|---|---|---|---|
载荷值 Load value | 特征向量 Feature vector | 载荷值 Load value | 特征向量 Feature vector | |
LAI(X1) | 0.946 | 0.237 | -0.133 | -0.133 |
SPAD(X2) | 0.946 | 0.237 | -0.104 | -0.104 |
产量(X3) | 0.978 | 0.245 | -0.127 | -0.126 |
0~10 cm pH(X4) | -0.987 | -0.247 | -0.067 | -0.067 |
10~20 cm pH(X5) | -0.962 | -0.241 | -0.160 | -0.160 |
0~10 cm电导率(X6) | -0.966 | -0.242 | 0.109 | 0.108 |
10~20 cm电导率(X7) | -0.973 | -0.244 | -0.070 | -0.069 |
0~10 cm有机质(X8) | 0.938 | 0.235 | 0.127 | 0.126 |
10~20 cm有机质(X9) | 0.894 | 0.224 | 0.077 | 0.077 |
0~10 cm碱解氮(X10) | 0.985 | 0.246 | -0.083 | -0.083 |
10~20 cm碱解氮(X11) | 0.967 | 0.242 | -0.144 | -0.144 |
0~10 cm速效钾(X12) | 0.981 | 0.246 | -0.054 | -0.054 |
10~20 cm速效钾(X13) | 0.956 | 0.239 | 0.122 | 0.122 |
0~10 cm速效磷(X15) | 0.985 | 0.246 | 0.022 | 0.022 |
10~20 cm速效磷(X16) | 0.970 | 0.243 | 0.023 | 0.023 |
细菌(X17) | 0.943 | 0.236 | 0.294 | 0.293 |
真菌(X18) | -0.514 | -0.129 | 0.832 | 0.831 |
放线菌(X19) | 0.954 | 0.239 | 0.254 | 0.253 |
[1] | 张龙. 近二十年新疆灌区盐碱地变化情况分析和对策研究[J]. 水资源开发与管理, 2020,(6): 72-76. |
ZHANG Long. Analysis and countermeasure research on saline-alkali land change in Xinjiang irrigation area in recent 20 years[J]. Water Resources Development and Management, 2020,(6): 72-76. | |
[2] | 宁松瑞, 赵雪, 姬美玥, 等. 脱硫石膏和磁化水对盐碱胁迫荞麦光合特性的影响[J]. 农业机械学报, 2020, 51(10): 310-317. |
NING Songrui, ZHAO Xue, JI Meiyue, et al. Effect of Desulfurized Gypsum and Magnetized Water on Photosynthetic Characteristics of Buckwheat under Salt-alkali Stress[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 310-317. | |
[3] | 颜安, 宁松瑞, 万江春, 等. 养分配比对盐胁迫膜下滴灌棉花生长与产量和水肥效率的影响[J]. 新疆农业大学学报, 2021, 44(1): 1-7. |
YANG An, NING Songrui, WAN Jianchun, et al. Effects of Different Nutrient Ratios on Growth and Yield of Cotton and Its Efficiency of Water and Fertilizer under Salt Stress[J]. Journal of Xinjiang Agricultural University, 2021, 44(1): 1-7. | |
[4] | 刘艳, 李波, 孙文涛, 等. 生物有机肥对盐碱地春玉米生理特性及产量的影响[J]. 作物杂志, 2017,(2): 98-103. |
LIU Yan, LI Bo, SUN Wentao, et al. Effects of Bio-organic Fertilizer on Physiological Characters and Yield of Maize in Saline-Alkali Soil[J]. Crops, 2017,(2): 98-103. | |
[5] | 韩正砥. 生物有机肥对节水灌溉水稻生理生长指标的影响[D]. 扬州: 扬州大学, 2020. |
HAN Zhengdi. Effects of bioorganic fertilizers on physilological growth indexes of rice under water-saving irrigation[D]. Yangzhou: Yangzhou University, 2020. | |
[6] |
王俊红, 王星琳, 王康, 等. 生物有机肥替代化肥对小麦根际土壤环境的影响[J]. 华北农学报, 2021, 36(4): 155-162.
DOI |
WANG Junhong, WANG Xinglin, WANG Kang, et al. Effects of Replacing Chemical Fertilizers with Bio-organic Fertilizers on Microenvironment of Wheat Rhizosphere Soil[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4): 155-162. | |
[7] | 朱利霞, 曹萌萌, 桑成琛, 等. 生物有机肥替代化肥对玉米土壤肥力及酶活性的影响[J]. 四川农业大学学报, 2022, 40(1): 67-72. |
ZHU Lixia, CAO Mengmeng, SANG Chengchen, et al. Effects of Bio-Fertilizer Partially Substituting Chemical Fertilizer on Soil Fertility and Enzyme Activity in Maize Field[J]. Journal of Sichuan Agricultural University, 2022, 40(1): 67-72. | |
[8] | Mosa W F A E G, Paszt L S, Frac M, et al. Microbial products and biofertilizers in improving growth and productivity of apple-a review[J]. Polish Journal of Microbiology, 2016, 65(3): 3. |
[9] | 吴晓卫, 付瑞敏, 郭彦钊, 等. 耐盐碱微生物复合菌剂的选育、复配及其对盐碱地的改良效果[J]. 江苏农业科学, 2015, 43(6): 346-349. |
WU Xiaowei, FU Ruimin, GUO Yanzhao, et al. Breeding and compound of saline-resistant microorganisms and its improvement effect on saline-alkali land[J]. Jiangsu Agricultural Sciences, 2015, 43(6): 346-349. | |
[10] | Hafez M, Popov A I, Rashad M. Integrated use of bio-organic fertilizers for enhancing soil fertility-plant nutrition, germination status and initial growth of corn (Zea mays L.)[J]. Environmental Technology & Innovation, 2021, 21: 101329. |
[11] |
Li W, Zhang F, Cui G, et al. Effects of bio-organic fertilizer on soil fertility, microbial community composition, and potato growth[J]. Science Asia, 2021, 47: 347.
DOI URL |
[12] | 张彭良, 李静, 王丹丹. 生物有机肥对春小麦生理特性及土壤养分和微生物的影响[J]. 江苏农业科学, 2018, 46(9): 66-72. |
ZHANG Pengliang, LI Jing, WANG Dandan. Effect of biological organic fertilizer on physiological characteristics and soil nutrients and microorganisms in spring wheat[J]. Jiangsu Agricultural Sciences, 2018, 46(9): 66-72. | |
[13] |
王家宝, 孙义祥, 李虹颖, 等. 生物有机肥用量及部分替代化肥对小麦产量效应的研究[J]. 中国农学通报, 2020, 36(36): 6-11.
DOI |
WANG Jiabao, SUN Yixiang, LI Hongying, et al. Effects of Bio-organic Fertilizer and Partial Substitution of Chemical Fertilizer on Wheat Yield[J]. Chinese Agricultural Science Bulletin, 2020, 36(36): 6-11.
DOI |
|
[14] | 杨利, 颜安, 宁松瑞, 等. 生物有机肥对盐胁迫小麦幼苗生长和土壤培肥的影响[J]. 新疆农业大学学报, 2021, 44(4): 291-299. |
YANG Li, YAN An, NING Songrui, et al. Effects of Bio-organic Fertilizer on Wheat Seedling Growth and Soil Fertility Improvement under Salt Stress[J]. Journal of Xinjiang University, 2021, 44(4): 291-299. | |
[15] | 鲍士旦. 土壤农化分析(3 版)[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2000. | |
[16] | 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. |
LIN Xiangui. Principles and Methods of Soil Microbiology Research[M]. Beijing: Higher Education Press, 2010. | |
[17] | 张迎春, 颉建明, 李静, 等. 生物有机肥部分替代化肥对莴笋及土壤理化性质和微生物的影响[J]. 水土保持学报, 2019, 33(4):196-205. |
ZHANG Yingchun, XIE Jianming, LI Jing, et al. Effects of Partial Substitution of Chemical Fertilizer by Bio-organic Fertilizer on Asparagus Lettuce and Soil Physical-chemical Properties and Microorganisms[J]. Journal of Soil and Water Conservation, 2019, 33(4):196-205. | |
[18] | 邹尊涛. 生物有机肥对盐碱地改良的研究[D]. 泰安: 山东农业大学, 2017. |
ZOU Zuntao. Study on the improvement of saline-alkali soill byi bio-organic fertilizer[D]. Tai’an: Shangdong Agricultural University, 2017. | |
[19] |
Yuan S, Wang L, Wu K, et al. Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments[J]. Applied Soil Ecology, 2014, 75: 86-94.
DOI URL |
[20] | 刘柳, 朱丽, 张晓霞, 等. 一种复合菌肥的研制及其在草莓种植中的应用[J]. 沈阳大学学报, 2017, 29(5): 384-388. |
LIU Liu, ZHU Li, ZHANG Xiaoxia, et al. Development of a Compound Bacterial Manure and Application in Strawberry Planting[J]. Journal of Shenyang University, 2017, 29(5): 384-388. | |
[21] | 陈智坤, 冯璞阳, 井光花, 等. 不同改良措施对关中典型设施盐碱土质量的影响[J]. 北方园艺, 2020, (20): 83-91. |
CHEN Zhikun, FENG Puyang, JIN Guanghua, et al. Effects of Different Improvement Measures on Quality of Typical Saline-alkali Soil With Plastic Shed in the Middle of Shaanxi[J]. Northern Horticulture, 2020,(20): 83-91. | |
[22] | 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J]. 水土保持学报, 2018, 32(1): 352-360. |
SONG Yiling, YU Jian, CHEN Shigeng, et al. Effects of Reduced Chemical Fertilizer with Application of Bio-organic Fertilizer on Rape Growth, Microorganism and Enzymes Activities in Soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 352-360. | |
[23] |
Zhao J, Liu J, Liang H, et al. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health[J]. Plos One, 2018, 13(2): e0192967.
DOI URL |
[1] | WANG Chunsheng, LI Jianfeng, ZHANG Yueqiang, FAN Zheru, WANG Zhong, GAO Xin, SHI Jia, ZHANG Hongzhi, WANG Lihong, XIA Jianqiang, WANG Fangping, ZHAO Qi. Study on genotypic differences of anther culture ability in mainly cultivated spring wheat varieties in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2081-2086. |
[2] | ZHANG Niao, WANG Hui, FENG Guojun, Zaituniguli Kuerban. Study on the agronomic traits and quality differences of grain sorghum in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2160-2167. |
[3] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[4] | YUAN Yilin, YAN An, ZUO Xiaoxiao, HOU Zhengqing, ZHANG Zhenfei, XIAO Shuting, SUN Zhe, MA Mengqian, ZHAO Yuhang. Impact of reduced nitrogen fertilization combined with bio-organic fertilizer on spring wheat yield enhancement and soil enrichment [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1872-1882. |
[5] | LIU Xuhuan, YU Shan, LIU Yue, SHI Shubing. Comparative on the vigor differences of spring wheat seeds of different sizes [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1883-1887. |
[6] | NIU Tingting, MA Mingsheng, ZHANG Jungao. Effects of straw returning and plastic film mulching on soil physical and chemical properties and spring maize yield in rain-fed upland farmland [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1896-1906. |
[7] | YANG Mei, ZHAO Hongmei, Dilireba Xiamixiding, YANG Weijun, ZHANG Jinshan, HUI Chao. Effects of nitrogen fertilizer reduction and biochar application on population structure, photosynthetic characteristics and yield of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1582-1589. |
[8] | LU Weidan, ZHOU Yuanhang, MA Xiaolong, GAO Jianglong, FAN Xiaoqin, GUO Jianfu, LI Jianqiang, LIN Ming. Effects of replacing chemical fertilizer with organic fertilizer in different proportions and plant nutrients and sugar beet yield [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1631-1639. |
[9] | HOU Xianfei, LI Qiang, MIAO haocui, JIA Donghai, GU Yuanguo, Maimaiyiming Simayi, CUI Fuyang. Effects of cotton-peanut rotation on the soil physicochemical properties and the yield of crop [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1657-1665. |
[10] | WANG Yizhao, YANG Qizhi, LIU Yuxiu, Alayi Nurkamali, Vladimir Shvidchenko, ZHANG Zhengmao. Evaluation of drought resistance of different Kazakhstan spring wheat at seeding stage under PEG-6000 stress [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1352-1360. |
[11] | ZHANG Hongzhi, WANG Lihong, SHI Jia, KONG Depeng, WANG Zhong, GAO Xin, LI Jianfeng, WANG Chunsheng, XIA Jianqiang, FAN Zheru, ZHANG Yueqiang. Effects of soil moisture on leaf protective enzyme activities and yield of spring wheat cultivars with different drought resistance [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1041-1047. |
[12] | ZHANG Zhao, ZHANG Guilong, TANG Qiuxiang, YAN Xueying, ZHANG Yanjun. Effects of combination of organic and inorganic fertilizers on fertility and yield of winter wheat in fluvo-aquic soil [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1067-1076. |
[13] | Gulinigaer Tuerhong, ZHANG Jinshan, LI Dandan, ZHANG Lulu, WANG Runqi, SHI Shubing. Effects of different priming treatments on seed vigor and physiological characteristics of spring wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 869-877. |
[14] | WANG Jijiao, PAN Yue, WANG Shiwei, HAN Zhengwei, MA Yong, HU Haifang, WANG Baoqing. Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 355-364. |
[15] | SUN Chen, HUAI Guolong, WANG Bin, SUN Jiusheng, YANG Zhiying, SHAN Nana. Effects of reducing fertilizer and applying fulvic acid on soil nutrients and peanut growth [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2934-2942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||