Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (6): 1442-1450.DOI: 10.6048/j.issn.1001-4330.2023.06.017
• Microbes·Horticultural Special Local Products·Storage and Preservation Processing • Previous Articles Next Articles
CAO Yijie1(), Aishajiang maimaiti2, Xianmisiya Tayifu3, SHI Zhiyong1, Yusufu Abulitifu1(
)
Received:
2022-10-29
Online:
2023-06-20
Published:
2023-06-20
Correspondence author:
Yusufu Abulitifu(1969-),male,doctoral supervisor,associate professor,research interest: Fruit cultivation and germplasm resources research,(E-mail) yusufuxj@163.com
Supported by:
曹艺洁1(), 艾沙江·买买提2, 仙米斯娅·塔依甫3, 史智勇1, 玉苏甫·阿不力提甫1(
)
通讯作者:
玉苏甫·阿不力提甫(1969-),男,新疆人,副教授,博士,研究方向为果树栽培与种质资源,(E-mail) yusufuxj@163.com
作者简介:
曹艺洁(1997-),男,山西人,硕士研究生,研究方向为果树栽培生理与品质调控,(E-mail)1692666398@qq.com
基金资助:
CLC Number:
CAO Yijie, Aishajiang maimaiti, Xianmisiya Tayifu, SHI Zhiyong, Yusufu Abulitifu. Comparison of fruit stalk difference between different types of Korla fragrant pear[J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1442-1450.
曹艺洁, 艾沙江·买买提, 仙米斯娅·塔依甫, 史智勇, 玉苏甫·阿不力提甫. 库尔勒香梨不同类型果柄差异比较[J]. 新疆农业科学, 2023, 60(6): 1442-1450.
Fig.1 Different types of pear stalks Note: A is the normal fruit stalk (ZC) of fragrant pear, B is the fleshy fruit stalk (RZ) of fragrant pear, C is the fruit stalk (DS) of Dangshansu pear
Fig.2 Comparison of stalk shape indexes of different types of fragrant pear at maturity stage Note: A is the normal distribution of fleshy stems of fragrant pear, B is the normal distribution of the thickness of normal stems of fragrant pear, -2σ≤ sample mean ≤2σ, σ is the standard deviation (95%confidence interval)
种类 Species | 维管束数量 Number of vascular bundles | 果柄横截面积 Cross-sectional area of the stalk (mm2) | 维管束面积 Vascular bundle area (mm2) | 木质部面积 Xylem area (mm2) | 韧皮部面积 Phloem area (mm2) | 木质部占比 Percentage of wood mass (%) | 维管束占比 Proportion of vascular bundles (%) |
---|---|---|---|---|---|---|---|
香梨正常果柄 Normal fruit handle of korla fragrant pear | 9 | 6.7±0.14c | 0.44±0.01c | 0.12±0.00c | 0.32±0.01c | 27.49±0.98b | 6.48±0.16b |
香梨肉质化果柄 Korla fragrant pear fleshy fruit handle | 9 | 15.8±0.22a | 0.65±0.07b | 0.24±0.01b | 0.45±0.01b | 37.59±2.72a | 4.09±0.48c |
砀山酥梨果柄 Dangshan pear stem | 10 | 7.7±0.10b | 1.38±0.04a | 0.47±0.01a | 0.90±0.02a | 34.35±0.16a | 17.7±0.23a |
Tab.1 Observation and comparison on the microstructure of carole of different pear types at maturity stage
种类 Species | 维管束数量 Number of vascular bundles | 果柄横截面积 Cross-sectional area of the stalk (mm2) | 维管束面积 Vascular bundle area (mm2) | 木质部面积 Xylem area (mm2) | 韧皮部面积 Phloem area (mm2) | 木质部占比 Percentage of wood mass (%) | 维管束占比 Proportion of vascular bundles (%) |
---|---|---|---|---|---|---|---|
香梨正常果柄 Normal fruit handle of korla fragrant pear | 9 | 6.7±0.14c | 0.44±0.01c | 0.12±0.00c | 0.32±0.01c | 27.49±0.98b | 6.48±0.16b |
香梨肉质化果柄 Korla fragrant pear fleshy fruit handle | 9 | 15.8±0.22a | 0.65±0.07b | 0.24±0.01b | 0.45±0.01b | 37.59±2.72a | 4.09±0.48c |
砀山酥梨果柄 Dangshan pear stem | 10 | 7.7±0.10b | 1.38±0.04a | 0.47±0.01a | 0.90±0.02a | 34.35±0.16a | 17.7±0.23a |
Fig.3 Normal distribution map of different types of fruit stalk thickness investigation at mature stage of Fragrant pear Note: A, B and C are anatomical structures of fruit stalks of Normal fruit handle of korla fragrant pear, Korla fragrant pear fleshy fruit handle and Dangshan pear stem respectively
Fig.4 Comparison of cell wall substance content in the fruit stalk of different pear types Note: A, B and C are the content differences of cellulose, hemicellulose and lignin in three kinds of fruit stalks respectively;Values (Mean ± SE) are represented by different small letters with significant difference at P<0.05
Fig.5 Comparison of nutrient contents in fruit stalks of different pear types Note: A, B, C and D are the differences of soluble protein, soluble protein, starch and water content of three fruit stalks respectively;Values (Mean ± SE) are represented by different small letters with significant difference at P<0.05
元素 Elements | 正常果柄 Normal fruit stalk | 肉质化果柄 Fleshy fruit stalk | 显著性 P-value | 投影值 VIP | 差异倍数 Fold change |
---|---|---|---|---|---|
锶(Sr) | 182.54 | 82.17 | 0.000 | 1.030 | 2.22 |
钛(Ti) | 23.99 | 11.62 | 0.000 | 1.029 | 2.06 |
镍(Ni) | 0.75 | 0.51 | 0.000 | 1.029 | 1.47 |
钒(V) | 271.91 | 153.73 | 0.000 | 1.029 | 1.77 |
镉(Cd) | 39.82 | 22.67 | 0.000 | 1.029 | 1.76 |
硒(Se) | 1552.1 | 1063.83 | 0.000 | 1.029 | 1.46 |
钼(Mo) | 334.95 | 74.24 | 0.000 | 1.029 | 4.51 |
铁(Fe) | 42.52 | 20.26 | 0.000 | 1.029 | 2.1 |
钴(Co) | 164.32 | 104.16 | 0.000 | 1.029 | 1.58 |
钙(Ca) | 6.41 | 3.09 | 0.000 | 1.028 | 2.07 |
铅(Pb) | 70.76 | 69.74 | 0.000 | 1.028 | 1.01 |
铝(Al) | 43.12 | 23.04 | 0.000 | 1.028 | 1.87 |
镓(Ga) | 25.61 | 16.57 | 0.000 | 1.028 | 1.55 |
锰(Mn) | 8.15 | 6.51 | 0.000 | 1.028 | 1.25 |
锑(Sb) | 18.3 | 14.18 | 0.000 | 1.027 | 1.29 |
铌(Nb) | 9.73 | 5.97 | 0.000 | 1.027 | 1.63 |
硼(B) | 27.21 | 28.97 | 0.000 | 1.027 | 0.94 |
铍(Be) | 3.92 | 3.75 | 0.000 | 1.025 | 1.05 |
砷(As) | 80.98 | 73.95 | 0.000 | 1.024 | 1.10 |
镁(Mg) | 0.35 | 0.26 | 0.000 | 1.020 | 1.35 |
磷(P) | 0.34 | 0.63 | 0.000 | 1.020 | 0.54 |
钠(Na) | 137.08 | 154.28 | 0.000 | 1.019 | 0.89 |
镧(La) | 37.07 | 32.94 | 0.001 | 1.015 | 1.13 |
钪(Sc) | 4.28 | 3.21 | 0.000 | 1.014 | 1.33 |
锌(Zn) | 5.69 | 4.8 | 0.001 | 1.011 | 1.19 |
铬(Cr) | 5.43 | 4.38 | 0.003 | 0.999 | 1.24 |
锆(Zr) | 29.81 | 34.43 | 0.001 | 0.994 | 0.87 |
钇(Y) | 16.26 | 13.72 | 0.003 | 0.994 | 1.19 |
铊(Tl) | 2.38 | 2.75 | 0.002 | 0.992 | 0.87 |
铜(Cu) | 3.24 | 3.19 | 0.098 | 0.966 | 1.02 |
银(Ag) | 40.26 | 38.31 | 0.011 | 0.947 | 1.05 |
钾(K) | 14.12 | 14.15 | 0.273 | 0.856 | 0.99 |
钡(Ba) | 12.48 | 12.43 | 0.343 | 0.450 | 1.00 |
Tab.2 Differences of elements content in fruit stalks of different types of Korla pear at maturity stage(mg/kg)
元素 Elements | 正常果柄 Normal fruit stalk | 肉质化果柄 Fleshy fruit stalk | 显著性 P-value | 投影值 VIP | 差异倍数 Fold change |
---|---|---|---|---|---|
锶(Sr) | 182.54 | 82.17 | 0.000 | 1.030 | 2.22 |
钛(Ti) | 23.99 | 11.62 | 0.000 | 1.029 | 2.06 |
镍(Ni) | 0.75 | 0.51 | 0.000 | 1.029 | 1.47 |
钒(V) | 271.91 | 153.73 | 0.000 | 1.029 | 1.77 |
镉(Cd) | 39.82 | 22.67 | 0.000 | 1.029 | 1.76 |
硒(Se) | 1552.1 | 1063.83 | 0.000 | 1.029 | 1.46 |
钼(Mo) | 334.95 | 74.24 | 0.000 | 1.029 | 4.51 |
铁(Fe) | 42.52 | 20.26 | 0.000 | 1.029 | 2.1 |
钴(Co) | 164.32 | 104.16 | 0.000 | 1.029 | 1.58 |
钙(Ca) | 6.41 | 3.09 | 0.000 | 1.028 | 2.07 |
铅(Pb) | 70.76 | 69.74 | 0.000 | 1.028 | 1.01 |
铝(Al) | 43.12 | 23.04 | 0.000 | 1.028 | 1.87 |
镓(Ga) | 25.61 | 16.57 | 0.000 | 1.028 | 1.55 |
锰(Mn) | 8.15 | 6.51 | 0.000 | 1.028 | 1.25 |
锑(Sb) | 18.3 | 14.18 | 0.000 | 1.027 | 1.29 |
铌(Nb) | 9.73 | 5.97 | 0.000 | 1.027 | 1.63 |
硼(B) | 27.21 | 28.97 | 0.000 | 1.027 | 0.94 |
铍(Be) | 3.92 | 3.75 | 0.000 | 1.025 | 1.05 |
砷(As) | 80.98 | 73.95 | 0.000 | 1.024 | 1.10 |
镁(Mg) | 0.35 | 0.26 | 0.000 | 1.020 | 1.35 |
磷(P) | 0.34 | 0.63 | 0.000 | 1.020 | 0.54 |
钠(Na) | 137.08 | 154.28 | 0.000 | 1.019 | 0.89 |
镧(La) | 37.07 | 32.94 | 0.001 | 1.015 | 1.13 |
钪(Sc) | 4.28 | 3.21 | 0.000 | 1.014 | 1.33 |
锌(Zn) | 5.69 | 4.8 | 0.001 | 1.011 | 1.19 |
铬(Cr) | 5.43 | 4.38 | 0.003 | 0.999 | 1.24 |
锆(Zr) | 29.81 | 34.43 | 0.001 | 0.994 | 0.87 |
钇(Y) | 16.26 | 13.72 | 0.003 | 0.994 | 1.19 |
铊(Tl) | 2.38 | 2.75 | 0.002 | 0.992 | 0.87 |
铜(Cu) | 3.24 | 3.19 | 0.098 | 0.966 | 1.02 |
银(Ag) | 40.26 | 38.31 | 0.011 | 0.947 | 1.05 |
钾(K) | 14.12 | 14.15 | 0.273 | 0.856 | 0.99 |
钡(Ba) | 12.48 | 12.43 | 0.343 | 0.450 | 1.00 |
[1] | 李养义, 张峰, 关晓媛. ‘库尔勒香梨’产业发展优势、问题及对策[J]. 北方果树, 2019,(5): 45-48. |
LI Yanyi, ZHANG Feng, GUAN Xiaoyuan. Advantages, problems and countermeasures of 'Korla fragrant pear' industry development[J]. Northern Fruits, 2019,(5):45-48. | |
[2] | 张峰. 库尔勒香梨提质增效管理措施[J]. 果树资源学报, 2021, 2(2): 56-57. |
ZHANG Feng. Management measures for improving quality and efficiency of Korla pear[J]. Journal of Fruit Resources, 2021, 2(2):56-57. | |
[3] | 王小华. 库尔勒香梨区域品牌建设研究[D]. 郑州: 河南工业大学, 2019. |
WANG Xiaohua. Research on regional brand construction of Korla Fragrant Pear[D]. Zhengzhou: Henan University of Technology, 2019. | |
[4] | 张慧岚. 气候条件对库尔勒香梨生长影响的分析[J]. 气象, 2005,(8): 84-86. |
ZHANG Huilan. Analysis on the influence of climatic conditions on the growth of Korla pear[J]. Meteorology, 2005,(8):84-86. | |
[5] | 孙昊琪, 王南南, 柳伟杰, 等. 梨果柄特征及其与果实主要经济性状的相关性分析[J]. 西北植物学报, 2019, 39(8): 1416-1424. |
SUN Haoqi, WANG Nannan, LIU Weijie, et al. Analysis of fruit stem characteristics and its correlation with main economic traits of pear[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(8):1416-1424. | |
[6] | 李劲, 李学柱. 锦橙结果枝及果梗维管组织的分化发育[J] .中国柑桔, 1992,(4): 24. |
LI Jin, LI Xuezhu. Differentiation and Development of vascular Tissue in Fruiting Branches and Stems of Orange[J]. China Citrus, 1992,(4):24. | |
[7] | 李亚慧, 吕恩利, 陆华忠, 等. 荔枝果柄处理对其常温贮藏特性的影响[J]. 中国食品学报, 2016, 16(4): 191-197. |
LI Yahui, LU Enli, LU Huazhong, et al. Effects of litchi fruit stalk treatment on its storage characteristics at room temperature[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(4):191-197. | |
[8] | 陈燕, 蒋志林, 李嘉威, 等. 基于机器人采摘的柑橘果柄切割力学特性研究[J]. 河南农业科学, 2017, 46(4): 147-150. |
CHEN Yan, JIANG Zhilin, LI Jiwei, et al. Study of Citrus Pedicel Cutting Mechanical Property Based on Robot Picking[J]. Journal of Henan Agricultural Sciences, 2017, 46(4):147-150. | |
[9] | 关萌, 沈永哲, 高连兴, 等. 花生起挖晾晒后的果柄机械特性[J]. 农业工程学报, 2014, 30(2): 87-93. |
GUAN Meng, SHEN Yongzhe, GAO Lianxing, et al. Mechanical properties of peanut peg after digging and drying[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2):87-93. | |
[10] | 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006: 222-223. |
WANG Xuekui. Experimental principles and techniques of Plant physiology and Biochemistry[M]. Beijing: Higher Education Press, 2006: 222-223. | |
[11] | 熊素敏, 左秀凤, 朱永义. 稻壳中纤维素、半纤维素和木质素的测定[J]. 粮食与饲料工业, 2005,(8): 40-41. |
XIONG Sumin, ZUO Xiufeng, ZHU Yongyi. Determination of cellulose, hemicellulose and lignin in rice husk[J]. Cereal & Feed Industry, 2005,(8):40-41. | |
[12] | 张小雪, 巫伟峰, 傅振星, 等. ‘芙蓉李’焦叶症与矿质元素含量的关联性[J]. 福建农林大学学报(自然科学版), 2020, 49(6): 759-765. |
ZHANG Xiaoxue, WU Weifeng, FU Zhenxing, et al. Correlation between scorch leaf disease and mineral element content of 'lotusplum'[J]. Journal of Fujian Agriculture And Forestry University (Natural Science Ed.), 2020, 49(6):759-765. | |
[13] | 谢凯, 宋晓晖, 董彩霞, 等. 不同有机肥处理对黄冠梨生长及果园土壤性状的影响[J]. 植物营养与肥料学报, 2013, 19(1): 214-222. |
XIE Kai, SONG Xiaohui, DONG Caixia, et al. Effects of different organic fertilizer treatments on growth and soil properties of huangguan pear[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1):214-222. | |
[14] | 李晓彬, 汪有科, 赵春红, 等. 水分调控对梨枣果实品质与投入产出效益的影响分析[J]. 中国生态农业学报, 2011, 19(4): 818-822. |
LI Xiaobin, WANG Youke, ZHAO Chunhong, et al. Effect of regulated irrigation on input-output benefits of pear jujube[J]. Chinese Journal Of Eco-Agriculture, 2011, 19(4):818-822. | |
[15] | 王鑫, 伍涛, 陶书田, 等. 梨花序不同序位坐果对果实发育及品质的影响[J]. 西北植物学报, 2010, 30(9): 1865-1870. |
WANG Xin, WU Tao, TAO Shutian, et al. Effects of different sequence positions on fruit development and quality of pear[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(9):1865-1870. | |
[16] | 王娜, 李凤海, 王志斌, 等. 玉米维管束性状的研究进展[J]. 玉米科学, 2011, 19(3):148-152. |
WANG Na, LI Fenghai, WANG Zhibin, et al. Advances in studies of vascular bundle traits in maize[J]. Journal of Maize Science, 2011, 19(3):148-152. | |
[17] |
丁改秀, 王保明, 王小原, 等. 壶瓶枣果实发育过程中果柄导管形态变化与裂果关系[J]. 中国农业科学, 2014, 47(24): 4886-4894.
DOI |
DING Gaixiu, WANG Baoming, WANG Xiaoyuan, et al. Changes of Anatomical Structure of Xylem Vessels in Stalk During Huping Jujube Fruit Development and Its Relation of Fruit Cracking[J]. Scientia Agricultura Sinica, 2014, 47(24):4886-4894.
DOI |
|
[18] | 马腾飞. 水稻木质形成素类AGP蛋白基因家族的鉴定及OsAGP13的生物学功能研究[D]. 武汉: 武汉大学, 2014. |
MA Tengfei. Identification of AGP protein family of lignomorphogenesis and study on biological function of OsAGP13 in rice[D]. Wuhan: Wuhan University, 2014. | |
[19] | 谢兆森, 杜鸿儒, 项殿芳, 等. 蓝莓果实不同发育期维管束解剖结构与水分运输变化[J]. 植物生理学报, 2018, 54(1): 45-53. |
XIE Zhaosen, DU Hongru, XIANG Dianfang, et al. Changes of vascular bundle anatomical structure and water transport in blueberry fruits at different development stages[J]. Plant Physiology Journal, 2018, 54(1):45-53. | |
[20] | 郭慧慧, 肖鹏, 雷靖, 等. 猕猴桃新品种瑞玉果实生长发育规律[J]. 贵州农业科学, 2020, 48(7): 64-68. |
GUO Huihui, XIAO Peng, LEI Jing, et al. Fruit growth and development of new kiwifruit variety ruiyu[J]. Guizhou Agricultural Sciences, 2020, 48(7):64-68. | |
[21] | 白玉林, 韩春丽, 勾玲, 等. 不同纤维品质棉花纤维发育过程中内源激素含量变化及与品质的关系[J]. 新疆农业科学, 2008,(S2): 5-11. |
BAI Yulin, HAN Chunli, GOU Ling, et al. Changes of Endogenous hormone content and Its relationship with Cotton Fiber Quality during Fiber Development[J]. Xinjiang Agricultural Sciences, 2008,(S2):5-11. | |
[22] | 成莎, 张丽, 赵岩, 等. 可溶性蛋白含量与棉纤维发育的相关性[J]. 山西农业科学, 2019, 47(4): 527-529, 535. |
CHENG Sha, ZHANG Li, ZHAN Yan, et al. Relationship between soluble protein content and cotton fiber development[J]. Shanxi Agricultural Sciences, 2019, 47(4):527-529, 535. | |
[23] | 夏星, 汤寓涵, 陶俊, 等. 观赏植物茎秆强度形成及其调控[J]. 植物生理学报, 2018, 54(3): 347-354. |
XIA Xing, TANG Yuhan, TAO Jun, et al. Formation and regulation of stem strength in ornamental plants[J]. Plant Physiology Journal, 2018, 54(3):347-354. | |
[24] | 李成忠. 影响芍药花茎机械强度的生理机制研究[D]. 扬州: 扬州大学, 2013. |
LI Chengzhong. Study on the physiological mechanism affecting the mechanical strength of Paeonia lactiflora[D]. Yangzhou: Yangzhou University, 2013. |
[1] | SHI Yingwu, NIU Xinxiang, YANG Hongmei, CHU Min, BAO Huifang, WANG Ning, ZHAN Faqiang, LIN Qing, YANG Rong, LONG Xuanqi, LOU Kai. Field control effects of four fungicides on fragrant korla pear fire blight [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1432-1440. |
[2] | ZHAO Shasha, WANG Shiwei, ZHANG Cuifang, HAO Honglong, GUO Tong, YANG Xianan, YANG Wenjie. Analysis of the relationship between walnut leaf scorch disease and mineral elements [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2750-2760. |
[3] | ZHANG Xinyu, Munire Mutalifu, YE Yijie, FENG Qian, ZHANG Zhidong. Determination of nutrient components and structural analysis of polysaccharides from wild Boletus [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2557-2565. |
[4] | CAO Yijie, SHI Zhiyong, Yusup Ablitip, Aisajan Mamat. Analysis of Amino Acid and Mineral Elements in the Rough-skinned Fruits of Korla Pear [J]. Xinjiang Agricultural Sciences, 2023, 60(2): 407-415. |
[5] | MAO Hongyan, YU Ming, Zulipya Maimaiti. Determination of Mineral Elements in Maize Cultivars by Microwave Digestion/ICP-AES and Principal Component Analysis [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1270-1276. |
[6] | ZHAO Xiaomei, FAN Guoquan, WU Yupeng, ZHANG Shikui, WANG Shaopeng, WANG Yatong, SUN Zhaozhan. Effects of orthogonal combination on the diseases of korla pear in storage period [J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1460-1467. |
[7] | JI Guangpeng, ZHANG Donghai, NIU Linglei, JIANG Jiyuan, ZHAO Sifeng, WU Yurong. The Research to Function Fertilizer Effect of ‘3414’ to Confirm the Fertilization Parameter of Korla Pear in the Early Fruiting [J]. Xinjiang Agricultural Sciences, 2021, 58(4): 682-689. |
[8] | FENG Beibei, MEI Chuang, ZHANG Zhengjun, LIU Hairong, Aishajiang Maimaiti, WANG Jixun, YAN Peng. Correlation Analysis of Mineral Elements and Soluble Sugar in Different Maturity Stages of Fuji Apple [J]. Xinjiang Agricultural Sciences, 2021, 58(3): 502-510. |
[9] | GONG Qin, CHE Yong, WANG Ling, LI Zhaohua. Effects of Copper Treatment on Oxidative Stress Response and Mineral Element Uptake in Spinach Seedlings [J]. Xinjiang Agricultural Sciences, 2021, 58(11): 2111-2121. |
[10] | Bo SONG, Keyimu Aimidula, Xiaofeng ZHU, Bingqiang XU, Xinran PENG, Kader Abudukeyoumu, Sen YANG. Occurrence Dynamics Offruit Borer and Control Effect Bysex Pheromone Mating Disruption of Fragrant Pear in Korla [J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1887-1892. |
[11] | WANG Jingjing, FANG Fang, ZHOU Xiaoming, WU Xinyu, SU Min. Geographical Source Traceability of Raisins Based on Mineral Element Contents [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 69-77. |
[12] | DOU Hai-tao, LEI Chang-ying, LI Xia-fei, JIA Meng-meng, XIANG Dao, ZHANG Ya-li, ZHANG Wang-feng. Changes of Root Morphology and Its Relationship with Mineral Elements in Different Soil Depths of Cotton (Gossypium hirsutum L.) [J]. Xinjiang Agricultural Sciences, 2019, 56(8): 1397-1407. |
[13] | WU Yu-peng, ZHAO Xiao-mei. The Separation and Identification of the Pathogenic Bacteria of Korla Pear Calyx End Black Spot Disease in Different Growing Areas [J]. Xinjiang Agricultural Sciences, 2018, 55(1): 116-122. |
[14] | ZHU Hai-feng;MA Jian-jiang;LIU Yan;ZHAO Juan-juan;WANG Gang;LU Xiao-yan. Annual Variation Study of Mineral Nutrient Contents in the Leaves of Korla Pear [J]. , 2017, 54(3): 452-459. |
[15] | WU Yu-peng;ZHAO Xiao-mei;YE Kai;CHEN Wei-wei. Study on the Effect of Calcium and 1-MCP Synergy on Korla Pear Storage Quality [J]. , 2016, 53(1): 9-15. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||