

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 807-819.DOI: 10.6048/j.issn.1001-4330.2025.04.004
乔迪1(
), 林涛2(
), 崔建平2, 张鹏忠2, 张昊1, 鲍龙龙1, 汤秋香1,3(
)
收稿日期:2024-08-19
出版日期:2025-04-20
发布日期:2025-06-20
通信作者:
林涛(1980-),男,新疆玛纳斯人,研究员,博士,研究方向为棉花智慧生产,(E-mail)27427732@qq.com;作者简介:乔迪(1998-),女,河南南阳人,硕士研究生,研究方向为作物高产高效,(Email)1628143681@qq.com
基金资助:
QIAO Di1(
), LIN Tao2(
), CUI Jianping2, ZHANG Pengzhong2, ZHANG Hao1, BAO Longlong1, TANG Qiuxiang1,3(
)
Received:2024-08-19
Published:2025-04-20
Online:2025-06-20
Supported by:摘要:
【目的】针对如何利用作物生长模型定量解析不同氮肥运筹模式下机采棉生长动态变化的热点问题。【方法】在新疆阿克苏棉区开展为期2年的密度和氮肥互作试验,获得地上部生物量、叶面积指数及籽棉产量等基础数据,构建氮肥基追比和生育阶段分配比的模拟情景,在此基础上完成RZWQM2模型的参数本地化,分析机采棉在不同氮肥管理策略下的生物量动态及其变化特征,并探讨这些策略对最大叶面积指数和产量模拟的影响。【结果】RZWQM2模型可实现估测棉花从出苗到至成熟期间的生长动态变化。对LAI的平均验证精度RMSE、NRMSE分别在0.43、10.71%,验证过程中地上部生物量平均RMSE、MRE、NRMSE分别为593.01 kg/hm2、17.6%、11.01%,籽棉产量的平均MRE为4.36%,平均d值为0.88,预测值与实测值较为一致。与常规处理相比(N271),N163生物量的K值提高1.18%、生殖器官的最大生长速率(Vm)提高1.16%、快速生长期(Δt)缩短0.89%。且N163最终将64.15%的生物量分配到棉铃,提高了1.38%分配指数,籽棉产量与K、Vm、生殖器官PI呈显著正相关。最大叶面积指数、籽棉产量呈现随基追比的增加先增加后降低、随后期施氮量的增加呈先上升后下降的趋势,其峰值分别出现在基追比3∶7、运筹比N163,较常规处理分别提高1.58%和5.48%。【结论】RZWQM2模型可作为氮素管理决策的重要预测工具,合理的基追比、棉花生育期内氮肥适当后移是一种有效的氮肥管理策略。
中图分类号:
乔迪, 林涛, 崔建平, 张鹏忠, 张昊, 鲍龙龙, 汤秋香. 基于RZWQM2的氮肥运筹方式对棉花生长及产量的影响[J]. 新疆农业科学, 2025, 62(4): 807-819.
QIAO Di, LIN Tao, CUI Jianping, ZHANG Pengzhong, ZHANG Hao, BAO Longlong, TANG Qiuxiang. Effects of RZWQM2-based nitrogen fertilizer transport mode on cotton growth and yield[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 807-819.
图2 不同处理下棉花地上部生物量积累量的RZWQM2模拟值与实测值对比
Fig.2 Comparison of simulated and measured RZWQM2 values of aboveground biomass accumulation in cotton under different treatments
| 基追比例 Basal- Topdressing ratio | 生长时期 Growth period | 时间 Date (M/D) | 处理 Treat- ments | 次数 Times |
|---|---|---|---|---|
| 0∶10 | 现蕾期 | 6/18~6/25 | N190 | 9 |
| 1∶9 | 开花-盛铃期 | 7/4~8/6 | N451 | 10 |
| 2∶8 | N271 | 10 | ||
| 3∶7 | 盛铃后期 | 8/14~8/24 | N082 | 8 |
| 4∶6 | N163 | 10 |
表1 不同处理下的施氮周期和施氮方式
Tab.1 N application cycle and N application rate under different treatments
| 基追比例 Basal- Topdressing ratio | 生长时期 Growth period | 时间 Date (M/D) | 处理 Treat- ments | 次数 Times |
|---|---|---|---|---|
| 0∶10 | 现蕾期 | 6/18~6/25 | N190 | 9 |
| 1∶9 | 开花-盛铃期 | 7/4~8/6 | N451 | 10 |
| 2∶8 | N271 | 10 | ||
| 3∶7 | 盛铃后期 | 8/14~8/24 | N082 | 8 |
| 4∶6 | N163 | 10 |
| 处理 Treatments | Logistic函数生长方程 Logistic function growth equation | Vm (kg/hm2/d) | GT (kg/hm2) | t0 | t1 | t2 | Δt | R2 | |
|---|---|---|---|---|---|---|---|---|---|
| d | |||||||||
| 0:10 | N190 | Y=16 761.48/(1+e(5.518-0.06t)) | 246.34 | 11 037.08 | 93.87 | 71.47 | 116.27 | 44.81 | 0.999 |
| N451 | Y=16 581.08/(1+e(5.520-0.06t)) | 243.68 | 10 918.29 | 93.89 | 71.49 | 116.30 | 44.81 | 0.999 | |
| N271 | Y=16 626.34/(1+e(5.519-0.06t)) | 244.34 | 10 948.09 | 93.89 | 71.49 | 116.29 | 44.81 | 0.999 | |
| N082 | Y=16 692.50/(1+e(5.519-0.06t)) | 245.33 | 10 991.66 | 93.88 | 71.47 | 116.28 | 44.80 | 0.999 | |
| N163 | Y=17 179.91/(1+e(5.460-0.06t)) | 248.01 | 11 312.61 | 94.53 | 71.72 | 117.33 | 45.61 | 0.998 | |
| 1:9 | N190 | Y=16 649.62/(1+e(5.519-0.06t)) | 244.63 | 10 963.42 | 93.88 | 71.48 | 116.29 | 44.82 | 0.999 |
| N451 | Y=16 693.43/(1+e(5.519-0.06t)) | 245.33 | 10 992.27 | 93.88 | 71.47 | 116.28 | 44.81 | 0.999 | |
| N271 | Y=16 738.99/(1+e(5.518-0.06t)) | 246.00 | 11 022.27 | 93.87 | 71.47 | 116.27 | 44.81 | 0.999 | |
| N082 | Y=16 806.99/(1+e(5.518-0.06t)) | 247.00 | 11 067.05 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 | |
| N163 | Y=16 877.40/(1+e(5.517-0.06t)) | 248.01 | 11 113.42 | 93.86 | 71.45 | 116.26 | 44.81 | 0.999 | |
| 2:8 | N190 | Y=16 762.61/(1+e(5.5179-0.06t)) | 246.34 | 11 037.83 | 93.87 | 71.47 | 116.27 | 44.81 | 0.999 |
| N451 | Y=16 806.95/(1+e(5.5178-0.06t)) | 247.01 | 11 067.02 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 | |
| N271 | Y=16 905.55/(1+e(5.5338-0.06t)) | 249.37 | 11 131.95 | 93.79 | 71.47 | 116.11 | 44.64 | 0.999 | |
| N082 | Y=16 922.24/(1+e(5.5168-0.06t)) | 248.69 | 11 142.94 | 93.85 | 71.45 | 116.25 | 44.81 | 0.999 | |
| N163 | Y=17 006.24/(1+e(5.518 6-0.06t)) | 249.97 | 11 198.25 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 | |
| 3:7 | N190 | Y=16 806.99/(1+e(5.519-0.06t)) | 247.01 | 11 067.05 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 |
| N451 | Y=16 851.73/(1+e(5.519-0.06t)) | 247.69 | 11 096.51 | 93.85 | 71.45 | 116.25 | 44.80 | 0.999 | |
| N271 | Y=16 900.41/(1+e(5.517-0.06t)) | 248.35 | 11 128.56 | 93.85 | 71.45 | 116.26 | 44.81 | 0.999 | |
| N082 | Y=16 983.97/(1+e(5.519-0.06t)) | 249.64 | 11 183.58 | 93.87 | 71.47 | 116.27 | 44.80 | 0.999 | |
| N163 | Y=17 302.55/(1+e(5.518-0.06t)) | 250.63 | 11 227.43 | 93.86 | 71.46 | 116.25 | 44.80 | 0.999 | |
| 4:6 | N190 | Y=16 717.01/(1+e(5.518-0.06t)) | 245.62 | 11 007.80 | 93.89 | 71.48 | 116.30 | 44.82 | 0.999 |
| N451 | Y=16 761.76/(1+e(5.518-0.06t)) | 246.28 | 11037.27 | 93.88 | 71.47 | 116.29 | 44.82 | 0.999 | |
| N271 | Y=16 807.49/(1+e(5.517-0.06t)) | 246.94 | 11 067.38 | 93.88 | 71.47 | 116.29 | 44.82 | 0.999 | |
| N082 | Y=16 879.29/(1+e(5.517-0.06t)) | 248.02 | 11 114.66 | 93.86 | 71.45 | 116.27 | 44.81 | 0.999 | |
| N163 | Y=16 961.72/(1+e(5.519-0.06t)) | 249.32 | 11 168.94 | 93.87 | 71.47 | 116.27 | 44.80 | 0.999 | |
表2 不同氮素运筹处理下棉花光合产物累计动态及Logistic函数生长模型
Tab.2 Cotton photosynthetic product cumulative dynamics and logistic function growth model analysis under different nitrogen transport treatments
| 处理 Treatments | Logistic函数生长方程 Logistic function growth equation | Vm (kg/hm2/d) | GT (kg/hm2) | t0 | t1 | t2 | Δt | R2 | |
|---|---|---|---|---|---|---|---|---|---|
| d | |||||||||
| 0:10 | N190 | Y=16 761.48/(1+e(5.518-0.06t)) | 246.34 | 11 037.08 | 93.87 | 71.47 | 116.27 | 44.81 | 0.999 |
| N451 | Y=16 581.08/(1+e(5.520-0.06t)) | 243.68 | 10 918.29 | 93.89 | 71.49 | 116.30 | 44.81 | 0.999 | |
| N271 | Y=16 626.34/(1+e(5.519-0.06t)) | 244.34 | 10 948.09 | 93.89 | 71.49 | 116.29 | 44.81 | 0.999 | |
| N082 | Y=16 692.50/(1+e(5.519-0.06t)) | 245.33 | 10 991.66 | 93.88 | 71.47 | 116.28 | 44.80 | 0.999 | |
| N163 | Y=17 179.91/(1+e(5.460-0.06t)) | 248.01 | 11 312.61 | 94.53 | 71.72 | 117.33 | 45.61 | 0.998 | |
| 1:9 | N190 | Y=16 649.62/(1+e(5.519-0.06t)) | 244.63 | 10 963.42 | 93.88 | 71.48 | 116.29 | 44.82 | 0.999 |
| N451 | Y=16 693.43/(1+e(5.519-0.06t)) | 245.33 | 10 992.27 | 93.88 | 71.47 | 116.28 | 44.81 | 0.999 | |
| N271 | Y=16 738.99/(1+e(5.518-0.06t)) | 246.00 | 11 022.27 | 93.87 | 71.47 | 116.27 | 44.81 | 0.999 | |
| N082 | Y=16 806.99/(1+e(5.518-0.06t)) | 247.00 | 11 067.05 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 | |
| N163 | Y=16 877.40/(1+e(5.517-0.06t)) | 248.01 | 11 113.42 | 93.86 | 71.45 | 116.26 | 44.81 | 0.999 | |
| 2:8 | N190 | Y=16 762.61/(1+e(5.5179-0.06t)) | 246.34 | 11 037.83 | 93.87 | 71.47 | 116.27 | 44.81 | 0.999 |
| N451 | Y=16 806.95/(1+e(5.5178-0.06t)) | 247.01 | 11 067.02 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 | |
| N271 | Y=16 905.55/(1+e(5.5338-0.06t)) | 249.37 | 11 131.95 | 93.79 | 71.47 | 116.11 | 44.64 | 0.999 | |
| N082 | Y=16 922.24/(1+e(5.5168-0.06t)) | 248.69 | 11 142.94 | 93.85 | 71.45 | 116.25 | 44.81 | 0.999 | |
| N163 | Y=17 006.24/(1+e(5.518 6-0.06t)) | 249.97 | 11 198.25 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 | |
| 3:7 | N190 | Y=16 806.99/(1+e(5.519-0.06t)) | 247.01 | 11 067.05 | 93.86 | 71.46 | 116.26 | 44.80 | 0.999 |
| N451 | Y=16 851.73/(1+e(5.519-0.06t)) | 247.69 | 11 096.51 | 93.85 | 71.45 | 116.25 | 44.80 | 0.999 | |
| N271 | Y=16 900.41/(1+e(5.517-0.06t)) | 248.35 | 11 128.56 | 93.85 | 71.45 | 116.26 | 44.81 | 0.999 | |
| N082 | Y=16 983.97/(1+e(5.519-0.06t)) | 249.64 | 11 183.58 | 93.87 | 71.47 | 116.27 | 44.80 | 0.999 | |
| N163 | Y=17 302.55/(1+e(5.518-0.06t)) | 250.63 | 11 227.43 | 93.86 | 71.46 | 116.25 | 44.80 | 0.999 | |
| 4:6 | N190 | Y=16 717.01/(1+e(5.518-0.06t)) | 245.62 | 11 007.80 | 93.89 | 71.48 | 116.30 | 44.82 | 0.999 |
| N451 | Y=16 761.76/(1+e(5.518-0.06t)) | 246.28 | 11037.27 | 93.88 | 71.47 | 116.29 | 44.82 | 0.999 | |
| N271 | Y=16 807.49/(1+e(5.517-0.06t)) | 246.94 | 11 067.38 | 93.88 | 71.47 | 116.29 | 44.82 | 0.999 | |
| N082 | Y=16 879.29/(1+e(5.517-0.06t)) | 248.02 | 11 114.66 | 93.86 | 71.45 | 116.27 | 44.81 | 0.999 | |
| N163 | Y=16 961.72/(1+e(5.519-0.06t)) | 249.32 | 11 168.94 | 93.87 | 71.47 | 116.27 | 44.80 | 0.999 | |
| 器官 Organ | 处理 Treatments | K (kg/hm2) | t1 | t2 | △t | Vm |
|---|---|---|---|---|---|---|
| 营养器官生物量 Vegetative organ biomass (kg/hm2) | N190 | 5 062.27 | 61.4 | 84.78 | 23.38 | 142.6 |
| N451 | 5 048.24 | 61.26 | 84.76 | 23.51 | 141.41 | |
| N271 | 5 044.63 | 60.89 | 84.39 | 23.51 | 141.31 | |
| N082 | 5 025.01 | 61.00 | 84.56 | 23.55 | 140.49 | |
| N163 | 5 009.36 | 60.82 | 84.51 | 23.69 | 139.22 | |
| 生殖器官生物量 Reproductive organ biomass (kg/hm2) | N190 | 8 508.84 | 92.88 | 119.33 | 26.45 | 216.09 |
| N451 | 8 567.48 | 93.08 | 119.37 | 26.29 | 216.6 | |
| N271 | 8 619.98 | 93.18 | 119.34 | 26.16 | 217 | |
| N082 | 8 733.44 | 93.29 | 119.34 | 26.05 | 218.74 | |
| N163 | 8 817.32 | 93.45 | 119.38 | 25.93 | 219.52 |
表3 不同氮供应比例对营养器官、生殖器官生物量随时间积累的变化 Fig.3 Changes of different nitrogen supply ratio on the accumulation of biomass of nutrient and reproductive organs over time
| 器官 Organ | 处理 Treatments | K (kg/hm2) | t1 | t2 | △t | Vm |
|---|---|---|---|---|---|---|
| 营养器官生物量 Vegetative organ biomass (kg/hm2) | N190 | 5 062.27 | 61.4 | 84.78 | 23.38 | 142.6 |
| N451 | 5 048.24 | 61.26 | 84.76 | 23.51 | 141.41 | |
| N271 | 5 044.63 | 60.89 | 84.39 | 23.51 | 141.31 | |
| N082 | 5 025.01 | 61.00 | 84.56 | 23.55 | 140.49 | |
| N163 | 5 009.36 | 60.82 | 84.51 | 23.69 | 139.22 | |
| 生殖器官生物量 Reproductive organ biomass (kg/hm2) | N190 | 8 508.84 | 92.88 | 119.33 | 26.45 | 216.09 |
| N451 | 8 567.48 | 93.08 | 119.37 | 26.29 | 216.6 | |
| N271 | 8 619.98 | 93.18 | 119.34 | 26.16 | 217 | |
| N082 | 8 733.44 | 93.29 | 119.34 | 26.05 | 218.74 | |
| N163 | 8 817.32 | 93.45 | 119.38 | 25.93 | 219.52 |
| [1] | Shi X J, Hao X Z, Li N N, et al. Organic liquid fertilizer coupled with single application of chemical fertilization improves growth, biomass, and yield components of cotton under mulch drip irrigation[J]. Frontiers in Plant Science, 2021, 12: 763525. |
| [2] | Shi F, Li N N, Khan A, et al. DPC can inhibit cotton apical dominance and increase seed yield by affecting apical part structure and hormone content[J]. Field Crops Research, 2022, 282: 108509. |
| [3] | Pokhrel A, Snider J L, Virk S, et al. Quantifying physiological contributions to nitrogen-induced yield variation in field-grown cotton[J]. Field Crops Research, 2023, 299: 108976. |
| [4] | 李卫国, 顾晓鹤, 王尔美, 等. 基于作物生长模型参数调整动态估测夏玉米生物量[J]. 农业工程学报, 2019, 35(7): 136-142. |
| LI Weiguo, GU Xiaohe, WANG Ermei, et al. Dynamic estimation of summer maize biomass based on parameter adjustment of crop growth model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 136-142. | |
| [5] |
张宏, 曾雄, 王爱莲, 等. 不同施氮量对棉花产量、养分吸收及氮素利用的影响[J]. 新疆农业科学, 2021, 58(9): 1656-1664.
DOI |
|
ZHANG Hong, ZENG Xiong, WANG Ailian, et al. Effects of different nitrogen application rates on yield, nutrient uptake and nitrogen utilization of cotton in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2021, 58(9): 1656-1664.
DOI |
|
| [6] | Raphael J P A, Echer F R, Rosolem C A. Nitrogen fertilization can mitigate cotton yield loss by temporary shading at early flowering[J]. European Journal of Agronomy, 2022, 140: 126593. |
| [7] | Luo H H, Wang Q, Zhang J K, et al. One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton[J]. Journal of Integrative Agriculture, 2020, 19(2): 509-517. |
| [8] |
李春梅, 马云珍, 徐文修, 等. 不同施氮量对棉花产量和棉田土壤养分的影响[J]. 核农学报, 2022, 36(7): 1446-1455.
DOI |
|
LI Chunmei, MA Yunzhen, XU Wenxiu, et al. Effects of different nitrogen application rates on cotton yield and soil nutrients in cotton fields[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(7): 1446-1455.
DOI |
|
| [9] | 赵强, 娄善伟, 姜婷婷, 等. 机采模式下氮肥不同基追比对棉花产量形成的影响[J]. 棉花科学, 2018, 40(2): 9-13. |
| ZHAO Qiang, LOU Shanwei, JIANG Tingting, et al. Effects of different ratio of base to topdressing of nitrogen fertilizer on cotton yield formation under mechanical harvest mode[J]. Cotton Sciences, 2018, 40(2): 9-13. | |
| [10] | Tian Y, Wang F Y, Shi X J, et al. Late nitrogen fertilization improves cotton yield through optimizing dry matter accumulation and partitioning[J]. Annals of Agricultural Sciences, 2023, 68(1): 75-86. |
| [11] | Li P C, Dong H L, Liu A Z, et al. Effects of nitrogen rate and split application ratio on nitrogen use and soil nitrogen balance in cotton fields[J]. Pedosphere, 2017, 27(4): 769-777. |
| [12] | Bahri H, Annabi M, Cheikh M’Hamed H, et al. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context[J]. Science of The Total Environment, 2019, 692: 1223-1233. |
| [13] | 孙琳丽, 侯琼, 马玉平, 等. WOFOST模型在内蒙古河套灌区模拟玉米生长全程的适应性[J]. 生态学杂志, 2016, 35(3): 800-807. |
| SUN Linli, HOU Qiong, MA Yuping, et al. Adaptability of WOFOST model to simulate the whole growth period of maize in Hetao irrigation region of Inner Mongolia[J]. Chinese Journal of Ecology, 2016, 35(3): 800-807. | |
| [14] | 蒋腾聪, 窦子荷, 姚宁, 等. 不同水分胁迫情境下冬小麦生长发育的RZWQM2模拟[J]. 农业机械学报, 2018, 49(7): 205-216. |
| JIANG Tengcong, DOU Zihe, YAO Ning, et al. Simulation of winter wheat growth under different scenarios of water stress with RZWQM2 model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 205-216. | |
| [15] | 张红娟, 李赟, 李雅丽, 等. 北方农牧交错带裸燕麦蒸散结构与灌溉制度优化研究[J]. 节水灌溉, 2022(3): 8-14. |
| ZHANG Hongjuan, LI Yun, LI Yali, et al. Study on evapotranspiration structure and irrigation system optimization of naked oat in agro-pastoral ecotone of northern China[J]. Water Saving Irrigation, 2022(3): 8-14. | |
| [16] | Zhou S W, Hu X T, Ran H, et al. Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2[J]. Agricultural Water Management, 2020, 240: 106276. |
| [17] | 丁奠元, 赵英, 孙本华, 等. 根区水质模型在黄土高原旱区冬小麦氮肥管理中的适用性分析[J]. 农业工程学报, 2015, 31(23): 111-121. |
| DING Dianyuan, ZHAO Ying, SUN Benhua, et al. Suitability analysis of nitrogen fertilizer management on dryland of Loess Plateau based on root zone water quality model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 111-121. | |
| [18] | Kuang N K, Ma Y Z, Hong S Z, et al. Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2[J]. Agricultural Water Management, 2021, 249: 106794. |
| [19] | 周始威. 基于RZWQM2模拟的西北旱区玉米控墒补灌模式下水氮最优调控研究[D]. 杨凌: 西北农林科技大学, 2021. |
| ZHOU Shiwei. Research on the optimal regulation of water and nitrogen under the moisture control and supplemental irrigation mode of maize in the Northwest dry zone based on RZWQM2 simulation[D]. Yangling: Northwest A & F University, 2021. | |
| [20] | 黄春燕, 陶玲, 王登伟, 等. 棉花冠层光合有效辐射参数与地上部各组分鲜生物量的相关分析[J]. 新疆农业科学, 2015, 52(11): 1969-1974. |
| HUANG Chunyan, TAO Ling, WANG Dengwei, et al. Correlationship analysis between photosynthetically active radiation parameters and aboveground fresh biomass from different components of cotton canopy[J]. Xinjiang Agricultural Sciences, 2015, 52(11): 1969-1974. | |
| [21] | Mao L L, Zhang L Z, Sun X Z, et al. Use of the beta growth function to quantitatively characterize the effects of plant density and a growth regulator on growth and biomass partitioning in cotton[J]. Field Crops Research, 2018, 224: 28-36. |
| [22] | 徐家屯. 基于RZWQM2模型的关中灌区冬小麦/夏玉米灌溉施肥优化及深层土壤水氮运移特征分析[D]. 杨凌: 西北农林科技大学, 2020. |
| XU Jiatun. Optimization of winter wheat/summer maize irrigation fertilization and characterization of deep soil water and nitrogen transport in Guanzhong Irrigation District based on RZWQM2 model[D]. Yangling: Northwest A & F University, 2020. | |
| [23] | 周晋, 邓仲宁, 李文昌. 后期追施氮肥对棉花生育产量的作用[J]. 农业科学通讯, 1959,(15): 521-522. |
| ZHOU Jin, DENG Zhongning, LI Wenchang. Effect of topdressing nitrogen fertilizer on cotton growth and yield in later stage[J]. Scientia Agricultura Sinica, 1959,(15): 521-522. | |
| [24] |
龚双凤, 杨涛, 陈宝燕, 等. 机采棉模式下氮肥运筹对棉花产量和养分吸收的调控[J]. 中国农学通报, 2015, 31(12): 145-151.
DOI |
|
GONG Shuangfeng, YANG Tao, CHEN Baoyan, et al. Regulation of nitrogen fertilizer management of cotton yield and nutrient uptake under the machine pick cotton pattern[J]. Chinese Agricultural Science Bulletin, 2015, 31(12): 145-151.
DOI |
|
| [25] | 夏文, 林涛, 褚晓升, 等. RZWQM2模型模拟地膜覆盖时间对南疆棉田水分利用效率及产量的影响[J]. 农业工程学报, 2021, 37(11): 140-150. |
| XIA Wen, LIN Tao, CHU Xiaosheng, et al. Effects of mulching time on water use efficiency and yield of cotton in southern Xinjiang simulated by RZWQM2 model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 140-150. | |
| [26] | 杨甜甜. 不同灌溉梯度下无膜棉生长发育模拟与产量评估[D]. 阿拉尔: 塔里木大学, 2022. |
| YANG Tiantian. Simulation of growth and development and yield assessment of filmless cotton under different irrigation gradients[D]. Ala’er: Tarim University, 2022. | |
| [27] | 李萌. 南疆膜下滴灌棉花灌溉和施肥调控效应及生长模拟研究[D]. 杨凌: 西北农林科技大学, 2020. |
| LI Meng. Irrigation and fertilization regulation effects and growth simulation of drip-irrigated cotton under membrane in South Xinjiang[D]. Yangling: Northwest A & F University, 2020. | |
| [28] | 李鹏程, 董合林, 刘爱忠, 等. 种植密度氮肥互作对棉花产量及氮素利用效率的影响[J]. 农业工程学报, 2015, 31(23): 122-130. |
| LI Pengcheng, DONG Helin, LIU Aizhong, et al. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122-130. | |
| [29] | Cheng H M, Shu K X, Qi Z M, et al. Effects of residue removal and tillage on greenhouse gas emissions in continuous corn systems as simulated with RZWQM2[J]. Journal of Environmental Management, 2021, 285: 112097. |
| [30] |
姚青青, 孙绘健, 马兴旺, 等. 减量追施氮肥运筹对棉花地上部干物质积累、分配及产量的影响[J]. 新疆农业科学, 2021, 58(8): 1398-1405.
DOI |
|
YAO Qingqing, SUN Huijian, MA Xingwang, et al. Effects of reduced-amount nitrogen application on cotton aboveground dry matter accumulation, distribution and yield[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1398-1405.
DOI |
|
| [31] |
文明, 李鹏兵, 王乐, 等. 减施氮肥对北疆滴灌棉花干物质积累及产量的影响[J]. 新疆农业科学, 2019, 56(1): 120-129.
DOI |
|
WEN Ming, LI Pengbing, WANG Le, et al. Effects of reduced nitrogen application on dry matter accumulation and yield of cotton under drip irrigation in northern Xinjiang[J]. Xinjiang Agricultural Sciences, 2019, 56(1): 120-129.
DOI |
|
| [32] | 胡国智, 张炎, 李青军, 等. 氮肥运筹对棉花干物质积累、氮素吸收利用和产量的影响[J]. 植物营养与肥料学报, 2011, 17(2): 397-403. |
| HU Guozhi, ZHANG Yan, LI Qingjun, et al. Effect of nitrogen fertilizer management on the dry matter accumulation, N uptake and utilization and yield in cotton[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 397-403. | |
| [33] | 伍维模, 郑德明, 王自强, 等. 南疆高产栽培技术模式下陆地棉干物质生产规律的研究[J]. 新疆农业科学, 2000, 37(4): 145-148. |
| WU Weimo, ZHENG Deming, WANG Ziqiang, et al. Study on the upland cotton dry matter production under the high-yielding cultivation techniques in south Xinjiang[J]. Xinjiang Agricultural Sciences, 2000, 37(4): 145-148. | |
| [34] | Grundy P R, Yeates S J, Bell K L. Cotton production during the tropical monsoon season. I-The influence of variable radiation on boll loss, compensation and yield[J]. Field Crops Research, 2020, 254: 107790. |
| [35] | Saleem M F, Shahid M, Shakoor A, et al. Removal of early fruit branches triggered regulations in senescence, boll attributes and yield of Bt cotton genotypes[J]. Annals of Applied Biology, 2018, 172(2): 224-235. |
| [36] | Zhang J, Han Y C, Li Y B, et al. Inhibition of apical dominance affects boll spatial distribution, yield and fiber quality of field-grown cotton[J]. Industrial Crops and Products, 2021, 173: 114098. |
| [37] | Zhang Z, Chattha M S, Ahmed S, et al. Nitrogen reduction in high plant density cotton is feasible due to quicker biomass accumulation[J]. Industrial Crops and Products, 2021, 172: 114070. |
| [38] | Song M Z, Fan S L, Yuan R H, et al. Genetic analysis of earliness traits in short season cotton (Gossypium hirsutum L.)[J]. Journal of Integrative Agriculture, 2012, 11(12): 1968-1975. |
| [39] | Kant S, Seneweera S, Rodin J, et al. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies[J]. Frontiers in Plant Science, 2012, 3: 162. |
| [40] | Lin Q. Population quality indices of high yield and regulation techniques in cotton. In: The Quality of Crop Population. Shanghai Scientific &Technical Publishers, Shanghai, China, pp. 293-386. |
| [41] | Ali N. Review: nitrogen utilization features in cotton crop[J]. American Journal of Plant Sciences, 2015, 6(7): 987-1002. |
| [42] | 陈求柱. 氮肥运筹对棉花产量形成及养分吸收利用的影响研究[D]. 武汉: 华中农业大学, 2013. |
| CHEN Qiuzhu. Effects of nitrogen application on cotton yield formation and nutrient absorption and utilization[D]. Wuhan: Huazhong Agricultural University, 2013. | |
| [43] | Wang H M, Gao K, Fang S, et al. Cotton yield and defoliation efficiency in response to nitrogen and harvest aids[J]. Agronomy Journal, 2019, 111(1): 250-256. |
| [44] | Wang F Y, Han H Y, Lin H, et al. Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton[J]. Journal of Integrative Agriculture, 2019, 18(9): 2019-2028. |
| [45] | Luo Z, Hu Q Y, Tang W, et al. Effects of N fertilizer rate and planting density on short-season cotton yield, N agronomic efficiency and soil N using 15N tracing technique[J]. European Journal of Agronomy, 2022, 138: 126546. |
| [46] | Li X X, Liu H G, He X L, et al. Water-nitrogen coupling and multi-objective optimization of cotton under mulched drip irrigation in arid northwest China[J]. Agronomy, 2019, 9(12): 894. |
| [47] | Wang H D, Wu L F, Cheng M H, et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China[J]. Field Crops Research, 2018, 219: 169-179. |
| [48] | 刘翠, 张巨松, 郑慧, 等. 氮肥基追比对南疆杂交棉氮素吸收、生物量及产量的影响[J]. 中国土壤与肥料, 2016,(1): 64-71. |
| LIU Cui, ZHANG Jusong, ZHENG Hui, et al. Effects of ratios of base and topdressing nitrogen fertilizer on N uptake, biomass and yield of hybrid cotton in southern Xinjiang[J]. Soil and Fertilizer Sciences in China, 2016,(1): 64-71. | |
| [49] | 徐新霞, 雷建峰, 王立红, 等. 不同氮肥基追比对机采棉光合物质生产及产量的影响[J]. 西北农业学报, 2015, 24(6): 46-52. |
| XU Xinxia, LEI Jianfeng, WANG Lihong, et al. Effect of different ratios of base and topdressing nitrogen fertilizer on photosynthetic production and yield of machine-picked cotton[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(6): 46-52. | |
| [50] | Li H J, Liu Z Y, Chen Y, et al. A positive correlation between seed cotton yield and high-efficiency leaf area index in directly seeded short-season cotton after wheat[J]. Field Crops Research, 2022, 285: 108594. |
| [1] | 谢秀荣, 张永强, 海峰, 雷钧杰, 吕晓庆, 陈传信, 徐其江, 聂石辉, 王冀川. 匀播增密对适期晚播冬小麦群体结构及产量的影响[J]. 新疆农业科学, 2025, 62(1): 21-28. |
| [2] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
| [3] | 董祯林, 万素梅, 熊世武, 马云珍, 毛廷勇, 杨北方, 骆磊, 刘超群, 陈国栋, 李亚兵. 不同种植密度对中棉113农艺性状及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1102-1111. |
| [4] | 宋贤明, 侯献飞, 顾元国, 苗昊翠, 李强, 郭美丽, 曾幼玲, 贾东海. 种植密度和行距对膜下滴灌红花生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(4): 804-813. |
| [5] | 张俊尧, 王家勇, 唐江华, 娄善伟, 李文珊, 徐文修, 孟令贻, 何洪涛, 桑军民. 播期与密度双因素对陆地棉生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(3): 547-555. |
| [6] | 王家勇, 李春梅, 徐文修, 李鹏程, 张娜, 李玲, 马云珍, 王芳. 种植密度对76 cm等行距机采棉冠层结构、冠层温湿度及产量的影响[J]. 新疆农业科学, 2023, 60(11): 2609-2617. |
| [7] | 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 李兴河, 马文娜, 韩俊伟, 张香云, 张建宏. 种植密度对适宜机采棉花品系农艺和产量品质性状的影响[J]. 新疆农业科学, 2023, 60(11): 2638-2645. |
| [8] | 潘洋, 付秋萍, 海英, 祁通, 洪明, 马英杰, 潘俊杰. 新疆滴灌机采棉生长及产量的最佳水氮组合[J]. 新疆农业科学, 2023, 60(11): 2674-2686. |
| [9] | 杨金钰, 孙九胜, 乔小燕, 王西和, 槐国龙, 崔磊. 不同穴播模式对玉米生长及产量构成的影响[J]. 新疆农业科学, 2022, 59(9): 2186-2191. |
| [10] | 陈猛, 梁雪齐, 李玲, 张丽, 陈国栋, 吴全忠, 翟云龙. 种植密度对匀播冬小麦籽粒灌浆及产量的影响[J]. 新疆农业科学, 2022, 59(6): 1338-1346. |
| [11] | 徐高羽, 林涛, 邵亚杰, 张昊, 汤秋香. 种植密度和施氮量对等行距机采棉根系形态指标及产量的影响[J]. 新疆农业科学, 2022, 59(2): 302-309. |
| [12] | 陈利军, 林涛, 吴凤全, 邵亚杰, 徐彦军, 汤秋香. 种植密度和灌溉定额互作对76 cm等行距机采棉生长发育及产量形成影响[J]. 新疆农业科学, 2022, 59(12): 2899-2908. |
| [13] | 杜珊珊, 陈晋瑞, 罗静, 姚青青, 孙绘健, 何忠盛, 库尔班・牙生. 不同种植密度对花生主要性状及产量的影响[J]. 新疆农业科学, 2022, 59(11): 2637-2643. |
| [14] | 武敏桦, 武佳颖, 俞新华, 张凯旋, 卢海博, 赵海超, 刘子刚, 黄智鸿. 玉黄金对春玉米茎秆显微结构及抗折强度的影响[J]. 新疆农业科学, 2022, 59(10): 2402-2410. |
| [15] | 阿不都卡地尔·库尔班, 陈友强, 刘华君, 潘竟海, 李小惠, 林明, 鲁伟丹, 白晓山, 董心久, 李思忠. 深松对叶丛生长期甜菜形态结构特性及生物量积累特性的影响[J]. 新疆农业科学, 2022, 59(10): 2421-2430. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||