Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (8): 2025-2032.DOI: 10.6048/j.issn.1001-4330.2022.08.024
• Plant Protection·Agricultural Product Analysis and Detection·Agricultural Equipment Engineering and Mechanization • Previous Articles Next Articles
GAO Qian(), WANG Yamei, WU Pingfan, ZHANG Hongmei, ZHOU Ling(
)
Received:
2021-10-30
Online:
2022-08-20
Published:
2022-10-01
Correspondence author:
ZHOU Ling
Supported by:
通讯作者:
周岭
作者简介:
高倩(1985-),女,新疆奎屯人,硕士研究生,研究方向为生物质资源化利用。(E-mail) 417311735@qq.com
基金资助:
CLC Number:
GAO Qian, WANG Yamei, WU Pingfan, ZHANG Hongmei, ZHOU Ling. Determination of Fiber Component Content in the Residual Branches of Fruit Trees in South Xinjiang Based on Near Infrared Spectroscopy[J]. Xinjiang Agricultural Sciences, 2022, 59(8): 2025-2032.
高倩, 王亚梅, 吴平凡, 张红美, 周岭. 基于近红外光谱的果树残枝纤维组分含量分析[J]. 新疆农业科学, 2022, 59(8): 2025-2032.
组分Composition | 样本集 Sample set | 样本数 Number of samples (个) | 最小值 Minimum (%) | 最大值 Max (%) | 变幅 Luffing (%) | 平均 Mean (%) | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
纤维素 Cellulose | 校正集 | 100 | 24.92 | 50.08 | 25.16 | 35.92 | 4.44 |
验证集 | 35 | 28.76 | 47.48 | 18.72 | 36.91 | 4.32 | |
半纤维素 Hemicellulose | 校正集 | 100 | 9.92 | 31.88 | 21.96 | 20.08 | 4.53 |
验证集 | 37 | 14.68 | 27.1 | 12.42 | 21.64 | 3.25 | |
木质素 Lignin | 校正集 | 100 | 6.33 | 23.88 | 17.55 | 14.55 | 3.58 |
验证集 | 35 | 10.48 | 20.63 | 10.15 | 14.15 | 2.95 |
Table 1 Statistics of fiber group content in the calibration set and verification set of the residual branches of fruit trees
组分Composition | 样本集 Sample set | 样本数 Number of samples (个) | 最小值 Minimum (%) | 最大值 Max (%) | 变幅 Luffing (%) | 平均 Mean (%) | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
纤维素 Cellulose | 校正集 | 100 | 24.92 | 50.08 | 25.16 | 35.92 | 4.44 |
验证集 | 35 | 28.76 | 47.48 | 18.72 | 36.91 | 4.32 | |
半纤维素 Hemicellulose | 校正集 | 100 | 9.92 | 31.88 | 21.96 | 20.08 | 4.53 |
验证集 | 37 | 14.68 | 27.1 | 12.42 | 21.64 | 3.25 | |
木质素 Lignin | 校正集 | 100 | 6.33 | 23.88 | 17.55 | 14.55 | 3.58 |
验证集 | 35 | 10.48 | 20.63 | 10.15 | 14.15 | 2.95 |
组分 Composition | 预处理方法 Pretreatment method | 相关系数 r | 决定系数 R2 | 校正标准偏差 RMSECV | 预测标准偏差 RMSEP | RPD |
---|---|---|---|---|---|---|
纤维素 Cellulose | 原始光谱 | 0.830 4 | 0.680 3 | 0.012 6 | 0.019 4 | 1.77 |
SG | 0.860 1 | 0.716 4 | 0.010 8 | 0.018 2 | 1.88 | |
均值中心化 | 0.818 1 | 0.665 0 | 0.011 2 | 0.018 8 | 1.73 | |
一阶导 | 0.841 3 | 0.692 1 | 0.012 1 | 0.023 6 | 1.80 | |
SNV | 0.846 2 | 0.705 6 | 0.011 6 | 0.019 1 | 1.84 | |
半纤维素 Hemicellulose | 原始光谱 | 0.812 3 | 0.552 9 | 0.017 6 | 0.028 1 | 1.50 |
SG | 0.836 4 | 0.585 5 | 0.011 2 | 0.018 2 | 1.56 | |
均值中心化 | 0.708 8 | 0.406 4 | 0.018 0 | 0.029 4 | 1.30 | |
一阶导 | 0.801 4 | 0.574 8 | 0.016 3 | 0.021 6 | 1.53 | |
SNV | 0.828 6 | 0.578 1 | 0.012 1 | 0.019 6 | 1.54 | |
木质素 Lignin | 原始光谱 | 0.802 6 | 0.606 7 | 0.012 0 | 0.017 6 | 1.59 |
SG | 0.810 4 | 0.619 7 | 0.008 9 | 0.015 3 | 1.62 | |
均值中心化 | 0.758 9 | 0.430 1 | 0.011 6 | 0.019 8 | 1.32 | |
一阶导 | 0.808 7 | 0.602 3 | 0.013 4 | 0.018 9 | 1.59 | |
SNV | 0.808 9 | 0.608 3 | 0.010 3 | 0.016 2 | 1.60 |
Table 2 Comparison of PLS model effects of different preprocessing methods
组分 Composition | 预处理方法 Pretreatment method | 相关系数 r | 决定系数 R2 | 校正标准偏差 RMSECV | 预测标准偏差 RMSEP | RPD |
---|---|---|---|---|---|---|
纤维素 Cellulose | 原始光谱 | 0.830 4 | 0.680 3 | 0.012 6 | 0.019 4 | 1.77 |
SG | 0.860 1 | 0.716 4 | 0.010 8 | 0.018 2 | 1.88 | |
均值中心化 | 0.818 1 | 0.665 0 | 0.011 2 | 0.018 8 | 1.73 | |
一阶导 | 0.841 3 | 0.692 1 | 0.012 1 | 0.023 6 | 1.80 | |
SNV | 0.846 2 | 0.705 6 | 0.011 6 | 0.019 1 | 1.84 | |
半纤维素 Hemicellulose | 原始光谱 | 0.812 3 | 0.552 9 | 0.017 6 | 0.028 1 | 1.50 |
SG | 0.836 4 | 0.585 5 | 0.011 2 | 0.018 2 | 1.56 | |
均值中心化 | 0.708 8 | 0.406 4 | 0.018 0 | 0.029 4 | 1.30 | |
一阶导 | 0.801 4 | 0.574 8 | 0.016 3 | 0.021 6 | 1.53 | |
SNV | 0.828 6 | 0.578 1 | 0.012 1 | 0.019 6 | 1.54 | |
木质素 Lignin | 原始光谱 | 0.802 6 | 0.606 7 | 0.012 0 | 0.017 6 | 1.59 |
SG | 0.810 4 | 0.619 7 | 0.008 9 | 0.015 3 | 1.62 | |
均值中心化 | 0.758 9 | 0.430 1 | 0.011 6 | 0.019 8 | 1.32 | |
一阶导 | 0.808 7 | 0.602 3 | 0.013 4 | 0.018 9 | 1.59 | |
SNV | 0.808 9 | 0.608 3 | 0.010 3 | 0.016 2 | 1.60 |
组分Composition | 波段选择方法 Spectral wavelength selection method | 变量数 Number of variables | 相关系数 r | 决定系数 R2 | 校正标准偏差 RMSECV | 预测标准偏差 RMSEP | RPD |
---|---|---|---|---|---|---|---|
纤维素 Cellulose | 全光谱建模 | 1557 | 0.860 1 | 0.716 4 | 0.0108 | 0.018 2 | 1.88 |
SPA | 44 | 0.890 4 | 0.783 1 | 0.010 5 | 0.0177 | 2.15 | |
CARS | 28 | 0.950 3 | 0.900 8 | 0.007 0 | 0.0118 | 3.18 | |
半纤维素 Hemicellulose | 全光谱建模 | 1557 | 0.836 4 | 0.585 5 | 0.011 2 | 0.018 2 | 1.55 |
SPA | 52 | 0.843 8 | 0.634 0 | 0.010 5 | 0.017 1 | 1.65 | |
CARS | 27 | 0.948 7 | 0.896 5 | 0.005 4 | 0.008 9 | 3.11 | |
木质素 Lignin | 全光谱建模 | 1557 | 0.810 4 | 0.619 7 | 0.008 9 | 0.015 3 | 1.62 |
SPA | 58 | 0.823 0 | 0.659 4 | 0.008 5 | 0.014 5 | 1.71 | |
CARS | 21 | 0.937 1 | 0.875 1 | 0.005 1 | 0.008 8 | 2.83 |
Table 3 Comparison of full spectrum and characteristic band PLS models
组分Composition | 波段选择方法 Spectral wavelength selection method | 变量数 Number of variables | 相关系数 r | 决定系数 R2 | 校正标准偏差 RMSECV | 预测标准偏差 RMSEP | RPD |
---|---|---|---|---|---|---|---|
纤维素 Cellulose | 全光谱建模 | 1557 | 0.860 1 | 0.716 4 | 0.0108 | 0.018 2 | 1.88 |
SPA | 44 | 0.890 4 | 0.783 1 | 0.010 5 | 0.0177 | 2.15 | |
CARS | 28 | 0.950 3 | 0.900 8 | 0.007 0 | 0.0118 | 3.18 | |
半纤维素 Hemicellulose | 全光谱建模 | 1557 | 0.836 4 | 0.585 5 | 0.011 2 | 0.018 2 | 1.55 |
SPA | 52 | 0.843 8 | 0.634 0 | 0.010 5 | 0.017 1 | 1.65 | |
CARS | 27 | 0.948 7 | 0.896 5 | 0.005 4 | 0.008 9 | 3.11 | |
木质素 Lignin | 全光谱建模 | 1557 | 0.810 4 | 0.619 7 | 0.008 9 | 0.015 3 | 1.62 |
SPA | 58 | 0.823 0 | 0.659 4 | 0.008 5 | 0.014 5 | 1.71 | |
CARS | 21 | 0.937 1 | 0.875 1 | 0.005 1 | 0.008 8 | 2.83 |
[1] | 孔庆明. 大豆秸秆成分近红外光谱分析快速检测方法研究[D]. 哈尔滨, 东北农业大学, 2015. |
KONG Qingming. Study on the rapid detection method of soybean straw composition near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2015. | |
[2] | 杨增玲, 杨钦楷, 沈广辉, 等. 豆粕品质近红外定量分析实验室模型在线应用[J]. 农业机械学报, 2019, 50(8):358-363,371. |
YANG Zengling, YANG Qinkai, SHEN Guanghui, et al. On-line application of laboratory model for near infrared quantitative analysis of soybean meal quality[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(8):358-363,371. | |
[3] | Huang J, Yu C. Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber[J]. Textile Research Journal, 2019. |
[4] | 管丽媛, 王钟, 祁宁, 等. 基于近红外光谱技术的亚麻纤维化学成分含量快速测定[J]. 分析测试学报, 2020, 39(6):795-799. |
GUAN Liyuan, WANG ZHONG, Qi Ning, et al. Rapid determination of the chemical composition of flax fiber based on near-infrared spectroscopy technology[J]. Chinese Journal of Analysis Laboratory, 2020, 39(6):795-799. | |
[5] | 谢欢, 陈争光. 遗传模拟退火算法在玉米秸秆纤维素含量检测中的应用[J]. 分析化学, 2019, 47(12):1987-1994. |
XIE Huan, CHEN Zhengguang. Application of Genetic Simulated Annealing Algorithm in the Detection of Corn Stalk Cellulose Content[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12):1987-1994.
DOI |
|
[6] | 任兰天, 唐飞, 邵庆勤, 等. 基于近红外光谱法快速测定秸秆堆腐过程中纤维素、半纤维素和木质素含量的研究[J]. 中国农业大学学报, 2018, 23(6):33-39. |
REN Lantian, TANG Fei, SHAO Qingqin, et al. Research on the rapid determination of cellulose, hemicellulose and lignin content during straw composting based on near-infrared spectroscopy[J]. Journal of China Agricultural University, 2018, 23(6) :33-39. | |
[7] | 陈雪萍, 刘世尧, 尹能文, 等. 甘蓝型油菜茎秆纤维组分含量和木质素单体G/S近红外模型构建[J]. 中国农业科学, 2018, 51(4):688-696. |
CHEN Xueping, LIU Shiyao, YIN Nengwen, et al. Construction of the near-infrared model of the fiber component content and lignin monomer G/S of Brassica napus stalk[J]. Chinese Agricultural Sciences, 2018, 51(4):688-696. | |
[8] | 刘金明, 初晓冬, 王智, 等. 玉米秸秆纤维素和半纤维素NIRS特征波长优选[J]. 光谱学与光谱分析, 2019, 39(3):743-750. |
LIU Jinming, CHU Xiaodong, WANG Zhi, et al. Optimization of NIRS characteristic wavelength of corn stover cellulose and hemicellulose[J]. Spectroscopy and Spectral Analysis, 2019, 39(3):743-750.
DOI |
|
[9] | 石鲁珍, 张景川, 王彦群, 等. 马氏距离与浓度残差剔除近红外异常样品研究[J]. 中国农机化学报, 2016, 37(6):99-103. |
SHI Luzhen, ZHANG Jingchuan, WANG Yanqun, et al. Research on Mahalanobis distance and concentration residual to eliminate near-infrared abnormal samples[J]. Chinese Journal of Agricultural Machinery Chemistry, 2016, 37(6):99-103. | |
[10] | 王世芳, 韩平, 崔广禄, 等. SPXY算法的西瓜可溶性固形物近红外光谱检测[J]. 光谱学与光谱分析, 2019, 39(3):738-742. |
WANG Shifang, HAN Ping, CUI Guanglu, et al. Detection of watermelon soluble solids by near infrared spectroscopy based on SPXY algorithm[J]. Spectroscopy and Spectral Analysis, 2019, 39(3):738-742.
DOI |
|
[11] | 付苗苗, 刘梅英, 牛智有. 基于高光谱图像技术的配合饲料主要营养成分的检测方法[J]. 华中农业大学学报, 2017, 36(2):123-129. |
FU Miaomiao, LIU Meiying, NIU Zhiyou. Detection method of main nutrients in compound feed based on hyperspectral image technology[J]. Journal of HuazhongAgricultural University, 2017, 36(2):123-129. | |
[12] | 褚小立. 近红外光谱分析技术实用手册[M]. 北京: 机械工业出版社, 2016,125. |
CHU Xiaoli. Practical Handbook of Near Infrared Spectroscopy Analysis Technology[M]. Beijing: Mechanical Industry Press, 2016, 125. | |
[13] | 王文霞, 马本学, 罗秀芝, 等. 近红外光谱结合变量优选和GA-ELM模型的干制哈密大枣水分含量研究[J]. 光谱学与光谱分析, 2020, 40(2):543-549. |
WANG Wenxia, MA Benxue, LUO Xiuzhi, et al. Study on moisture content of dried Hami jujube based on near-infrared spectroscopy combined with variable optimization and GA-ELM model[J]. Spectroscopy and Spectral Analysis, 2020, 40(2):543-549. | |
[14] | 何春荣, 杨宇虹, 李军会, 等. 初烤完整烟叶总植物碱的近红外光谱测量方法研究[J]. 光谱学与光谱分析, 2017, 37(10):3088-3093. |
HE Chunrong, YANG Yuhong, LI Junhui, et al. Study on the Near-Infrared Spectroscopy Measurement Method of Total Alkaloids in Freshly-cured Whole Tobacco Leaves[J]. Spectroscopy and Spectral Analysis, 2017, 37(10):3088-3093. | |
[15] | 彭海根, 罗华平, 彭云发, 等. 近红外技术对南疆冬枣糖度无损检测的研究[J]. 农机化研究, 2014, 36(11):146-150. |
PENG Haigen, LUO Huaping, PENG Yunfa, et al. Research on the non-destructive detection of sugar content of Nanjiang winter jujube with near infrared technology[J]. Journal of Agricultural Mechanization Research, 2014, 36(11):146-150. | |
[16] | 董春旺, 梁高震, 安霆, 等. 红茶感官品质及成分近红外光谱快速检测模型建立[J]. 农业工程学报, 2018, 34(24):306-313. |
DONG Chunwang, LIANG Gaozhen, AN Ting, et al. Establishment of a rapid detection model for the sensory quality and composition of black tea by near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(24):306-313. | |
[17] | 周竹, 郑剑, 王允祥, 等. 雷竹笋硬度的近红外光谱检测模型优化[J]. 浙江农林大学学报, 2015, 32(6):875-882. |
ZHOU Zhu, ZHENG Jian, WANG Yunxiang, et al. Optimization of the near-infrared spectroscopy detection model for the hardness of Lei bamboo shoots[J]. Journal of Zhejiang A&F University, 2015, 32(6):875-882. | |
[18] | 李伟, 罗华平, 索玉婷, 等. 冬枣水分高光谱快速反演模型研究[J]. 食品科技, 2020, 45(2):329-333. |
LI Wei, LUO Huaping, SUO Yuting, et al. Research on the fast inversion model of moisture hyperspectral in winter jujube[J]. Food Science and Technology, 2020, 45(2):329-333. | |
[19] |
邱园园, 朱荣光, 黄昆鹏, 等. 真空包装冷却羊肉pH值和颜色的近红外快速无损检测[J]. 新疆农业科学, 2017, 54(11):2092-2099.
DOI |
QIU Yuanyuan, ZHU Rongguang, HUANG Kunpeng, et al. NIR rapid non-destructive detection of pH value and color of vacuum-packed cooled lamb[J]. Xinjiang Agricultural Sciences, 2017, 54(11): 2092-2099.
DOI |
[1] | GONG Junming, XIONG Xianpeng, ZHANG Caixia, SHAO Dongnan, CHENG Shuaishuai, SUN Jie. Functional analysis of 4-coumarate: CoA ligase gene Gh4CL30 in upland cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1301-1309. |
[2] | LI Peiqi, SUN Qingpei, WANG Zhihui, QIN Xinzheng, FAN Yonghong. Correlation analysis of lignin degradation and enzyme activity changes in solid fermentation of cotton stalks [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1423-1432. |
[3] | WANG Dongmei, PAN Hongsheng, LI Haiqiang, DING Ruifeng, Akedan Wuwaishi, LIU Jian, LI Haobin. Quantitatively Evaluate the Control Function of Predatory Natural Enemies on Cotton Aphids by DNA Molecular Detection Technology [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2661-2667. |
[4] | HOU Min, BAO Hui-fang, WANG Ning, ZHANG Fa-qiang, Yang Wen-qi, HOU Xin-qiang, YANG Rong, LONG Xuan-qi, CUI Wei-dong. Construction of Cellulose Degrading Strain of Cotton Straw and Optimization of Solid Fermentation Conditions [J]. Xinjiang Agricultural Sciences, 2018, 55(5): 936-948. |
[5] | GUO Kai, HOU Min, BAO Hui-fang, WANG Ning, ZHAN Fa-qiang, YANG Rong, YANG Wen-qi, LONG Xuan-qi, CUI Wei-dong. Study on Optimizing Liquid Fermentation Conditions of Aspergillus niger and Its Degradation Effect on Cotton Stalk with Double Indexes [J]. Xinjiang Agricultural Sciences, 2018, 55(11): 2122-2133. |
[6] | WANG Wen-min;TIAN Jing-shan;ZHANG Xu-yi;LIU Jing;GOU Ling;ZHANG Wang-feng. Effects of Spraying Defoliant on Sucrose Metabolism of Cotton Boll and Its Relationship with Fiber Strength [J]. , 2016, 53(9): 1580-1586. |
[7] | XIE Li-xia;HU Wen-ran;FAN Ling. Dioxane/Aqueous Solution Treatment on Cotton Fiber Structure Form and the Influence of Lignin [J]. , 2016, 53(8): 1383-1389. |
[8] | HU Wen-ran;FAN Ling;XIE Li-xia;WANG Le-le. Dynamic Changes of Lignin Deposition during Cotton Fiber Development Stage [J]. , 2016, 53(3): 467-472. |
[9] | ZHANG Shu-zhen;WANG Yan;ZHANG Bo. The Study of Two Lignin Monomers Deposition in Alfalfa Stem [J]. , 2016, 53(12): 2339-2343. |
[10] | Chen Jing;Su Yan;Feng Lei. Two Strains of Bacterial Cellulose Producing Strain fer Mentation Technology Optimization [J]. , 2015, 52(8): 1491-1496. |
[11] | ZHANG Er-hong;PAN Xiao-liang;WANG Xin-feng;LAI Han-qing;JIANG Li-bin;GUO Teng-fei. Degradation of Corn Straw Stalk Fiber Composite Bacteria Breeding and Its Enzyme Activity [J]. , 2015, 52(4): 712-717. |
[12] | YU Ning;WEI Yu-long;XU Ming-qing;FENG Dong-yang;LIU Lei;LI Huan-rong. Effect of Dried Temperature on Several Enzymes and Pectin and Cellulose Content [J]. , 2014, 51(5): 846-854. |
[13] | . Establishment of a Aseptic System of Medicinal Plant Capparis spinosa L. Explant in Vitro [J]. , 2010, 47(2): 251-255. |
[14] | TIAN Qin;ZHANG Xiao-jun;ZHANG Xin-yu;SUN Jie. Quantitative Analysis on Natural Colored Cotton Pigment Based on UV Spectral Scanning [J]. , 2009, 46(6): 1188-1191. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||