Xinjiang Agricultural Sciences ›› 2021, Vol. 58 ›› Issue (10): 1918-1928.DOI: 10.6048/j.issn.1001-4330.2021.10.020
• Plant Protection·Soil Fertilizer·Water Saving Irrigation·Agroecological Environment·Agricultural Equipment Engineering and Mechanization • Previous Articles Next Articles
Weirong ZHANG1(), Haojun WEN1,2(
), Chaofan QIAO1, Guangyan WANG1
Received:
2021-03-24
Online:
2021-10-20
Published:
2021-10-26
Correspondence author:
Haojun WEN
Supported by:
通讯作者:
温浩军
作者简介:
张伟荣(1994-),男,山东泰安人,硕士研究生,研究方向为计算机视觉、农业信息化,(E-mail) zwr1617@foxmail.com
基金资助:
CLC Number:
Weirong ZHANG, Haojun WEN, Chaofan QIAO, Guangyan WANG. Maize Seedling and Core Detection Method Based on Mask R-CNN[J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1918-1928.
张伟荣, 温浩军, 谯超凡, 汪光岩. 基于Mask R-CNN的玉米苗与株芯检测方法[J]. 新疆农业科学, 2021, 58(10): 1918-1928.
卷积主干 Convolution backbone | 平均精度 AP | 平均精度均值 mAP | 训练时间 Training time (min) | 平均检测时间 Average detection time (ms) | |
---|---|---|---|---|---|
玉米叶片 The maize leaf | 玉米芯 The maize core | ||||
ResNet50-FPN | 0.801 | 0.255 | 0.528 | 170 | 53 |
ResNeXt50-FPN | 0.806 | 0.255 | 0.531 | 217 | 55 |
ResNet101-FPN | 0.816 | 0.266 | 0.541 | 224 | 61 |
ResNeXt101-FPN | 0.812 | 0.281 | 0.547 | 349 | 67 |
Table 1 Test results of different convolutional backbone networks in the recognition model
卷积主干 Convolution backbone | 平均精度 AP | 平均精度均值 mAP | 训练时间 Training time (min) | 平均检测时间 Average detection time (ms) | |
---|---|---|---|---|---|
玉米叶片 The maize leaf | 玉米芯 The maize core | ||||
ResNet50-FPN | 0.801 | 0.255 | 0.528 | 170 | 53 |
ResNeXt50-FPN | 0.806 | 0.255 | 0.531 | 217 | 55 |
ResNet101-FPN | 0.816 | 0.266 | 0.541 | 224 | 61 |
ResNeXt101-FPN | 0.812 | 0.281 | 0.547 | 349 | 67 |
光照条件 Lighting conditions | 图片数/ 玉米苗株数 Number of pictures/ maize seedlings | 成功检测到的 玉米苗株/玉米芯数量 Number of maize seedlings/ maize cores successfully detected | 玉米苗/玉米芯 识别成功率 Maize seedling/maize core identification success rate | ||
---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | ||
阴天较弱光照 Weaker light on cloudy days | 25/30 | 28/28 | 30/28 | 93.3%/93.3% | 100%/93.3% |
晴天较强光照 Stronger light on a sunny day | 25/36 | 34/33 | 34/33 | 94.4%/91.7% | 94.4%/94.4% |
Table 2 Target segmentation pixel statistics table under different light intensity
光照条件 Lighting conditions | 图片数/ 玉米苗株数 Number of pictures/ maize seedlings | 成功检测到的 玉米苗株/玉米芯数量 Number of maize seedlings/ maize cores successfully detected | 玉米苗/玉米芯 识别成功率 Maize seedling/maize core identification success rate | ||
---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | ||
阴天较弱光照 Weaker light on cloudy days | 25/30 | 28/28 | 30/28 | 93.3%/93.3% | 100%/93.3% |
晴天较强光照 Stronger light on a sunny day | 25/36 | 34/33 | 34/33 | 94.4%/91.7% | 94.4%/94.4% |
光照条件 Lighting conditions | 图像序号 Image number | 真实像素值 True pixel value | 算法分割像素值 Pixel value obtained by algorithm segmentation | 分割精度 SA | ||
---|---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | |||
较弱光照 Weaker light | 1 | 24 839 | 23 924 | 25 499 | 0.963 | 0.973 |
2 | 17 041 | 16 972 | 17 031 | 0.996 | 0.999 | |
3 | 41 691 | 40 198 | 41 324 | 0.964 | 0.991 | |
4 | 41 337 | 42 952 | 40 336 | 0.961 | 0.976 | |
5 | 33 402 | 33 433 | 33 371 | 0.999 | 0.999 | |
mSA | 0.977 | 0.988 | ||||
较强光照 Stronger light | 6 | 13 691 | 13 177 | 13 495 | 0.962 | 0.986 |
7 | 20 764 | 21 801 | 21 649 | 0.95 | 0.957 | |
8 | 15 085 | 14 533 | 15 368 | 0.963 | 0.981 | |
9 | 20 196 | 20 664 | 20 910 | 0.965 | 0.977 | |
10 | 17 994 | 17 384 | 17 571 | 0.966 | 0.976 | |
mSA | 0.961 | 0.975 |
Table 3 Comparison of pixel calculation errors under different light intensity
光照条件 Lighting conditions | 图像序号 Image number | 真实像素值 True pixel value | 算法分割像素值 Pixel value obtained by algorithm segmentation | 分割精度 SA | ||
---|---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | |||
较弱光照 Weaker light | 1 | 24 839 | 23 924 | 25 499 | 0.963 | 0.973 |
2 | 17 041 | 16 972 | 17 031 | 0.996 | 0.999 | |
3 | 41 691 | 40 198 | 41 324 | 0.964 | 0.991 | |
4 | 41 337 | 42 952 | 40 336 | 0.961 | 0.976 | |
5 | 33 402 | 33 433 | 33 371 | 0.999 | 0.999 | |
mSA | 0.977 | 0.988 | ||||
较强光照 Stronger light | 6 | 13 691 | 13 177 | 13 495 | 0.962 | 0.986 |
7 | 20 764 | 21 801 | 21 649 | 0.95 | 0.957 | |
8 | 15 085 | 14 533 | 15 368 | 0.963 | 0.981 | |
9 | 20 196 | 20 664 | 20 910 | 0.965 | 0.977 | |
10 | 17 994 | 17 384 | 17 571 | 0.966 | 0.976 | |
mSA | 0.961 | 0.975 |
光照条件 Lighting conditions | 苗草交叉情况 Seedling and grass crossing situation | 图片数/玉米苗数 Number of pictures/ maize seedlings | 成功检测到的玉米苗数/玉米芯数 Number of maize seedlings/ maize cores successfully detected | 玉米苗/玉米芯识别成功率 Maize seedling/maize core identification success rate | ||
---|---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | |||
较弱光照 Weakerlight | 无交叉 | 25/30 | 28/28 | 29/29 | 93.3%/93.3% | 96.7%/96.7% |
有交叉 | 25/35 | 32/32 | 32/33 | 91.4%/91.4% | 91.4%/94.3% | |
较强光照 Stronger light | 无交叉 | 25/30 | 28/27 | 29/28 | 93.3%/90% | 96.7%/93.3% |
有交叉 | 25/37 | 33/34 | 35/35 | 89.2%/91.9% | 94.6%/94.6% |
Table 4 Target recognition success rate with associated weeds under different light intensities
光照条件 Lighting conditions | 苗草交叉情况 Seedling and grass crossing situation | 图片数/玉米苗数 Number of pictures/ maize seedlings | 成功检测到的玉米苗数/玉米芯数 Number of maize seedlings/ maize cores successfully detected | 玉米苗/玉米芯识别成功率 Maize seedling/maize core identification success rate | ||
---|---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | |||
较弱光照 Weakerlight | 无交叉 | 25/30 | 28/28 | 29/29 | 93.3%/93.3% | 96.7%/96.7% |
有交叉 | 25/35 | 32/32 | 32/33 | 91.4%/91.4% | 91.4%/94.3% | |
较强光照 Stronger light | 无交叉 | 25/30 | 28/27 | 29/28 | 93.3%/90% | 96.7%/93.3% |
有交叉 | 25/37 | 33/34 | 35/35 | 89.2%/91.9% | 94.6%/94.6% |
光照条件 Lighting conditions | 苗草交叉情况 Seedling and grass crossing situation | 图像 序号 Image number | 真实像素值 True pixel value | 算法分割像素值 Pixel value obtained by algorithm segmentation | 分割精度 SA | ||
---|---|---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | ||||
较弱光照 Weaker light | 无交叉 | 1 | 10 002 | 9 674 | 9 915 | 0.967 | 0.991 |
2 | 17 560 | 17 295 | 17 432 | 0.985 | 0.993 | ||
3 | 8 972 | 8 607 | 8 831 | 0.959 | 0.984 | ||
4 | 12 469 | 12 273 | 12 325 | 0.984 | 0.988 | ||
5 | 15 019 | 14 736 | 14 952 | 0.981 | 0.996 | ||
mSA | 0.975 | 0.99 | |||||
有交叉 | 6 | 18 803 | 19 669 | 18 504 | 0.954 | 0.984 | |
7 | 20 530 | 20 141 | 20 272 | 0.981 | 0.987 | ||
8 | 14 512 | 14 739 | 14 692 | 0.984 | 0.988 | ||
9 | 34 502 | 32 805 | 35 833 | 0.951 | 0.961 | ||
10 | 16 553 | 16 269 | 16 402 | 0.983 | 0.991 | ||
mSA | 0.971 | 0.982 | |||||
较强光照 Stronger light | 无交叉 | 11 | 9 815 | 9 953 | 10 036 | 0.986 | 0.977 |
12 | 28 357 | 26 907 | 27 371 | 0.949 | 0.965 | ||
13 | 35 319 | 33 986 | 34 713 | 0.962 | 0.983 | ||
14 | 15 490 | 15 142 | 15 184 | 0.978 | 0.98 | ||
15 | 10 597 | 10 183 | 10 115 | 0.961 | 0.955 | ||
mSA | 0.967 | 0.972 | |||||
有交叉 | 16 | 23 353 | 24 871 | 24 741 | 0.935 | 0.941 | |
17 | 57 109 | 55 124 | 55 620 | 0.965 | 0.974 | ||
18 | 17 373 | 16 752 | 17 249 | 0.964 | 0.993 | ||
19 | 26 039 | 25 600 | 26 535 | 0.983 | 0.981 | ||
20 | 15 190 | 15 982 | 15 705 | 0.948 | 0.966 | ||
mSA | 0.959 | 0.971 |
Table 5 Pixel statistics table of target segmentation with associated weeds under different light intensities
光照条件 Lighting conditions | 苗草交叉情况 Seedling and grass crossing situation | 图像 序号 Image number | 真实像素值 True pixel value | 算法分割像素值 Pixel value obtained by algorithm segmentation | 分割精度 SA | ||
---|---|---|---|---|---|---|---|
ResNet101-FPN | ResNeXt101-FPN | ResNet101-FPN | ResNeXt101-FPN | ||||
较弱光照 Weaker light | 无交叉 | 1 | 10 002 | 9 674 | 9 915 | 0.967 | 0.991 |
2 | 17 560 | 17 295 | 17 432 | 0.985 | 0.993 | ||
3 | 8 972 | 8 607 | 8 831 | 0.959 | 0.984 | ||
4 | 12 469 | 12 273 | 12 325 | 0.984 | 0.988 | ||
5 | 15 019 | 14 736 | 14 952 | 0.981 | 0.996 | ||
mSA | 0.975 | 0.99 | |||||
有交叉 | 6 | 18 803 | 19 669 | 18 504 | 0.954 | 0.984 | |
7 | 20 530 | 20 141 | 20 272 | 0.981 | 0.987 | ||
8 | 14 512 | 14 739 | 14 692 | 0.984 | 0.988 | ||
9 | 34 502 | 32 805 | 35 833 | 0.951 | 0.961 | ||
10 | 16 553 | 16 269 | 16 402 | 0.983 | 0.991 | ||
mSA | 0.971 | 0.982 | |||||
较强光照 Stronger light | 无交叉 | 11 | 9 815 | 9 953 | 10 036 | 0.986 | 0.977 |
12 | 28 357 | 26 907 | 27 371 | 0.949 | 0.965 | ||
13 | 35 319 | 33 986 | 34 713 | 0.962 | 0.983 | ||
14 | 15 490 | 15 142 | 15 184 | 0.978 | 0.98 | ||
15 | 10 597 | 10 183 | 10 115 | 0.961 | 0.955 | ||
mSA | 0.967 | 0.972 | |||||
有交叉 | 16 | 23 353 | 24 871 | 24 741 | 0.935 | 0.941 | |
17 | 57 109 | 55 124 | 55 620 | 0.965 | 0.974 | ||
18 | 17 373 | 16 752 | 17 249 | 0.964 | 0.993 | ||
19 | 26 039 | 25 600 | 26 535 | 0.983 | 0.981 | ||
20 | 15 190 | 15 982 | 15 705 | 0.948 | 0.966 | ||
mSA | 0.959 | 0.971 |
[1] | 李昌新. 长期施肥对红壤旱地玉米生产力和土壤肥力的影响及其机制研究[D]. 南京:南京农业大学, 2009. |
LI Changxin. Effects of long-term fertilization on corn productivity and soil fertility as well as its mechanisms under upland red soil in subtropical China[D]. Nanjing: Nanjing Agricultural University, 2009. | |
[2] | 陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4):1-16. |
CHEN Xuegeng, WEN Haojun, ZHANG Weirong, et al. Advances and progress of agricultural machinery and sensing technology fusion[J]. Smart Agriculture, 2020, 2(4):1-16. | |
[3] | 张继成. 基于处方图的变量施肥系统关键技术研究[D]. 哈尔滨:东北农业大学, 2013. |
ZHNG Jicheng. Research on key technologies of variable fertilizer system based on the prescription[D]. Harbin: Northeast Agricultural University, 2013. | |
[4] | 傅隆生, 冯亚利, ElkamilTola, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2):205-211. |
FU Longsheng, FENG Yali, Eikamil T, et al. Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the CSAE, 2018, 34(2):205-211. | |
[5] | 闫建伟, 赵源, 张乐伟, 等. 基于残差网络的自然环境中刺梨果实的识别[J]. 中国农机化学报, 2020, 41(10):191-196. |
YAN Jianwei, ZHAO Yuan, ZHANG Lewei, et al. Recognition of Rosa roxbunghii fruit in natural environment based on residual network[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10):191-196. | |
[6] | 张磊, 姜军生, 李昕昱, 等. 基于快速卷积神经网络的果园果实检测试验研究[J]. 中国农机化学报, 2020, 41(10):183-190, 210. |
ZHANG Lei, JIANG Junsheng, LI Xinyu, et al. Experimental research on orchard fruit detection based on fast convolutional neural network[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10):183-190, 210. | |
[7] | 王振, 师韵, 李玉彬. 基于改进全卷积神经网络的玉米叶片病斑分割[J]. 计算机工程与应用, 2019, 55(22):127-132. |
WANG Zhen, SHI Yun, LI Yubin. Segmentation of corn leaf diseases based on improved fully convolutional neural network[J]. Computer Engineering and Applications, 2019, 55(22):127-132. | |
[8] | 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12):179-185. |
LI Jiuhao, LIN Lejian, TIAN Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 36(12):179-185. | |
[9] | 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2):230-236,253. |
XU Jinghui, SHAO Mingye, WANG Yichen, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2):230-236,253. | |
[10] | 张春龙, 黄小龙, 刘卫东, 等. 苗间锄草机器人信息获取方法的研究[J]. 农业工程学报, 2012, 28(9):142-146. |
ZHANG Chunlong, HUANG Xiaolong, LIU Weidong, et al. Information acquisition method for mechanical intra-row weeding robot[J]. Transactions of the CSAE, 2012, 28(9):142-146. | |
[12] | 赵鹏, 韦兴竹. 基于多特征融合的田间杂草分类识别[J]. 农业机械学报, 2014, 45(3):275-281. |
ZHAO Peng, WEI Xingzhu. Weed recognition in agricultural field using multiple feature fusions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3):275-281. | |
孙俊, 谭文军, 武小红, 等. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12):184-190. | |
SUN Jun, TAN Wenjun, WU Xiaohong, et al. Real-time recognition of sugar beet and weeds in complex backgrounds using multi-channel depth-wise separable convolution model[J]. Transactions of the CSAE, 2019, 35(12):184-190. | |
[13] | 苗荣慧, 杨华, 武锦龙, 等. 基于图像分块及重构的菠菜重叠叶片与杂草识别[J]. 农业工程学报, 2020, 36(4):178-184. |
MIAO Ronghui, YANG Hua, WU Jinlong, et al. Weed identification of overlapping spinach leaves based on image sub-block and reconstruction[J]. Transactions of the CSAE, 2020, 36(4):178-184. | |
[14] | 胡炼, 罗锡文, 曾山, 等. 基于机器视觉的株间机械除草装置的作物识别与定位方法[J]. 农业工程学报, 2013, 29(10):12-18. |
HU Lian, LUO Xiwen, ZENG Shan, et al. Plant recognition and localization for intra-row mechanical weeding device based on machine vision[J]. Transactions of the CSAE, 2013, 29(10):12-18. | |
[15] | 魏帅均, 张彦娥, 梅树立. 基于俯视图像的玉米株心快速识别方法研究[J]. 农业机械学报, 2017, 48(S1):136-141. |
WEI Shuaijun, ZHANG Yan'e, MEI Shuli. Fast recognition method of maize core based on top view image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1) :136-141. | |
[16] | 孙哲, 张春龙, 葛鲁镇, 等. 基于Faster R-CNN的田间西兰花幼苗图像检测方法[J]. 农业机械学报, 2019, 50(7):216-221. |
SUN Zhe, ZHANG Chunlong, GE Luzhen, et al. Image detection method for broccoli seedlings in the field based on Faster R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7):216-221. | |
[17] | 宗泽, 赵硕, 刘刚. 苗期玉米冠层识别与质心定位方法研究[J]. 农业机械学报, 2019, 50(S1):27-33. |
ZONG Ze, ZHAO Shuo, LIU Gang. Coronal identification and centroid location of maize seedling stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1):27-33. | |
[18] |
Russell B C, Torralba A, Murphy K P, et al. LabelMe: A database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1-3):157-173.
DOI URL |
[19] | HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(99):2961-2969. |
[20] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-1149.
DOI URL |
[21] | LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 39(4):640-651. |
[22] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition. IEEE, 2016: 770-778. |
[23] | Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]. Computer Vision and Pattern Recognition. IEEE, 2017: 1492-1500. |
[24] | Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014. |
[25] | Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[J]. Computer Science, 2016:2818-2826. |
[26] | 孟欣欣, 阿里甫·库尔班, 吕情深, 等. 基于迁移学习的自然环境下香梨目标识别研究[J]. 新疆大学学报(自然科学版), 2019, 36(4):461-467. |
MENG Xinxin, Alifu Kuerban, LÜ Qingshen, et al. Research on Fragrant Pear Target Recognition in Natural Environment Based on Transfer Learning[J]. Journal of Xinjiang Normal University (Natural Sciences Ed.), 2019, 36(4):461-467. | |
[27] | ZongZ, Liu G, Zhao S. Real-Time Localization Approach for Maize Cores at Seedling Stage Based on Machine Vision[J]. 2020. |
[1] | WANG Chao, XU Wenxiu, LI Pengcheng, ZHENG Cangsong, SUN Miao, FENG Weina, SHAO Jingjing, DONG Helin. Response of cotton seedling growth and development to soil available potassium levels [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2132-2139. |
[2] | YAO Qing, WANG Jiehua, Xiernayi Abudula, Dilimulati Tulahong, CUI Hongliang. Physiological responses of different quinoa varieties during seedling stage under low temperature stress [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1597-1604. |
[3] | SONG Bingmei, JIANG Yan, CHEN Xin, ZHANG Yu, CHENG Wannan, PAN Hongsheng. Evaluation of saline/alkali tolerance of new transgenic High-Yield cotton at germination and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2239-2247. |
[4] | CHEN Yan, HUANG Luyao, DENG Changrong, ZHANG Yanjun, HOU Quangang, SHAO Dengkui. Analysis on related physiological indexes of pepper with hair characteristic under chilling stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1492-1498. |
[5] | Halidan Yikeremu, LIU Na, LIU Lianzheng, ZHOU Anding, JIANG Qiyan, Damailijiang Hezier, CAO Junmei, ZHANG Xinzhong. Identification and evaluation of salt tolerance in wheat relatives at germination and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1118-1126. |
[6] | ZHANG Yanhong, HOU Tianyu, BA Yinhua, ZHAO Caiyue, LYU Yuping, Buhalikeimu Abunzi, ZHAO Zhiqiang, LI Dong, DU Xiaojing, YUAN Jie, WANG Fengbin. Identification and evaluation of salt tolerance of rice recombinant inbred lines at bud and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1041-1049. |
[7] | Abdukeyoumu Abudurezike, Tuerson Tuerhong, Gulimira Aikebaier, ZHANG Yan, Ayixiamu Shawuer. Effects of Diffeent Drip Irrigation RateAmounts on Growth of Glycyrrhiza uralensis during Seedling Stage in Desert Areas [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1945-1955. |
[8] | JIA Zunzun, FU Kaiyun, DING Xinhua, Tuerxun·Ahemaiti, JIANG Weihua, WANG Xiaowu, GUO Wenchao. The Influence of Bemisia tabaci (Gennadius) stress on the enzyme activity, nutrient and metabolite content of cotton leaves [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 916-924. |
[9] | SU Panlong, ZHAI Yujia, LIU Xinyuan, YANG Desong. Effects of Soil Sealing Treatments with 6 Herbicides on the Growth of Isatis indigotica Seedlings [J]. Xinjiang Agricultural Sciences, 2022, 59(3): 725-734. |
[10] | ZHAO Wei, MA Haixia, ZHANG Yanping. Threshold Analysis of Salt Stress in Flax at Germination and seedling Stage [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 145-154. |
[11] | YAN Yongliang, ZHANG Jinbo, LU Zifeng, ZHAO Xiaoling, LIU Haijun, ZHAO Kang, CONG Hua. Salt Tolerance Evaluation of Soybean Germplasm [J]. Xinjiang Agricultural Sciences, 2021, 58(1): 65-71. |
[12] | DU Pengcheng , LIU Haiyang, ZHANG Jungao, LI Jin, ZHOU Xiaoyun, LIU Mengli, LEI Bin, GUO Qingyuan. Screening and Identification of Biocontrol Bacteria against Cotton Root Rot Diseases at Seedling Stage [J]. Xinjiang Agricultural Sciences, 2020, 57(4): 686-693. |
[13] | GAO Pan, QIAN Yu-shan, WANG Pei-ling , L Xin. The Method of Cotton Leaf Segmentation under the Complex Background in Cotton Fields [J]. Xinjiang Agricultural Sciences, 2018, 55(12): 2288-2295. |
[14] | MA Yan-ming, LIU Min, FENG Kui, YAN Guo-rong, WANG Li, XIAO Jing, LIU Ning. Evaluation of Salt Tolerance in Winter Wheat Cultivars in Xinjiang at Seedling Stage [J]. Xinjiang Agricultural Sciences, 2017, 54(8): 1394-1401. |
[15] | CAO Jun-mei, LU Jing, ZHANG Xin-zhong, WU Xin-yuan, ZHOU An-ding, HUANG Tian-rong, GAO Yong-hong, LIU Lian-zheng, FAN Gui-qiang, Halidan Yikeremu, FANG Hui. Study on Salt Tolerance and Related Morphological and Physiological Characteristics of 11 Xinjiang Wheat Varieties Seedlings [J]. Xinjiang Agricultural Sciences, 2017, 54(8): 1384-1393. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||