Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (3): 651-663.DOI: 10.6048/j.issn.1001-4330.2023.03.016
• Plant Protection·Facility Agriculture·Agricultural Product Processing Engineering·Microbes • Previous Articles Next Articles
WANG Dejuan1,2(), WANG Jianping3(
), FENG Jianzhong2(
), JING Shuangquan4, XU Shidong5, SUI Lichun6, HUANG Guanghui4
Received:
2022-07-17
Online:
2023-03-20
Published:
2023-04-18
Correspondence author:
WANG Jianping (1987-), male, native place: Zongyang, Anhui. Master, engineer, mainly engaged in intelligent processing of spatial information and application, (E-mail)Supported by:
王德娟1,2(), 汪健平3(
), 冯建中2(
), 井双泉4, 许士东5, 隋立春6, 黄光辉4
通讯作者:
汪健平(1987-),男,安徽枞阳人,工程师,硕士,研究方向为空间信息智能处理与应用,(E-mail)631224605@qq.com;作者简介:
王德娟(1996-),女,山东泰安人,硕士研究生,研究方向为作物模型建模与应用,(E-mail)1525998859@qq.com
基金资助:
CLC Number:
WANG Dejuan, WANG Jianping, FENG Jianzhong, JING Shuangquan, XU Shidong, SUI Lichun, HUANG Guanghui. Analyses of Parameter Sensitivity and Yield Uncertainty of Jujube Growth Simulation Based on DNDC Model[J]. Xinjiang Agricultural Sciences, 2023, 60(3): 651-663.
王德娟, 汪健平, 冯建中, 井双泉, 许士东, 隋立春, 黄光辉. 基于DNDC模型的红枣生长模拟参数敏感性和产量不确定性分析[J]. 新疆农业科学, 2023, 60(3): 651-663.
参数定义 Definition of parameter | 取值范围 Value range |
---|---|
最大果实产量(kg/(C·hm2)) GMax(Maximum grain production) | 4 000~8 000 |
全株生物量中果实比例(%) Gfra(Grain fraction of total biomass) | 0.45~0.7 |
全株生物量中叶片比例(%) Lfra(Leaf fraction of total biomass) | 0.15~0.45 |
全株生物量中茎比例(%) 0.Sfra(Stem fraction of total biomass) | 0.15~0.45 |
全株生物量中根比例(%) Rfra(Root fraction of total biomass) | 0.15~0.45 |
果实中碳氮含量比例(%) GCN(C/N ratio for grain) | 10~80 |
茎叶中碳氮含量比例(%) SCN(C/N ratio for stem) | 10~80 |
根中碳氮含量比例(%) RCN(C/N ratio for root) | 10~80 |
固氮指数 Nfix(N fixation index) | 1~2 |
需水量(g/(kg C) WaterR(Water requirement) | 150~800 |
适宜温度(℃) TO(Optimum temperature) | 20~30 |
生长积温(℃) TDD(accumulative degree days for maturity) | 2 500~3 500 |
管束结构指数 VaR(Vascularity index) | 0~1 |
最大作物产量(kg/(C·hm2)) MaxY(Maximum grain yield) | 6 000~10 000 |
最大果实产量(kg/(C·hm2)) GCMax(Optimum grain C) | 4 000~8 000 |
最大叶产量(kg/(C·hm2)) LCMax(Optimum leaf C) | 1 500~4 000 |
最大茎产量(kg/(C·hm2)) LCMax(Optimum stem C) | 1 500~4 000 |
最大根产量(kg/(C·hm2)) RCMax(Optimum root C) | 1 500~4 000 |
整株碳氮比 CN(C/N ratio for entire) | 10~80 |
来自土壤的氮量(kg/(N·hm2)) NFS(N from soil) | 90~200 |
来自大气中的氮量(kg/(N·hm2)) NFA(N from atmospheric N fixation) | 90~200 |
需氮量(kg/(N·hm2)) NDe(Total N demand) | 90~200 |
植株最大高度(m) HMax(Maximum height) | 0.1~2 |
Tab.1 Crop parameters in DNDC model
参数定义 Definition of parameter | 取值范围 Value range |
---|---|
最大果实产量(kg/(C·hm2)) GMax(Maximum grain production) | 4 000~8 000 |
全株生物量中果实比例(%) Gfra(Grain fraction of total biomass) | 0.45~0.7 |
全株生物量中叶片比例(%) Lfra(Leaf fraction of total biomass) | 0.15~0.45 |
全株生物量中茎比例(%) 0.Sfra(Stem fraction of total biomass) | 0.15~0.45 |
全株生物量中根比例(%) Rfra(Root fraction of total biomass) | 0.15~0.45 |
果实中碳氮含量比例(%) GCN(C/N ratio for grain) | 10~80 |
茎叶中碳氮含量比例(%) SCN(C/N ratio for stem) | 10~80 |
根中碳氮含量比例(%) RCN(C/N ratio for root) | 10~80 |
固氮指数 Nfix(N fixation index) | 1~2 |
需水量(g/(kg C) WaterR(Water requirement) | 150~800 |
适宜温度(℃) TO(Optimum temperature) | 20~30 |
生长积温(℃) TDD(accumulative degree days for maturity) | 2 500~3 500 |
管束结构指数 VaR(Vascularity index) | 0~1 |
最大作物产量(kg/(C·hm2)) MaxY(Maximum grain yield) | 6 000~10 000 |
最大果实产量(kg/(C·hm2)) GCMax(Optimum grain C) | 4 000~8 000 |
最大叶产量(kg/(C·hm2)) LCMax(Optimum leaf C) | 1 500~4 000 |
最大茎产量(kg/(C·hm2)) LCMax(Optimum stem C) | 1 500~4 000 |
最大根产量(kg/(C·hm2)) RCMax(Optimum root C) | 1 500~4 000 |
整株碳氮比 CN(C/N ratio for entire) | 10~80 |
来自土壤的氮量(kg/(N·hm2)) NFS(N from soil) | 90~200 |
来自大气中的氮量(kg/(N·hm2)) NFA(N from atmospheric N fixation) | 90~200 |
需氮量(kg/(N·hm2)) NDe(Total N demand) | 90~200 |
植株最大高度(m) HMax(Maximum height) | 0.1~2 |
参数定义 Definition of parameters | 取值范围 Value range |
---|---|
黏土含量(%) SC(Soil clay) | 0~0.4 |
容重(g/cm3) BD(Bulk density) | 1.0~1.5 |
饱和导水率(m/h) HC(Hydro conductivity) | 0.5~0.8 |
田间持水率(%) FC(Field capasity) | 0.15~0.4 |
萎焉点(%) WP(Wilting point) | 0.4~0.6 |
孔隙度(%) Por(Porosity) | 0.35~0.8 |
有机碳量(kg/(C·kg)) SOC(SOC content) | 0.015~0.03 |
起始硝酸根含量(mg/(N·kg)) INO3(Initial NO3) | 0.5~0.65 |
起始氨气含量(mg/(N·kg)) INH4(Initial NH4) | 0.05~0.1 |
酸碱度 pH(pondus hydrogenii) | 8~8.2 |
顶部均匀土层密度(g/cm3) UtS(Uniform top soil) | 0.01~0.1 |
下层土壤中SOC沉降速率(%) SOCD(SOC decrease in profile) | 0.5~5.0 |
Tab.2 Soil Parameters in DNDC model
参数定义 Definition of parameters | 取值范围 Value range |
---|---|
黏土含量(%) SC(Soil clay) | 0~0.4 |
容重(g/cm3) BD(Bulk density) | 1.0~1.5 |
饱和导水率(m/h) HC(Hydro conductivity) | 0.5~0.8 |
田间持水率(%) FC(Field capasity) | 0.15~0.4 |
萎焉点(%) WP(Wilting point) | 0.4~0.6 |
孔隙度(%) Por(Porosity) | 0.35~0.8 |
有机碳量(kg/(C·kg)) SOC(SOC content) | 0.015~0.03 |
起始硝酸根含量(mg/(N·kg)) INO3(Initial NO3) | 0.5~0.65 |
起始氨气含量(mg/(N·kg)) INH4(Initial NH4) | 0.05~0.1 |
酸碱度 pH(pondus hydrogenii) | 8~8.2 |
顶部均匀土层密度(g/cm3) UtS(Uniform top soil) | 0.01~0.1 |
下层土壤中SOC沉降速率(%) SOCD(SOC decrease in profile) | 0.5~5.0 |
参数定义 Definition of parameters | 取值范围 Value range |
---|---|
秸秆还田(%)ResI(Residue incorporation) | 0~1 |
犁地时间TillT(Tilling date) | 3.25~4.1 |
犁地深度(cm)TillDe(Tilling depth) | 25~30 |
施肥时间FerT(Fertilizing date) | 3.25~10.25 |
施肥深度(cm)FerDe(Fertilizing depth) | 25~30 |
施肥量(kg/hm2)FerAm(Fertilizing amount) | 450~500 |
施有机肥时间ManT(Manure data) | 3.25~10.25 |
有机肥碳氮比(%)ManCN(Manure C/N ratio) | 10~15 |
有机肥量(kg/hm2)ManAm(Manure amount) | 3 000~45 000 |
灌溉量(kg/hm2)IrrAm(Irrigation amount) | 300~400 |
灌溉时间IrrT(Irrigation date) | 6.10~11.20 |
灌溉深度(cm)IrrDe(Irrigation depth) | 15~30 |
灌溉系数(%)IrrDC(Irrigation index) | 0~1 |
Tab.3 Field management parameters in DNDC model
参数定义 Definition of parameters | 取值范围 Value range |
---|---|
秸秆还田(%)ResI(Residue incorporation) | 0~1 |
犁地时间TillT(Tilling date) | 3.25~4.1 |
犁地深度(cm)TillDe(Tilling depth) | 25~30 |
施肥时间FerT(Fertilizing date) | 3.25~10.25 |
施肥深度(cm)FerDe(Fertilizing depth) | 25~30 |
施肥量(kg/hm2)FerAm(Fertilizing amount) | 450~500 |
施有机肥时间ManT(Manure data) | 3.25~10.25 |
有机肥碳氮比(%)ManCN(Manure C/N ratio) | 10~15 |
有机肥量(kg/hm2)ManAm(Manure amount) | 3 000~45 000 |
灌溉量(kg/hm2)IrrAm(Irrigation amount) | 300~400 |
灌溉时间IrrT(Irrigation date) | 6.10~11.20 |
灌溉深度(cm)IrrDe(Irrigation depth) | 15~30 |
灌溉系数(%)IrrDC(Irrigation index) | 0~1 |
年份 Year | 2015 | 2016 | 2017 | 2018 | 2019 | 均值 Average |
---|---|---|---|---|---|---|
实测产量Actual production(kg/hm2) | 15 132.39 | 12 543.94 | 13 555.91 | 14 520.22 | 15 106.64 | 14 171.82 |
离差Deviation(kg/hm2) | 960.57 | -1 627.88 | -615.91 | 348.39 | 934.82 | - |
相对离差Relative deviation(%) | 6.78 | -11.49 | -4.35 | 2.46 | 6.60 | - |
参数调整前模拟产量 Simulated production before parameter adjustment (kg/hm2) | 12 943.38 | 10 794.99 | 10 520.92 | 10 936.45 | 12 819.61 | - |
参数调整前模拟产量上调15% The simulated production increased by 15% before parameter adjustment(kg/hm2) | 14 884.45 | 12 414.25 | 12 099.15 | 12 576.40 | 14 743.00 | - |
参数调整后模拟产量 Simulation production after parameter adjustment (kg/hm2) | 14 549.20 | 13 351.55 | 13 286.05 | 14 141.50 | 13 955.03 | - |
参数调整前模拟产量相对误差 Relative error of simulated production before parameter adjustment(%) | -14.47 | -13.94 | -22.39 | -24.68 | -15.14 | - |
模拟产量上调15%后相对误差 Relative error of simulated production increased by 15%(%) | -1.64% | -1.03% | -10.75% | -13.39% | -2.41% | - |
参数调整后模拟产量相对误差 Relative error of simulated production after parameter adjustment(%) | -3.85 | 6.44 | -1.99 | -2.61 | -7.62 | - |
Tab.4 Outputs and errors of model before and after parameter adjustment
年份 Year | 2015 | 2016 | 2017 | 2018 | 2019 | 均值 Average |
---|---|---|---|---|---|---|
实测产量Actual production(kg/hm2) | 15 132.39 | 12 543.94 | 13 555.91 | 14 520.22 | 15 106.64 | 14 171.82 |
离差Deviation(kg/hm2) | 960.57 | -1 627.88 | -615.91 | 348.39 | 934.82 | - |
相对离差Relative deviation(%) | 6.78 | -11.49 | -4.35 | 2.46 | 6.60 | - |
参数调整前模拟产量 Simulated production before parameter adjustment (kg/hm2) | 12 943.38 | 10 794.99 | 10 520.92 | 10 936.45 | 12 819.61 | - |
参数调整前模拟产量上调15% The simulated production increased by 15% before parameter adjustment(kg/hm2) | 14 884.45 | 12 414.25 | 12 099.15 | 12 576.40 | 14 743.00 | - |
参数调整后模拟产量 Simulation production after parameter adjustment (kg/hm2) | 14 549.20 | 13 351.55 | 13 286.05 | 14 141.50 | 13 955.03 | - |
参数调整前模拟产量相对误差 Relative error of simulated production before parameter adjustment(%) | -14.47 | -13.94 | -22.39 | -24.68 | -15.14 | - |
模拟产量上调15%后相对误差 Relative error of simulated production increased by 15%(%) | -1.64% | -1.03% | -10.75% | -13.39% | -2.41% | - |
参数调整后模拟产量相对误差 Relative error of simulated production after parameter adjustment(%) | -3.85 | 6.44 | -1.99 | -2.61 | -7.62 | - |
Fig.7 Analysis of uncertainty of parameters on the jujube yields under a 5% fluctuation range Note:a.Uncertainty analysis of crop parameters on jujube yields;b.Uncertainty analysis of soil and field management parameters on jujube yields,the same as below
[1] | Curry R B, Chen H L. Dynamic simulation of plant growth, I. Development of a model[J]. ASAET Trans, 1971, 14(5): 946-959. |
[2] | Edwards D, Hamson M. Guide to mathematical modeling[M]. Boca Raton, Florida, US: CRC Press, 1990. |
[3] |
Sinclair T R, Seligman N G. Crop modeling: from infancy to maturity[J]. Agro J, 1996, 88:698-704.
DOI URL |
[4] | 刘放, 吴明辉, 杨梅学, 等. DNDC模型的研究进展及其在高寒生态系统的应用展望[J/OL]. 冰川冻土:1-12 [2020-10-19]. |
LIU Fang, WU Minghui, YANG Meixue, et al. Research progress of DNDC model and its application prospect in alpine ecosystem[J/OL]. Glacial permafrost:1-12 [2020-10-19]. | |
[5] |
Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 2model applications[J]. Journal of Geophysical Research, 1992, 97: 9777-9783.
DOI URL |
[6] |
Li C S, Frolking S, Harriss R. Modeling carbon biogeochemistry in agricultural soils[J]. Global Biogeochemical Cycles, 1994, 8: 237-254.
DOI URL |
[7] | 李长生. 生物地球化学的概念与方法—DNDC模型的发展[J]. 第四纪研究, 2001, 21(2): 89-99. |
LI Changsheng. Concept and method of Biogeochemistry: development of DNDC model[J]. Quaternary Studies, 2001, 21(2): 89-99. | |
[8] | 吴锦, 余福水, 陈仲新, 等. 基于EPIC模型的冬小麦生长模拟参数全局敏感性分析[J]. 农业工程学报, 2009, 25(7): 136-142. |
WU Jin, YU Fushui, CHEN Zhongxin, et al. Global sensitivity analysis of growth simulation parameters of winter wheat based on EPIC model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7):136-142. | |
[9] | 马玉平, 王石立, 张黎, 等. 基于遥感信息的华北冬小麦区域生长模型及模拟研究[J]. 气象学报, 2005,(2): 204-215. |
MA Yuping, WANG Sshili, ZHANG Li, et al. Regional growth model and Simulation of Winter Wheat in North China based on remote sensing information[J]. Acta Meteorologica Sinica, 2005,(2): 204-215. | |
[10] | 姜志伟, 陈仲新, 周清波, 等. CERES-Wheat作物模型参数全局敏感性分析[J]. 农业工程学报, 2011, 27(1): 236-242. |
JIANG Zhiwei, CHEN Zhongxin, ZHOU Qingbo, et al. Global sensitivity analysis of CERES-Wheat model parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 236-242. | |
[11] | 黄敬峰, 陈拉, 王秀珍. 水稻生长模型参数的敏感性及其对产量遥感估测的不确定性[J]. 农业工程学报, 2012, 28(19): 119-129. |
HUANG Jingfeng, CHEN La, WANG Xiuzhen. Sensitivity of rice growth model parameters and their uncertainties in yield estimation using remote sensing date[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 119-129. | |
[12] | Baroni G, Tarantola S. A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study[J]. Environmental Modeling and Software, 2014, 51. |
[13] | 陈卫平, 涂宏志, 彭驰, 等. 环境模型中敏感性分析方法评述[J]. 环境科学, 2017, 38(11): 4889-4896. |
CHEN Weipoing, TU Hongzhi, PENG Chi, et al. Comment on Sensitivity Analysis Methods for Environmental Models[J]. Environmental Sciences, 2017, 38(11): 4889-4896. | |
[14] | Alijafar M, Massimo M, Ben G, et al. Global sensitivity analysis of the spectral radiance of a soil-vegetation system[J]. Remote Sensing of Environment, 2014, 145. |
[15] | Haruko M. Wainwright, Stefan Finsterle, Quanlin Zhou, Jens T. Birkholzer. Modeling the performance of large-scale CO2 storage systems: A comparison of different sensitivity analysis methods[J]. International Journal of Greenhouse Gas Control, 2013, 17. |
[16] | Yang J. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis[J]. Environmental Modelling & Software, 2011, 26(4): 444-457. |
[17] | 李明亮. 基于贝叶斯统计的水文模型不确定性研究[D]. 北京: 清华大学, 2012. |
LI Mingliang. Study on uncertainty of hydrological model based on Bayesian statistics[D]. Beijing: Tsinghua University, 2012. | |
[18] | 李卫国, 顾晓鹤, 王尔美, 等. 基于作物生长模型参数调整动态估测夏玉米生物量[J]. 农业工程学报, 2019, 35(7):136-142. |
LI Weiguo, GU Xiaohe, WANG Ermei, et al. Dynamic estimation of summer maize biomass based on parameter adjustment of crop growth model (Transactions of the CSAE)[J]. Journal of agricultural engineering, 2019, 35 (7): 136-142. | |
[19] | 吴立峰, 张富仓, 范军亮, 等. 不同灌水水平下CROPGRO棉花模型敏感性和不确定性分析[J]. 农业工程学报, 2015, 31(15):55-64. |
WU Lifeng, ZHANG Fucang, FAN Junliang, et al. Sensitivity and uncertainty analysis of cropgro cotton model under different irrigation levels[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31 (15): 55-64. | |
[20] |
郭复兴, 常天然, 林瑒焱, 王延平, 穆艳. 陕西不同区域苹果林土壤水分动态和水分生产力模拟[J]. 应用生态学报, 2019, 30(2):379-390.
DOI |
GUO Fuxing, CHANG Tianran, LIN Feiyan, et al. Simulation of soil water dynamics and water productivity of Apple forests in different regions of Shaanxi[J]. Acta Ecologica Sinica, 2019, 30(2): 379-390 | |
[21] | Bai T C, Zhang N, Chen Y, et al. Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes[J]. Sustainability, 2019, 11. |
[22] |
Bai T C, Wang T, Zhang N N, et al. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model[J]. Journal of Integrative Agriculture, 2020, 19(3):721-734.
DOI URL |
[23] | 王雨, 李占林, 刘晓红. 新疆枣标准化生产技术推广专题一 :新疆枣发展现状及品种选择[J]. 新疆林业, 2019,(2): 18-20. |
WANG YU, LI Zhanlin, LIU Xiaohong. Xinjiang jujube standardization production technology promotion topic 1: Xinjiang jujube development status and variety selection[J]. Forestry of Xinjiang, 2019,(2): 18-20. | |
[24] | Pathak H, Li C, Wassmann R. Greenhouse bas emissions from India rice fields: Calibration and upscalinb usinb the DNDC model[J]. Biogeoscieraces, 2005, 2(2): 113-123. |
[25] |
Smith W N, Desjardins R L, Grant B, et al. Testing the DNDC model using N2O emissions at two experimental sites in Canada[J]. Canadian Journal of Soil Science, 2002, 82(3): 365-374.
DOI URL |
[26] |
Smith W N, Grant B B, Desjardins R L, et al. Evaluation of two process-based models to estimate N2O emissions in Eastern Canada[J]. Canadian Journal of Soil Science, 2008, 88(2): 251-260
DOI URL |
[27] |
g H, Qiu J, Van Ranst E, et al. Estimations of soil organic carbon storage in cropland of China based on DNDC model[J]. Geoderma, 2006, 134(1): 200-206.
DOI URL |
[28] | 新疆维吾尔自治区农业厅. 新疆土种志[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993: 66-80 |
Department of Agriculture and Rural Affairs of Xinjiang. Xinjiang soil species annals[M]. Urumqi: Xinjiang Science and Technology and Health Publishing House, 1993: 66-80. | |
[29] | Xu C G, Hu Y M, Chang Y, et al. Sensitivity analysis in ecological modeling[J]. Chinese Journal of Applied Ecology, 2004, 15(6):1056-1062. |
[30] | Kendall C,. DeJonge, James C,. Ascough, Mehdi Ahmadi, Allan A. Andales,Mazdak Arabi. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments[J]. Ecological Modelling, 2012, 231. |
[31] | 王连喜, 张阳, 李琪, 等. 作物模型参数敏感性分析现状与展望[J]. 气象科技, 2018, 46(2): 382-389. |
WANG Lianxi, ZHANG Yang, LI Qi, et al. Status and Prospect of crop model parameter sensitivity analysis[J]. Meteorological Science and Technology, 2018, 46 (2): 382-389. | |
[32] |
Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics. 1999, 41(1): 39-56.
DOI URL |
[33] | Cuikier R I, Levine H B, Shuler K E. Nonlinear sensitivity analysis of multiparameter model systems[J]. Journal of Computational Physics, 1978, 26(1): 1-42. |
[34] | Sobol I M. Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modeling & Computational Experiment. 1993: 407-414 |
[35] | 李艳, 黄春林, 卢玲. 基于EFAST方法的SEBS模型参数全局敏感性分析[J]. 遥感技术与应用, 2014, 29(5): 719-726. |
LI Yan, HUANG Chunlin, LU Ling. Global sensitivity analysis of SEBS model parameters based on EFAST method[J]. Remote Sensing Technology and Application, 2014, 29(5):719-726. | |
[36] | 任启伟, 陈洋波, 舒晓娟. 基于Extend FAST方法的新安江模型参数全局敏感性分析[J]. 中山大学学报(自然科学版), 2010, 49(3): 127-134. |
REN Qiwei, CHEN Yangbo, SHU Xiaojuan. Global sensitivity analysis of Xin'an jiang model parameters based on extend fast method[J]. Journal of Sun Yat-sen University (NATURAL SCIENCE Ed.), 2010, 49 (3): 127-134. | |
[37] | 官景得, 张玉兰, 戴小笠, 等. 基于3种回归模型的红枣产量动态预报[J]. 安徽农业科学, 2010, 38(34): 19260-19262. |
GUAN Jingde, ZHANG Yulan, DAI Xiaoli, et al. Dynamic prediction of jujube yield based on three regression models[J]. Journal of Anhui Agricultural Science, 2010, 38 (34): 19260-19262. | |
[38] | 邢会敏, 相诗尧, 徐新刚, 等. 基于EFAST方法的AquaCrop作物模型参数全局敏感性分析[J]. 中国农业科学, 2017, 50(1): 64-76. |
XING Huimin, XIANG Shiyao, XU Xingang, et al. Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method[J]. China Agricultural Sinica, 2017, 50 (1): 64-76. | |
[39] | 辛莉峰, 李小珍, 朱艳. 基于eFAST方法的车—线—桥耦合系统全局敏感性分析[J]. 中国铁道科学, 2019, 40(4): 46-51. |
XIN Lifeng, LI Xiaozhen, ZHU Yan. Global sensitivity analysis of train line bridge coupling system based on EFAST method[J]. China Railway Science, 2019, 40 (4): 46-51. | |
[40] | 孙飞飞, 许钦, 任立良, 等. 水文模型参数敏感性分析概述[J]. 中国农村水利水电, 2014,(3): 92-95. |
SUN Feifei, XU Qin, REN Liliang, et al. Overview of sensitivity analysis of hydrological model parameters[J]. China Rural Water Conservancy and Hydropower, 2014,(3): 92-95. | |
[41] | 唐晓, 王自发, 朱江, 等. 蒙特卡罗不确定性分析在O3模拟中的初步应用[J]. 气候与环境研究, 2010, 15(5): 541-550. |
TANG Xiao, WANG Zifa, ZHU Jiang, et al. Preliminary application of Monte Carlo uncertainty analysis in O3 simulation[J]. Climate and Environment Research, 2010, 15 (5): 541-550. | |
[42] | 袁赫, 刘莉, 康杰. 基于多层蒙特卡罗的火箭结构动力学不确定性分析[J]. 弹箭与制导学报, 2019, 39(3): 144-148. |
YUAN He, LIU Li, KANG Jie. Dynamic uncertainty analysis of rocket structure based on multi-layer Monte Carlo[J]. Journal of Projectile Arrow and Guidance, 2019, 39 (3): 144-148. | |
[43] | 杨兴, 孙丽. 乌裕尔河流域典型黑土区不同作物类型下土壤有机碳含量及影响因素分析[J]. 哈尔滨师范大学自然科学学报, 2015, 31(3): 136-139. |
YANG Xing, SUN Li. Analysis of soil organic carbon content and influencing factors under different crop types in typical black soil region of Wuyuer River Basin[J]. Journal of Natural Science of Harbin Normal University, 2015, 31 (3): 136-139. | |
[44] | 韩东亮, 贾宏涛, 朱新萍, 等. DNDC模型预测新疆灰漠土农田有机碳的动态变化[J]. 资源科学, 2014, 36(3): 577-583. |
HAN Dongliang, JIA Hongtao, ZHU Xinping, et al. Dynamic change of organic carbon in farmland of grey desert soil in Xinjiang predicted by DNDC model[J]. Resource Science, 2014, 36 (3): 577-583. | |
[45] | Broadcasting and TV Station of XPCC. The 2018 Xinjiang Climate Bulletin and Its Impact Assessment Released[EB/OL]. (2019-01-22).[2020-10-15]. |
[46] | 戚迎龙, 赵举, 史海滨, 等. 覆土浅埋滴灌玉米田双作物系数模型参数全局敏感性分析[J]. 农业工程学报, 2020, 36(7): 99-108. |
QI Yinglong, ZHAO Jv, SHI Haibin, et al. global sensitivity analysis of double crop coefficient model parameters in maize field with shallow soil cover and drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36 (7): 99-108. | |
[47] | 彭长乐, 陈城, 侯和涛. 磁流变阻尼器MNS模型参数不确定性分析[J]. 工程力学, 2020, 37(1): 175-182. |
PENG Changle, CHEN Cheng, HOU Hetao. Parameter uncertainty analysis of MNS model with magnetorheological damper[J]. Engineering Mechanics, 2020, 37 (1): 175-182. |
[1] | JIN Juan, LI lili, YANG Lei, FAN Dingyu, HAO Qing. Analysis on the Development status of Xinjiang Jujube Industry [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 106-110. |
[2] | SHEN Yuyang, HONG Gaojie, FAN Guiqiang, CHEN Li, LEI Junjie, LI Guangkuo, GAO Haifeng. The control effect of reduced pesticides application and adjuvant addition on wheat aphids in jujube-wheat intercropping pattern [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2257-2268. |
[3] | ZHAO Suya, YANG Yanai, ZHOU Ling, LYU Xifeng, YAO Jiang, LU Yaling. Preparation of jujube based carbon slow release fertilizer with starch as adhesive and its release property analysis [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2315-2322. |
[4] | MENG Yina, CHEN Jing, WANG Ziming, ZHANG Ting, HAO Qing, WU Bin, ZHANG Ping, GUO Limin. Screening of treatment methods for gray jujube storage period and establishment of prediction model [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2997-3005. |
[5] | LI Ziqin, CHEN Ya, LI Wenqi, JIA Wenting, GUO Huijing, SONG Fangyuan, ZHAO Zhiyong, LIU Chengjiang. Effects of different precooling methods combined with H2O2 treatment on the quality of lvtangxin winter jujube during storage [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2208-2215. |
[6] | LI Kailiang, ZHANG Zhenyu, HU Hongying. Structure and diversity analysis of insect community in jujube orchard of Hami Area in Xinjiang [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2028-2037. |
[7] | ZHANG Yanfei, Subina Xaokelaiti, YANG Lei, HAO Qing, JIN Juan, FAN Dingyu. SSR fingerprinting and genetic diversity analysis of 26 fresh jujube cultivars [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1671-1678. |
[8] | YANG Xiaojuan, JIN Juan, FAN Dingyu, HAO Qing, YANG Lei, GENG Wenjuan. Effects of extreme high temperature environment on photosynthetic characteristics of Junzao and Fucuimi [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1679-1688. |
[9] | WANG Guanyu, JIA Pingping, JIN Juan, Abudoukayoumu Ayimaiti, FAN Dingyu, ZHAO Xiaomei, HAO Qing, YANG Lei, GENG Wenjuan. Effects of high temperature stress on physiological characteristics on jujube flower organs [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1485-1491. |
[10] | LI Shuang, XIE Danlu, WU Jizhou, MA Rui, XIE Aidi, SHAO Lei, GAO Juanjuan, HAN Haixia. Comparison of main functional components and antioxidant activity of jujube Ruoqiang by different processing methods [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 935-942. |
[11] | YANG ZHi, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. TPA Method was Used to Analyze the Texture and Split of F1 Fruit of Jujube Hybrid [J]. Xinjiang Agricultural Sciences, 2023, 60(3): 608-615. |
[12] | CAO Qi, MAO Tingyong, WANG Zhiqiang, WAN Sumei, CHEN Guodong. Comparison of microenvironment and economic benefits of cotton fields with different planting patterns in northwest margin of tarim basin [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2921-2931. |
[13] | ZHANG Yanfei, JIN Juan, Abudoukayoumu Ayimaiti, JIA Pingping, YANG Lei, FAN Dingyu, ZHOU Long, HAO Qing. Comparison of Phenotypic and Photosynthetic Differences between Saimisu 1 Jujube and Its Budding [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 69-78. |
[14] | FAN Dingyu, JIN Juan, Abudoukayoumu Ayimaiti, YANG Lei, ZHAO Xiaomei, HAO Qing. Comprehensive Evaluation of Fruit Quality Characteristics of 5 Fresh Jujube Varieties [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1956-1964. |
[15] | CHEN Liliang, SUN Junli, CHANG Xinyi, YE Jiafa. Effects of Exogenous ALA on Chlorophyll Synthesis in Jujube Seedlings under NaCl Stress [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1659-1665. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 295
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||