新疆农业科学 ›› 2024, Vol. 61 ›› Issue (8): 2043-2053.DOI: 10.6048/j.issn.1001-4330.2024.08.025
• 植物保护·设施农业·畜牧兽医·农业经济 • 上一篇 下一篇
张彩虹1,2(), 王国强1(
), 姜鲁艳1, 刘涛2, 德贤明1
收稿日期:
2024-01-30
出版日期:
2024-08-20
发布日期:
2024-09-19
通信作者:
王国强(1973-),男,甘肃天水人,研究员,博士,研究方向为现代设施农业产业发展、设施农业温室工程与机械装备,(E-mail)824453811@qq.com作者简介:
张彩虹(1981-),女,甘肃张掖人,副研究员,硕士,研究方向为设施农业工程与装备,(E-mail)93052504@qq.com
基金资助:
ZHANG Caihong1,2(), WANG Guoqiang1(
), JIANG Luyan1, LIU Tao2, DE Xianming1
Received:
2024-01-30
Published:
2024-08-20
Online:
2024-09-19
Correspondence author:
WANG Guoqiang(1973-), male, researcher, research direction:the development of modern facility agriculture industry, facility agriculture greenhouse engineering and mechanical equipment technology, (E-mail)824453811@qq.comSupported by:
摘要:
【目的】研究低能耗组装式深冬生产型日光温室对室内环境因子以及番茄生长与产量的影响,为该新型温室越冬茬番茄栽培提供数据支持。【方法】选取低能耗组装式深冬生产型日光温室(新型温室)为试验温室,传统砖墙结构日光温室为对照温室,分析试验温室和对照温室的环境差异性对越冬茬番茄生长发育与产量品质的影响。【结果】新型日光温室空气温度相对于砖墙日光温室空气温度,其夜间增温效果提高14.7%,其昼间增温效果降低7.35%;夜间室内表层土壤温度提高30.1%,-50 cm土壤温度提高20.85%;空气相对湿度降低20.85%,日光照辐射量提高12.20%。新型日光温室较之传统砖墙日光温室,其平均株高提高约32%,平均茎粗增加约9.2%。新型日光温室更有利于番茄生长发育。新型日光温室番茄单位面积产量、番茄单果重以及VC含量较之传统砖墙日光温室,分别提高17.28%、12.72%和14.34%,尤其在番茄单位面积产量上,其增益效果明显。【结论】新型日光温室在夜间保温性能方面明显优于传统砖墙结构日光温室,其更大的空间结构降低了室内空气湿度进而提高了温室光照总辐射,间接提高作物光合作用能力。新型日光温室相比于传统墙体日光温室,其番茄整体产量更高。相比于传统砖墙温室,新型日光温室的总体优势大,其竞争力强,实用性、经济效益均佳。
中图分类号:
张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053.
ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse[J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053.
室外设计温度 Outdoor design temperature(℃) | 低限热阻 R0(m2 k/w) | |
---|---|---|
后墙、山墙 Back wall | 后屋面 After roof | |
-26 | 2.1 | 4.0 |
-29 | 2.43 | 4.9 |
-32 | 2.8 | 6.0 |
表1 日光温室围护结构低限热阻
Tab.1 Low-limit heat resistance of the solar greenhouse envelope structure
室外设计温度 Outdoor design temperature(℃) | 低限热阻 R0(m2 k/w) | |
---|---|---|
后墙、山墙 Back wall | 后屋面 After roof | |
-26 | 2.1 | 4.0 |
-29 | 2.43 | 4.9 |
-32 | 2.8 | 6.0 |
温室类型 Greenhouse type | 环境因子 Environmental factor | ||||||
---|---|---|---|---|---|---|---|
夜间空气温度 Air temperature at night (℃) | 昼间空气温度 Air temperature during the day (℃) | -10 cm土壤温度 Soil temperature (℃) | -20 cm土壤温度 Soil temperature (℃) | -50 cm土壤温度 soil temper- ature(℃) | 光照总辐射 Total light radiation (MJ/m2) | 相对空气湿度 Relative air humidity (%) | |
新型温室 New greenhouse | 12.93 | 27.32 | 12.2 | 12.89 | 12.11 | 3.4588 | 66.99 |
传统温室 Traditional greenhouse | 9.21 | 29.33 | 11.03 | 11.68 | 10.02 | 3.0828 | 92.05 |
表2 2种日光温室环境因子比较
Tab.2 Comparison of the two environmental factors of the solar greenhouse
温室类型 Greenhouse type | 环境因子 Environmental factor | ||||||
---|---|---|---|---|---|---|---|
夜间空气温度 Air temperature at night (℃) | 昼间空气温度 Air temperature during the day (℃) | -10 cm土壤温度 Soil temperature (℃) | -20 cm土壤温度 Soil temperature (℃) | -50 cm土壤温度 soil temper- ature(℃) | 光照总辐射 Total light radiation (MJ/m2) | 相对空气湿度 Relative air humidity (%) | |
新型温室 New greenhouse | 12.93 | 27.32 | 12.2 | 12.89 | 12.11 | 3.4588 | 66.99 |
传统温室 Traditional greenhouse | 9.21 | 29.33 | 11.03 | 11.68 | 10.02 | 3.0828 | 92.05 |
图4 2种日光温室冬季气温时间动态 注:A为冬季夜间最低温时,B为冬季昼间最高温时
Fig.4 Time dynamics diagram of winter temperature in two kinds of solar greenhouses Notes: In the figure, A is the lowest temperature in winter, and B is the highest temperature in winter
温室类型 Greenhouse type | 舒适生长时间 Comfortable growth time (h) | 不舒适生长时间 Uncomfortable growth time (h) | 日有效积温 Effective daily temperature accumulation (℃·h) |
---|---|---|---|
新型温室 New greenhouse | 20 | 4 | 179.12 |
普通温室 Ordinary greenhouse | 16 | 8 | 134.34 |
表3 不同日光温室日有效积温
Tab.3 Daily effective cumulative temperature of different solar greenhouses
温室类型 Greenhouse type | 舒适生长时间 Comfortable growth time (h) | 不舒适生长时间 Uncomfortable growth time (h) | 日有效积温 Effective daily temperature accumulation (℃·h) |
---|---|---|---|
新型温室 New greenhouse | 20 | 4 | 179.12 |
普通温室 Ordinary greenhouse | 16 | 8 | 134.34 |
图7 新型日光温室和普通墙体日光温室番茄株高、茎粗比较
Fig.7 Comparisons of plant height and stem thickness of tomato between low energy consumption assembly deep winter production solar greenhouse and common wall solar greenhouse
图8 新型日光温室和普通墙体日光温室番茄叶片净光合速率比较
Fig.8 Comparisons of net photosynthetic rate of tomato leaves in low energy consumption assembled deep winter production solar greenhouse and ordinary wall solar greenhouse
图9 新型日光温室和普通墙体日光温室番茄营养成分的比较
Fig.9 Comparisons of nutritional composition of tomato in low-energy consumption assembly deep winter production solar greenhouse and common wall solar greenhouse
图11 新型日光温室和普通墙体日光温室各阶段番茄产量的比较
Fig.11 Comparisons of tomato yield at each stage between low-energy consumption assembly deep winter production solar greenhouse and ordinary wall solar greenhouse
温室类型 Greenhouse type | 年费用 Annual cost | 经济效益 Economic benefits | 设施农业 生产效率 Production efficiency of facility agriculture | 热效率 Heat efficiency | 地温增效 Ground temperature and efficiency | 温室增温效果 Greenhouse warming effect | 耗煤量 Coal consumption | 光照增效 Light efficiency |
---|---|---|---|---|---|---|---|---|
新型温室 New greenhouse | 0.75 | 0.95 | 0.85 | 0.90 | 0.95 | 0.90 | 0.00 | 0.75 |
传统温室 Traditional greenhouse | 0.80 | 0.80 | 0.70 | 0.80 | 0.70 | 0.80 | 0.40 | 0.70 |
表4 2种温室越冬茬番茄生产综合评价指标无量纲化评分
Tab.4 Undimensionalized score of comprehensive evaluation index of tomato production in two greenhouses
温室类型 Greenhouse type | 年费用 Annual cost | 经济效益 Economic benefits | 设施农业 生产效率 Production efficiency of facility agriculture | 热效率 Heat efficiency | 地温增效 Ground temperature and efficiency | 温室增温效果 Greenhouse warming effect | 耗煤量 Coal consumption | 光照增效 Light efficiency |
---|---|---|---|---|---|---|---|---|
新型温室 New greenhouse | 0.75 | 0.95 | 0.85 | 0.90 | 0.95 | 0.90 | 0.00 | 0.75 |
传统温室 Traditional greenhouse | 0.80 | 0.80 | 0.70 | 0.80 | 0.70 | 0.80 | 0.40 | 0.70 |
图12 新型日光温室和普通墙体日光温室效益
Fig.12 Radar analysis of low energy consumption assembly deep winter production solar greenhouse and ordinary wall solar greenhouse
[1] | 李天来. 设施蔬菜产业发展(一)我国设施蔬菜产业发展现状及展望[J]. 中国蔬菜, 2023,(9):1-6. |
LI Tianlai. Development of facility vegetable industry (1) Development status and prospect of facility vegetable industry in China[J]. Chinese Vegetables, 2023(9):1-6. | |
[2] | 杨烨, 李治国, 赵景文, 等. 宜机化大跨度新型日光温室结构优化设计和保温性能实践[J]. 蔬菜, 2023,(11):41-45. |
YANG Ye, LI Zhiguo, ZHAO Jingwen, et al. Structure optimization design and thermal insulation performance practice of a new large-span solar greenhouse[J]. Vegetables, 2023,(11):41-45. | |
[3] | 叶新华, 钟军, 魏玉强, 等. 阿克苏地区两种不同结构日光温室冬季保温性能研究[J]. 新疆农业科技, 2023,(5):39-41. |
YE Xinhua, ZHONG Jun, WEI Yuqiang, et al. Study on thermal insulation performance of two kinds of solar greenhouses with different structures in winter in Aksu area[J]. Xinjiang Agricultural Science and Technology, 2023,(5):39-41. | |
[4] | 杨定伟, 荆海薇, 景炜婷, 等. 不同墙体材料的装配式日光温室的热性能对比分析[J]. 中国农业大学学报, 2023, 28(10):194-205. |
YANG Dingwei, JING Haiwei, JING Weiting, et al. Comparative analysis of thermal performance of fabricated solar greenhouse with different wall materials[J]. Journal of China Agricultural University, 2023, 28(10):194-205. | |
[5] | 张宇. 日光温室的类型与特点[J]. 农业科技与装备, 2013,(6):99-100. |
ZHANG Yu. Types and characteristics of solar greenhouse[J]. Agricultural Science and Technology and Equipment, 2013,(6):99-100. | |
[6] | 马承伟, 姜宜琛, 程杰宇, 等. 日光温室钢管屋架管网水循环集放热系统的性能分析与试验[J]. 农业工程学报, 2016, 32(21):209-216. |
MA Chengwei, JIANG Yicheng, CHENG Jieyu, et al. Performance analysis and test of water circulation collection and heat release system of pipe truss pipe network in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21):209-216. | |
[7] | 陈超, 张明星, 郑宏飞, 等. 日光温室用双集热管多曲面槽式空气集热器性能试验[J]. 农业工程学报, 2017, 33(15):245-252. |
CHEN Chao, ZHANG Mingxing, ZHENG Hongfei, et al. Performance test of Double-tube and multi-curved channel air collector for solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15):245-252. | |
[8] | 刘叶瑞, 刘孝敏, 柴云娥, 等. 寒冷气候区双膜日光温室室内环境因子试验研究[J]. 甘肃科学学报, 2023, 35(3):54-60. |
LIU Yerui, LIU Xiaomin, CHAI Yune, et al. Experimental study on indoor environmental factors of double film solar greenhouse in cold climate area[J]. Journal of Gansu Science, 2023, 35(3):54-60. | |
[9] | 程智慧, 陈学进, 赖琳玲, 等. 设施番茄果实生长与环境因子的关系[J]. 生态学报, 2011, 31(3):742-748. |
CHENG Zhihui, CHEN Xuejin, LAI Linlin, et al. Relationship between plant tomato fruit growth and environmental factors[J]. Acta Ecologica Sinica, 2011, 31(3):742-748. | |
[10] | 毛丽萍, 任君, 张剑国, 等. 日光温室秋冬茬番茄果实发育期的适宜夜温[J]. 应用生态学报, 2014, 25(5):1408-1414. |
MAO Liping, REN Jun, ZHANG Jianguo, et al. Suitable night temperature for fruit development of autumn and winter tomato in solar greenhouse[J]. Journal of Applied Ecology, 2014, 25 (5): 1408-1414 | |
[11] | 申婷婷, 鲍恩财, 曹晏飞, 等. 不同墙体结构日光温室性能测试及分析[J]. 中国农业大学学报, 2019, 24(3):94-101. |
SHEN Tingting, BAO Encai, CAO Yanfei, et al. Performance test and analysis of solar greenhouses with different wall structures[J]. Journal of China Agricultural University, 2019, 24(3):94-101. | |
[12] | 苏安峻. 岳普湖县日光温室性能评价及其蔬菜茬口安排[D]. 乌鲁木齐: 新疆农业大学, 2016. |
SU Anjun. Performance evaluation of solar greenhouse and its vegetable crop arrangement in Yuepuhu County[D]. Urumqi: Xinjiang Agricultural University, 2016. | |
[13] | 杨福丽. 日光温室番茄高效栽培技术模式与效益分析[J]. 农业开发与装备, 2022,(4):163-165. |
YANG Fuli. Technical model and benefit analysis of tomato efficient cultivation in solar greenhouse[J]. Agricultural Development and Equipment, 2022,(4):163-165. | |
[14] | 赵永红. 日光温室番茄高效栽培技术模式与效益分析[J]. 农业科技与装备, 2021,(5):1-2,7. |
ZHAO Yonghong. Technical model and benefit analysis of tomato high-efficiency cultivation in solar greenhouse[J]. Agricultural Science and Equipment, 2021,(5):1-2,7. | |
[15] | Mcnulty J. Solar Greenhouses Generate Electricity and Grow Crops at same time, UC Santa Cruz Study Reveals[N]. UC Santa Cruz Magazine, 2017-12-3. |
[16] | Bernier H, Raghavan G S V, Paris J. Evaluation of a soil heat exchanger-storage system for a greenhouse. Part I: System performance[J]. Canadian Agricultural Engineering, 1991, 33(1): 93-98. |
[17] | Santamouris M, Mihalakakou G, Balaras C A, et al. Energy conservation in greenhouses with buried pipes[J]. Energy, 1996, 21(5): 353-360. |
[18] | Kurpaska S, Slipek Z. Optimization of Greenhouse Substrate Heating[J]. Journal of Agricultural Engineering Research, 2000, 76(2): 129-139. |
[19] | 何芬, 马承伟, 张俊雄. 温室湿度动态预测模型建立与试验[J]. 农业机械学报, 2009, 40(10):173-177. |
HE Fen, MA Chengwei, ZHANG Junxiong. Establishment and experiment of dynamic prediction model for greenhouse humidity[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(10):173-177. | |
[20] | 刘晓艳. PC 板温室的温湿度建模与仿真[D]. 合肥: 安徽农业大学, 2011. |
LIU Xiaoyan. Modeling and Simulation of Temperature and Humidity in a PC board greenhouse[D]. Hefei: Anhui Agricultural University, 2011. | |
[21] | 杨冬艳, 王丹, 桑婷, 等. 日光温室番茄东西垄向模式下群体光环境及产量分布特征[J]. 中国农机化学报, 2023, 44(9):51-58. |
YANG Dongyan, WANG Dan, SANG Ting, et al. Population light environment and yield distribution characteristics of tomato in solar greenhouse under east-west ridge model[J]. Chinese Journal of Agricultural Mechanization, 2023, 44(9):51-58. | |
[22] | 杨志军, 张红艳, 杨慧宁, 等. 新疆和田地区沙漠专用型日光温室越冬番茄栽培技术[J]. 农业科技通讯, 2023, 44(5):232-235. |
YANG Zhijun, ZHANG Hongyan, YANG Huining, et al. Cultivation technology of overwintering tomato in desert solar greenhouse in Hotan, Xinjiang[J]. Agricultural Science and Technology Bulletin, 2023, 44(5):232-235. | |
[23] | 种培芳, 陈年来. 光照强度对园艺植物光合作用影响的研究进展[J]. 甘肃农业大学学报, 2008, 43(5):104-109. |
ZHONG Peifang, CHEN Nianlai. Progress on the effect of light intensity on photosynthesis in horticultural plants[J]. Journal of Gansu Agricultural University, 2008, 43 (5): 104-109. | |
[24] | 冷寒冰, 秦俊, 胡永红. 四种常见温室植物的光合作用对光和CO2的响应[C]// 中国园艺学会观赏园艺专业委员会,国家花卉工程技术研究中心.中国观赏园艺研究进展2011.中国林业出版社, 2011:5. |
LENG Hanbing, QIN Jun, HU Yonghong. Responses of photosynthesis to Light and CO2 in four common greenhouse plants[C]// Ornamental Horticulture Committee of Chinese Society of Horticulture, National Flower Engineering Technology Research Center. Research Progress of ornamental Horticulture in China 2011. China Forestry Publishing House, 2011:5. | |
[25] | Chartzoulakis K, Bosabalidis A, Patakas A, et al. Effects of water stress on water relations, gasexchange and leaf structre of olive tree.[J]. Acta Horticulturae, 2000, 537:241-247. |
[26] | Fan X X, Xu Z G, Liu X Y, et al. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light[J]. Scientia Horti-culturae, 2013, 153:50-55. |
[27] | Li P M, Ma F W, Cheng L L. Primary and secondary metabolism in the sunexposed peel and the shaded peel of apple fruit[J] Physiologia Plantarum, 2013, 148(1):9-24. |
[28] | 李蔚, 李新旭, 李红岺, 等. 植物生长灯不同补光时间对日光温室番茄产量及品质的影响[J]. 安徽农业科学, 2019, 47(11):49-50. |
LI Wei, LI Xinxu, LI Hongling, et al. Effect of different filling time of plant growth lamp on yield and quality of tomato in solar greenhouse[J]. Anhui Agricultural Sciences, 2019, 47(11):49-50. | |
[29] | 赵玉萍, 邹志荣, 杨振超, 等. 不同温度和光照对温室番茄光合作用及果实品质的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(5):125-130. |
ZHAO Yuping, ZOU Zhirong, YANG Zhenchao, et al. Effects of different temperature and light on photosynthesis and fruit quality of tomato in greenhouse[J]. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(5):125-130. | |
[30] | 阳圣莹, 白胜, 蒋浩宏, 等. 不同补光处理对设施草莓光合特性及果实品质的影响[J]. 山西农业科学, 2016, 44(9):1298-1303. |
YANG Shengying, BAI Sheng, JIANG Haohong, et al. Effects of different supplementary light treatments on photosynthetic characteristics and fruit quality of strawberry[J]. Shanxi Agricultural Sciences, 2016, 44(9):1298-1303. | |
[31] | Tamaoki M, Mukai F, Asai N, et al. Light -controlled expression of a gene encoding L-galactono-y-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana.[J]. Plant Science, 2003, 164(6):1111-1117. |
[32] | 毛金柱, 邱权, 张芳, 等. 荧光灯下不同光周期对生菜形态指标、品质和离子吸收量的影响[J]. 北方园艺, 2013,(15):24-28. |
MAO Jinzhu, QIU Quan, ZHANG Fang, et al. Effect of different photoperiod on morphological indexes, quality and ion absorption of lettuce under fluorescent lamp[J]. Northern Horticulture, 2013,(15): 24-28. | |
[33] | Mikulic-Petkovsek M, Schmitzer V, Slatnar A, et al. A comparison of fruit quality parameter of wild bilberry (Vaccinium myr-tillus L) growing at different locations[J]. Journal of the Science of Food &Agriculture, 2015, 95(4):776-785. |
[1] | 靳娟, 李丽莉, 杨磊, 樊丁宇, 郝庆. 新疆红枣产业发展现状分析[J]. 新疆农业科学, 2024, 61(S1): 106-110. |
[2] | 巩雪花, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 乔小燕, 叶晓琴, 郭文超, 丁新华. 新疆绿洲灌区玉米田杂草种子库及环境因子对杂草种子萌发的影响[J]. 新疆农业科学, 2024, 61(S1): 49-59. |
[3] | 方辉, 丁银灯, 范贵强, 高永红, 黄天荣. 新疆南疆小麦产业发展的现状及品质特性分析[J]. 新疆农业科学, 2024, 61(S1): 75-80. |
[4] | 杨明花, 廖必勇, 刘强, 彭云承, 达吾来·杰克山, 冯国瑞, 唐式敏. 鲜食糯玉米籽粒营养品质的差异变化分析[J]. 新疆农业科学, 2024, 61(9): 2087-2093. |
[5] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[6] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[7] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[8] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[9] | 刘晶, 杜明川, 张文婷, 鲍海娟, 景美玲, 杜文华. 青海不同地区小黑麦种质的筛选[J]. 新疆农业科学, 2024, 61(9): 2183-2190. |
[10] | 徐毛毛, 高杰, 李君明, 李鑫, 刘磊, 潘峰. 20个番茄商业品种群体的多样性分析[J]. 新疆农业科学, 2024, 61(9): 2191-2196. |
[11] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
[12] | 田超, 李玉姗, 马越, 宋羽. 不同浓度苦豆子浸提液对连作番茄生长及土壤肥力的影响[J]. 新疆农业科学, 2024, 61(9): 2203-2210. |
[13] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[14] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[15] | 乔雅洁, 付慧鑫, 乔雪, 孟新涛, 张婷, 潘俨. 不同贮藏温度条件下鲜牛肉品质的变化规律[J]. 新疆农业科学, 2024, 61(9): 2323-2329. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||