

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (3): 739-747.DOI: 10.6048/j.issn.1001-4330.2025.03.024
收稿日期:2024-09-10
出版日期:2025-03-20
发布日期:2025-05-14
通信作者:
李晨华(1974-),女,江苏宜兴人,副研究员,研究方向为荒漠绿洲生态系统碳氮循环与微生物学机制,(E-mail) lichenhua@ms.xjb.ac.cn作者简介:傅鹏宇(1997-),男,重庆江津人,硕士研究生,研究方向为土壤微生物生态,(E-mail) fupengyu21@mails.ucas.ac.cn
基金资助:
FU Pengyu1,2,3(
), LIANG Meng1, LI Chenhua1,2(
)
Received:2024-09-10
Published:2025-03-20
Online:2025-05-14
Supported by:摘要:
【目的】研究开垦与长期不同施肥对荒漠土壤有机碳(SOC)储量与微生物群落特征(微生物丰度和群落结构)的影响。【方法】以中国科学院阜康荒漠生态站长期定位试验为平台,选择11种管理模式:不施肥(CK [a])、单施化肥(PK [b]、NK [c]、NP [d]、NPK [e]、N2P2 [f]、N2P2K [g]),化肥配施秸秆(NPKR [h],NPKR2 [i],N2P2R3 [j])和化肥配施厩肥(NPKM [k]),采集其0~20 cm土层样品,与同一毗邻原生荒漠土壤进行比较,分析荒漠开垦过程中土壤有机碳储量和微生物群落特征及两者的联系。【结果】与毗邻荒漠相比,开垦与长期施肥显著增加了土壤有机碳储量;同时,土壤细菌、真菌、古菌及固氮菌的丰度显著增加,真菌>细菌>古菌;其中,处理g、处理j与处理k中土壤有机碳储量及微生物丰度均具有较高增幅。【结论】荒漠开垦与施肥通过降低土壤pH值与盐分,增加外源有机质与养分输入,提高了土壤有机碳储量和微生物丰度,改变了微生物群落结构。植被对干旱区土壤有机碳汇的形成有正向促进作用,化肥(尤其是N、P)配施有机肥增加了干旱区土壤有机碳储量和微生物群落丰度。
中图分类号:
傅鹏宇, 梁萌, 李晨华. 荒漠开垦与施肥对土壤有机碳储量与微生物群落特征的影响[J]. 新疆农业科学, 2025, 62(3): 739-747.
FU Pengyu, LIANG Meng, LI Chenhua. Effects of desert reclamation and fertilization on soil organic carbon storage and microbial community characteristics[J]. Xinjiang Agricultural Sciences, 2025, 62(3): 739-747.
| 名称 Name | 引物全称 Primer name | 片段长度 Length of amplicons | 引物序列 Primer sequences |
|---|---|---|---|
| 细菌 Bacteria | 16S V3-V4 (338-806) | 469bp | 上游:ACTCCTACGGGAGGCAGCAG 下游:GGACTACHVGGGTWTCTAAT |
| 古菌 Archaea | 古菌16S V3-V4 | 572bp | 上游:ACGGGGYGCAGCAGGCGCGA 下游:GGACTACVSGGGTATCTAAT |
| 真菌 Fungi | ITS1 | 98bp | 上游:CTTGGTCATTTAGAGGAAGTAA 下游:TGCGTTCTTCATCGATGC |
| 固氮菌 Azotobacter | nifH | 400bp | 上游:AAAGGYGGWATCGGYAARTCCACCAC 下游:TTGTTSGCSGCRTACATSGCCATCAT |
| 氨氧化细菌 AOB | AOB amoA | 490bp | 上游:GGGGTTTCTACTGGTGGT 下游:CCCCTCKGSAAAGCCTTCTTC |
| 氨氧化古菌 AOA | AOA amoA | 635bp | 上游:STAATGGTCTGGCTTAGACG 下游:GCGGCCATCCATCTGTATGT |
表1 荧光实时定量PCR扩增引物
Tab.1 Fluorescent real-time quantitative PCR amplification primers
| 名称 Name | 引物全称 Primer name | 片段长度 Length of amplicons | 引物序列 Primer sequences |
|---|---|---|---|
| 细菌 Bacteria | 16S V3-V4 (338-806) | 469bp | 上游:ACTCCTACGGGAGGCAGCAG 下游:GGACTACHVGGGTWTCTAAT |
| 古菌 Archaea | 古菌16S V3-V4 | 572bp | 上游:ACGGGGYGCAGCAGGCGCGA 下游:GGACTACVSGGGTATCTAAT |
| 真菌 Fungi | ITS1 | 98bp | 上游:CTTGGTCATTTAGAGGAAGTAA 下游:TGCGTTCTTCATCGATGC |
| 固氮菌 Azotobacter | nifH | 400bp | 上游:AAAGGYGGWATCGGYAARTCCACCAC 下游:TTGTTSGCSGCRTACATSGCCATCAT |
| 氨氧化细菌 AOB | AOB amoA | 490bp | 上游:GGGGTTTCTACTGGTGGT 下游:CCCCTCKGSAAAGCCTTCTTC |
| 氨氧化古菌 AOA | AOA amoA | 635bp | 上游:STAATGGTCTGGCTTAGACG 下游:GCGGCCATCCATCTGTATGT |
图1 荒漠开垦与施肥下土壤理化性质及有机碳储量的变化 注:D,原生荒漠土壤;EC,电导率;TN,土壤全氮;TP,土壤全磷;SOC,土壤有机碳储量
Fig.1 Changes of desert reclamation and fertilization on soil physical and chemical properties and organic carbon storage Notes: D, native desert soil; EC, electrical conductivity; TN, soil total nitrogen; TP, soil total phosphorus; SOC, soil organic carbon storage
图2 荒漠开垦与施肥下土壤细菌(a)、古菌(b)和真菌(c)丰度的变化 注:D,原生荒漠土壤;B,荒漠裸地;G,草本植物覆盖下的土壤;S,灌木覆盖下的土壤,下同
Fig.2 Changes of desert reclamation and fertilization on soil bacterial (a), archaea (b) and fungal (c) abundance Notes: D, native desert soil; B, desert bare land; G, soil under herbaceous cover; S, soil under shrub cover,the same as below
| 真菌/细菌 Fungi/Bacteria | 真菌/古菌 Fungi/Archaea | 细菌/古菌 Bacteria /Archaea | |
|---|---|---|---|
| B | 7.51×10-5±0.27×1 | 1.27×10-4±0.060×1 | 1.70±0.17a |
| G | 4.74×10-5±0.27×1 | 1.15×10-4±0.005×1 | 2.42±0.15b |
| S | 4.01×10-5±0.02×1 | 1.16×10-4±0.004×1 | 2.90±0.01c |
表2 荒漠裸地与不同植被覆盖下土壤微生物群落结构
Tab.2 Soil microbial community structure of bare soil and the soil under different canopies
| 真菌/细菌 Fungi/Bacteria | 真菌/古菌 Fungi/Archaea | 细菌/古菌 Bacteria /Archaea | |
|---|---|---|---|
| B | 7.51×10-5±0.27×1 | 1.27×10-4±0.060×1 | 1.70±0.17a |
| G | 4.74×10-5±0.27×1 | 1.15×10-4±0.005×1 | 2.42±0.15b |
| S | 4.01×10-5±0.02×1 | 1.16×10-4±0.004×1 | 2.90±0.01c |
图4 荒漠开垦与施肥下土壤微生物群落结构的变化 注:D,原生荒漠土壤;A,缺N或P的施肥方式(NK、PK);C:单施化肥(除NK和PK以外);E:化肥配施秸秆
Fig.4 Changes of desert reclamation and fertilization on soil microbial community structure Notes: D, native desert soil; A, fertilization method lacking N or P (NK, PK); C: single application of chemical fertilizer (except NK and PK); E: chemical fertilizer combined with straw
图5 荒漠开垦与施肥下土壤AOA/AOB比例的变化 注:D,原生荒漠土壤;B,荒漠裸地;G,草本植物覆盖下的土壤;S,灌木覆盖下的土壤
Fig.5 Changes of desert reclamation and fertilization on soil AOA/AOB ratio Notes: D, native desert soil; B, desert bare land; G, soil under herbaceous cover; S, soil under shrub cover
| nifH | AOA amoA | AOB amoA | 细菌16S | ITS1 | 古菌16S | |
|---|---|---|---|---|---|---|
| 相关系数 | 0.597 9 | -0.010 9 | 0.365 0 | 0.531 1 | 0.513 4 | 0.621 9 |
| P | 0.018 6* | 0.969 2 | 0.181 0 | 0.041 7* | 0.050 3 | 0.013 3* |
表3 荒漠土壤有机碳储量与微生物丰度相关性
Tab.3 Correlations analysis between desert soil organic carbon storage and microbial abundance
| nifH | AOA amoA | AOB amoA | 细菌16S | ITS1 | 古菌16S | |
|---|---|---|---|---|---|---|
| 相关系数 | 0.597 9 | -0.010 9 | 0.365 0 | 0.531 1 | 0.513 4 | 0.621 9 |
| P | 0.018 6* | 0.969 2 | 0.181 0 | 0.041 7* | 0.050 3 | 0.013 3* |
| [1] | Hari M, Tyagi B. Terrestrial carbon cycle: tipping edge of climate change between the atmosphere and biosphere ecosystems[J]. Environmental Science: Atmospheres, 2022, 2(5): 867-890. |
| [2] | 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 2022, 52(4): 534-574. |
| YANG Yuanhe, SHI Yue, SUN Wenjuan, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica (Vitae), 2022, 52(4): 534-574. | |
| [3] |
Crowther T W, van den Hoogen J, Wan J, et al. The global soil community and its influence on biogeochemistry[J]. Science, 2019, 365(6455): 772-781.
DOI |
| [4] | Guillaume T, Makowski D, Libohova Z, et al. Soil organic carbon saturation in cropland-grassland systems: storage potential and soil quality[J]. Geoderma, 2022, 406: 115529. |
| [5] | 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. |
| ZHOU Zhenghu, LIU Lin, HOU Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. | |
| [6] | Malik A A, Martiny J B H, Brodie E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1): 1-9. |
| [7] |
Lal R. Carbon cycling in global drylands[J]. Current Climate Change Reports, 2019, 5(3): 221-232.
DOI |
| [8] | Liu J, Wang C K, Guo Z Y, et al. The effects of climate on soil microbial diversity shift after intensive agriculture in arid and semiarid regions[J]. Science of the Total Environment, 2022, 821: 153075. |
| [9] |
Neilson J W, Quade J, Ortiz M, et al. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama desert, Chile[J]. Extremophiles, 2012, 16(3): 553-566.
DOI PMID |
| [10] | Köberl M, Müller H, Ramadan E M, et al. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health[J]. PLoS One, 2011, 6(9): e24452. |
| [11] | Li X Y, Xiao D N, He X Y, et al. Factors associated with farmland area changes in arid regions: a case study of the Shiyang river basin, Northwestern China[J]. Frontiers in Ecology and the Environment, 2007, 5(3): 139-144. |
| [12] | Wang T, Xue X, Zhou L, et al. Combating aeolian desertification in Northern China[J]. Land Degradation & Development, 2015, 26(2): 118-132. |
| [13] | Brockett B F T, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 2012, 44(1): 9-20. |
| [14] | 迟美静. 黑土开垦种稻土壤团聚体及其组分有机碳的变化特征[D]. 沈阳: 沈阳农业大学, 2019. |
| CHI Meijing. Change characteristics of organic carbon in soil aggregates and aggregate fractions of reclamation for rice in Mollisol[D]. Shenyang: Shenyang Agricultural University, 2019. | |
| [15] | Łabęda D, Kondras M. Influence of forest management on soil organic carbon stocks[J]. Soil Science Annual, 2020: 165-173. |
| [16] | 黄科朝, 沈育伊, 徐广平, 等. 垦殖对桂林会仙喀斯特湿地土壤养分与微生物活性的影响[J]. 环境科学, 2018, 39(4): 1813-1823. |
| HUANG Kechao, SHEN Yuyi, XU Guangping, et al. Effects of reclamation on soil nutrients and microbial activities in the Huixian Karst wetland in Guilin[J]. Environmental Science, 2018, 39(4): 1813-1823. | |
| [17] | He X Y, Su Y R, Liang Y M, et al. Land reclamation and short-term cultivation change soil microbial communities and bacterial metabolic profiles[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1103-1111. |
| [18] | Li C H, Li Y, Ma J, et al. Microbial community variation and its relationship with soil carbon accumulation during long-term oasis formation[J]. Applied Soil Ecology, 2021, 168: 104126. |
| [19] | Wang Z Q. To afforest the desert with the technology of peat composed of rotten mosses and the sustainable development of the oases[J]. Science in China Series D: Earth Sciences, 2002, 45(1): 87-90. |
| [20] | 李彦, 许皓. 梭梭对降水的响应与适应机制——生理、个体与群落水平碳水平衡的整合研究[J]. 干旱区地理, 2008, 31(3): 313-323. |
| LI Yan, XU Hao. Water and carbon balances of Haloxylon ammodendron: intergated study at physiological, plant Abd community level[J]. Arid Land Geography, 2008, 31(3): 313-323. | |
| [21] | 李晨华, 李彦, 唐立松, 等. 盐化灰漠土开垦前后碳存贮与碳释放的分层特征[J]. 干旱区研究, 2010, 27(3): 385-391. |
| LI Chenhua, LI Yan, TANG Lisong, et al. Layered characters of organic carbon storage and release in salinized gray desert soil before and after reclamation[J]. Arid Zone Research, 2010, 27(3): 385-391. | |
| [22] | Zhu H, Zhao C Y, Li J, et al. Analysis of impact factors on scrubland soil respiration in the southern Gurbantunggut Desert, central Asia[J]. Environmental Geology, 2008, 54(7): 1403-1409. |
| [23] | Li C H, Li Y, Tang L S. Soil organic carbon stock and carbon efflux in deep soils of desert and oasis[J]. Environmental Earth Sciences, 2010, 60(3): 549-557. |
| [24] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000. |
| LU Rukun. Methods for agrochemical analysis of soils[M]. Beijing: China Agricultural Science and Technology Press, 2000. | |
| [25] | 宋亚娜, 陈在杰, 林智敏. 水稻生育期内红壤稻田氨氧化微生物数量和硝化势的变化[J]. 中国生态农业学报, 2010, 18(5): 954-958. |
| SONG Yana, CHEN Zaijie, LIN Zhimin. Abundance of ammonia-oxidizer and potential nitrification rate of quaternary red-clay paddy soil during rice growth[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 954-958. | |
| [26] |
Russell A E, Cambardella C A, Laird D A, et al. Nitrogen fertilizer effffects on soil carbon balances in midwestern U.S. agricultural systems[J]. Ecological Applications, 2009, 19(5): 1102-1113.
DOI PMID |
| [27] | Lugato E, Berti A, Giardini L. Soil organic carbon (SOC) dynamics with and without residue incorporation in relation to different nitrogen fertilization rates[J]. Geoderma, 2006, 135: 135-321. |
| [28] | 张玉, 吴福忠, 艾灵, 等. 凋落物输入对土壤可溶性有机碳的影响[J/OL]. 生态学杂志, 2023 (2023-04-10). |
| ZHANG Yu, WU Fuzhong, AI Ling, et al. Litter input effect on dissolved organic carbon in soils[J/OL]. Chinese Journal of Ecology, 2023 (2023-04-10). | |
| [29] |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105.
DOI PMID |
| [30] | Chapin F S III, Matson P A, Vitousek P M. Principles of Terrestrial Ecosystem Ecology[M]. New York: NYSpringer New York, 2011 |
| [31] | Fierer N, Grandy A S, Six J, et al. Searching for unifying principles in soil ecology[J]. Soil Biology and Biochemistry, 2009, 41(11): 2249-2256. |
| [32] | Strickland M S, Rousk J. Considering fungal: bacterial dominance in soils-Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 2010, 42(9): 1385-1395. |
| [33] | Bailey V L, Smith J L, Bolton H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration[J]. Soil Biology and Biochemistry, 2002, 34(7): 997-1007. |
| [34] | Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555-569. |
| [35] | Fan F L, Yin C, Tang Y J, et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP[J]. Soil Biology and Biochemistry, 2014, 70: 12-21. |
| [1] | 刘雪冰, 巴乐金, 边拜, 乌兰·吾尚, 巴音达拉. 新疆野果林不同植被土壤微生物多样性分析[J]. 新疆农业科学, 2025, 62(2): 401-411. |
| [2] | 曾万祺, 韩多红, 冯军仁. 干旱荒漠区9个杏品种的花器官冻害生理生化分析[J]. 新疆农业科学, 2024, 61(9): 2223-2229. |
| [3] | 孙瑶, 钟问, 李一博. 塔里木盆地东南缘多枝柽柳主要传粉昆虫及其传粉生物学特征[J]. 新疆农业科学, 2024, 61(6): 1497-1504. |
| [4] | 耿美菊, 王新绘, 刘晓颖, 吕佩. 封育对荒漠草原真菌群落的影响[J]. 新疆农业科学, 2024, 61(5): 1250-1258. |
| [5] | 沈煜洋, 王仙, 陈利, 郭小玲, 苗雨, 董裕生, 陈智军, 方伏荣, 向莉, 高海峰. 新疆荒漠绿洲区大麦田阔叶杂草化学防除药效评价[J]. 新疆农业科学, 2024, 61(1): 184-189. |
| [6] | 周时杰, 董乙强, 阿斯太肯·居力海提, 聂婷婷, 姜安静, 安沙舟. 天山北坡蒿类荒漠植物群落数量特征及其多样性[J]. 新疆农业科学, 2023, 60(9): 2298-2305. |
| [7] | 王燕, 武兴宝, 秦新惠, 张永久, 杨丽, 赵哈林. 荒漠绿洲农田盐渍化过程中的土壤碳、氮、磷生态化学计量特征[J]. 新疆农业科学, 2023, 60(8): 1996-2005. |
| [8] | 徐静, 石书兵, 秦小钢, 朱军. 核桃林间作西红花对其土壤微生物数量的动态变化[J]. 新疆农业科学, 2023, 60(8): 2022-2027. |
| [9] | 李志强, 陈昱东, 吕光辉, 王金龙, 蒋腊梅, 王恒方, 李韩鹏, 张磊. 荒漠草本植物功能性状的土壤水盐响应特征及生态策略[J]. 新疆农业科学, 2023, 60(8): 2038-2045. |
| [10] | 费诚, 董乙强, 安沙舟. 新疆北疆荒漠群落组成及种间联结与相关性分析[J]. 新疆农业科学, 2023, 60(8): 2055-2065. |
| [11] | 阿布都克尤木·阿不都热孜克, 吐尔逊·吐尔洪, 古丽米拉·艾克拜尔, 阿依夏木·沙吾尔. 不同滴灌量对荒漠区栽培甘草根品质成分的影响[J]. 新疆农业科学, 2022, 59(9): 2224-2231. |
| [12] | 阿布都克尤木·阿不都热孜克, 吐尔逊·吐尔洪, 古丽米拉·艾克拜尔, 张龑, 阿依夏木·沙吾尔. 不同滴灌量对荒漠区栽培甘草苗期生长发育的影响[J]. 新疆农业科学, 2022, 59(8): 1945-1955. |
| [13] | 兖攀, 王久照, 姜继元, 陈奇凌. 不同地面覆盖材料对绿洲苹果园土壤环境的影响[J]. 新疆农业科学, 2022, 59(7): 1690-1696. |
| [14] | 陈利, 沈煜洋, 崔燕华, 张航, 杨安沛, 范贵强, 雷钧杰, 李广阔, 高海峰. 荒漠绿洲麦区小麦白粉病发生危害及药效评价[J]. 新疆农业科学, 2022, 59(5): 1189-1195. |
| [15] | 宋子硕, 杨杰, 丁新华, 付开赟, 吐尔逊·阿合买提, 何江, 郭文超. 荒漠绿洲生态区玉米茎腐病发生分布与危害[J]. 新疆农业科学, 2022, 59(4): 950-956. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||