新疆农业科学 ›› 2024, Vol. 61 ›› Issue (3): 607-614.DOI: 10.6048/j.issn.1001-4330.2024.03.010
李肖1(), 陈永成1, 黄嵘峥1, 许平珠2, 张凡凡1(
), 马春晖1(
)
收稿日期:
2023-08-05
出版日期:
2024-03-20
发布日期:
2024-04-19
通信作者:
张凡凡(1989-),男,新疆乌鲁木齐人,副教授,博士,硕士生导师,研究方向为饲草加工与生产,(E-mail)zhangfanfan@shzu.edu.cn;作者简介:
李肖(1998-),男,新疆伊犁人,硕士研究生,研究方向为饲草加工与生产,(E-mail)744364871@qq.com
基金资助:
LI Xiao1(), CHEN Yongcheng1, HUANG Rongzheng1, XU Pingzhu2, ZHANG Fanfan1(
), MA Chunhui1(
)
Received:
2023-08-05
Published:
2024-03-20
Online:
2024-04-19
Supported by:
摘要:
【目的】 研究向日葵副产物中优势乳酸菌和纤维素分解菌的生理生化特征,为向日葵副产物发酵饲料提供基础。【方法】 对向日葵副产物表面附着优势乳酸菌及纤维素分解菌进行分离、提取鉴定,并分析优势菌种生理生化特征。【结果】 分离出3株乳酸菌和4株纤维素分解菌。得到3株乳酸菌均为蒙氏肠球菌(Enterococcus mundtii)。4株纤维素分解菌中,菌株Z2和Z13为贝莱斯芽孢杆菌(Bacillus velezensis),X14为阿氏芽孢杆菌(Bacillus aryabhattai),X4与解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。3株乳酸菌在4、10、30和45℃及3%和6.5%的NaCl条件下生长良好,在pH 3.5~9可生长,在pH 3环境下不生长;4株纤维素分解菌中透明圈直径(D)/菌落直径(d)比值和酶活性按大小排序均为解淀粉芽孢杆菌>贝莱斯芽孢杆菌>阿氏芽孢杆菌。【结论】 蒙氏肠球菌具有较强耐盐能力且温度适应范围广,但其产酸能力明显弱于植物乳杆菌(Lactobacillus plantarum);4株纤维素分解菌在CMC糖化酶活力、滤纸酶活性及向日葵副产物的实际失重率中,接种解淀粉芽孢杆菌效果最优。
中图分类号:
李肖, 陈永成, 黄嵘峥, 许平珠, 张凡凡, 马春晖. 向日葵副产物中优势乳酸菌和纤维素分解菌的生理生化特征分析[J]. 新疆农业科学, 2024, 61(3): 607-614.
LI Xiao, CHEN Yongcheng, HUANG Rongzheng, XU Pingzhu, ZHANG Fanfan, MA Chunhui. Physiological and biochemical characteristics of dominant lactic acid bacteria and cellulolytic bacteria in sunflower By-Products[J]. Xinjiang Agricultural Sciences, 2024, 61(3): 607-614.
项目Items | X12 | X13 | Z5 | LP1 | 项目Items | X12 | X13 | Z5 | LP1 |
---|---|---|---|---|---|---|---|---|---|
产酸Acidproduction | + | + | + | + | 葡萄糖Glucose | + | + | + | + |
产气Aerogenesis | - | - | - | - | 乳糖Lactose | + | + | + | + |
发酵类型Fermentation type | 同型Homo | 木糖Xylose | + | + | + | + | |||
4℃ | + | + | + | w | 棉子糖Raffinose | + | + | + | + |
10℃ | + | + | + | ++ | 蔗糖Sucrose | + | + | + | + |
30℃ | + | + | + | ++ | 甘露糖Mannose | + | + | + | + |
45℃ | + | + | + | + | 山梨醇Sorbitol | + | + | + | + |
3%NaCl | + | + | + | + | 鼠李糖Rhamnose | w | w | w | - |
6.5%NaCl | + | + | + | + | 松三糖Melezitose | - | - | - | + |
pH 3 | - | - | - | - | 纤维二糖Cellobiose | + | + | + | + |
pH 3.5 | w | w | w | w | 七叶苷Esculin | + | + | + | + |
pH 4 | + | + | + | + | 蜜二糖Melibiose | w | w | w | + |
pH 5 | + | + | + | ++ | 果糖Fructose | + | + | + | + |
pH 6 | + | + | + | ++ | 海藻糖Trehalose | + | + | + | + |
pH 7 | + | + | + | ++ | 甘露醇Mannitol | + | + | + | + |
pH 8 | + | + | + | ++ | 麦芽糖Maltose | + | + | + | + |
pH 9 | + | + | + | ++ |
表1 乳酸菌的生理生化特性及碳源发酵
Tab.1 Physiological and biochemical characteristics of lactic acid bacteria and carbon source fermentation test
项目Items | X12 | X13 | Z5 | LP1 | 项目Items | X12 | X13 | Z5 | LP1 |
---|---|---|---|---|---|---|---|---|---|
产酸Acidproduction | + | + | + | + | 葡萄糖Glucose | + | + | + | + |
产气Aerogenesis | - | - | - | - | 乳糖Lactose | + | + | + | + |
发酵类型Fermentation type | 同型Homo | 木糖Xylose | + | + | + | + | |||
4℃ | + | + | + | w | 棉子糖Raffinose | + | + | + | + |
10℃ | + | + | + | ++ | 蔗糖Sucrose | + | + | + | + |
30℃ | + | + | + | ++ | 甘露糖Mannose | + | + | + | + |
45℃ | + | + | + | + | 山梨醇Sorbitol | + | + | + | + |
3%NaCl | + | + | + | + | 鼠李糖Rhamnose | w | w | w | - |
6.5%NaCl | + | + | + | + | 松三糖Melezitose | - | - | - | + |
pH 3 | - | - | - | - | 纤维二糖Cellobiose | + | + | + | + |
pH 3.5 | w | w | w | w | 七叶苷Esculin | + | + | + | + |
pH 4 | + | + | + | + | 蜜二糖Melibiose | w | w | w | + |
pH 5 | + | + | + | ++ | 果糖Fructose | + | + | + | + |
pH 6 | + | + | + | ++ | 海藻糖Trehalose | + | + | + | + |
pH 7 | + | + | + | ++ | 甘露醇Mannitol | + | + | + | + |
pH 8 | + | + | + | ++ | 麦芽糖Maltose | + | + | + | + |
pH 9 | + | + | + | ++ |
菌株 Strain and number | 基因库 存取号 Accession number | 近源种 Closest related strain | 与GenBank 中近源种的 相似性 Similarity with the closest described species in Genbank(%) |
---|---|---|---|
X12 | OM841487 | 蒙氏肠球菌 Enterococcus mundtii | 100 |
X13 | OL98461 | 蒙氏肠球菌 Enterococcus mundtii | 99.89 |
Z5 | OM102992 | 蒙氏肠球菌 Enterococcus mundtii | 100 |
X4 | OL774703 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 99.89 |
X14 | OM856838 | 阿氏芽孢杆菌 Bacillus aryabhattai | 99.89 |
Z2 | OL889917 | 贝莱斯芽孢杆菌 Bacillus velezensis | 100 |
Z13 | OL889918 | 贝莱斯芽孢杆菌 Bacillus velezensis | 100 |
表2 乳酸菌菌株的基因序列
Tab.2 Gene sequence analysis of lactic acid bacteria and cellulose-decomposing bacteria
菌株 Strain and number | 基因库 存取号 Accession number | 近源种 Closest related strain | 与GenBank 中近源种的 相似性 Similarity with the closest described species in Genbank(%) |
---|---|---|---|
X12 | OM841487 | 蒙氏肠球菌 Enterococcus mundtii | 100 |
X13 | OL98461 | 蒙氏肠球菌 Enterococcus mundtii | 99.89 |
Z5 | OM102992 | 蒙氏肠球菌 Enterococcus mundtii | 100 |
X4 | OL774703 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 99.89 |
X14 | OM856838 | 阿氏芽孢杆菌 Bacillus aryabhattai | 99.89 |
Z2 | OL889917 | 贝莱斯芽孢杆菌 Bacillus velezensis | 100 |
Z13 | OL889918 | 贝莱斯芽孢杆菌 Bacillus velezensis | 100 |
菌株 Strain and number | 菌种名称 The name of thestrain | 透明圈直径D (cm) | 菌落直径d (cm) | D/d值 |
---|---|---|---|---|
X4 | 解淀粉芽孢杆菌Bacillus amyloliquefaciens | 2.10±0.03a | 0.93±0.01a | 2.25±0.06a |
X14 | 阿氏芽孢杆菌Bacillus aryabhattai | 0.63±0.02b | 0.51±0.01b | 0.81±0.01b |
Z2 | 贝莱斯芽孢杆菌Bacillus velezensis | 0.76±0.01c | 0.44±0.01c | 1.72±0.05c |
Z13 | 贝莱斯芽孢杆菌Bacillus velezensis | 0.79±0.02c | 0.46±0.01c | 1.72±0.01c |
表3 不同菌株菌落大小及透明圈直径
Tab.3 Colony size and transparent circle diameter of different strains
菌株 Strain and number | 菌种名称 The name of thestrain | 透明圈直径D (cm) | 菌落直径d (cm) | D/d值 |
---|---|---|---|---|
X4 | 解淀粉芽孢杆菌Bacillus amyloliquefaciens | 2.10±0.03a | 0.93±0.01a | 2.25±0.06a |
X14 | 阿氏芽孢杆菌Bacillus aryabhattai | 0.63±0.02b | 0.51±0.01b | 0.81±0.01b |
Z2 | 贝莱斯芽孢杆菌Bacillus velezensis | 0.76±0.01c | 0.44±0.01c | 1.72±0.05c |
Z13 | 贝莱斯芽孢杆菌Bacillus velezensis | 0.79±0.02c | 0.46±0.01c | 1.72±0.01c |
[1] | Goes R H T B, Miyagi E S, Oliveira E R, et al. Chemical changes in sunflower silage associated with different additives[J]. Acta Scientiarum Animal Sciences, 2013, 35(1):29-35. |
[2] |
张佳, 王园, 安晓萍, 等. 向日葵副产物的营养特性及在反刍动物中的应用[J]. 中国畜牧兽医, 2021, 48(3):916-924.
DOI |
ZHANG Jia, WANG Yuan, AN Xiaoping, et al. Nutritional characteristics of sunflower by-products and its application in ruminants[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(3):916-924. | |
[3] | 田亚红, 王巍杰, 王之爽. 向日葵花盘、秸秆发酵生产生物蛋白饲料工艺的研究[J]. 饲料工业, 2013, 34(11):42-45. |
TIAN Yahong, WANG Weijie, WANG Zhishuang. Study on fermentation technology using sunflower head and sunflower stalk to produce bioprotein feed[J]. Feed Industry, 2013, 34(11):42-45. | |
[4] | Mcdonald P, Henderson A R, Heron SJE. The Biochemistry of Silage[M]. Marlow: Chalcombe Publications,1991. |
[5] |
Cai Y, Kumai S, Ogawa M, et al. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation[J]. Applied and Environmental Microbiology, 1999, 65(7):2901-2906.
DOI PMID |
[6] |
张玉琳, 杨寒珺, 李超程, 等. 杂交构树青贮饲料中优良乳酸菌的分离与鉴定[J]. 草地学报, 2022, 30(1):38-45.
DOI |
ZHANG Yulin, YANG Hanjun, LI Chaocheng, et al. Isolation and identification of lactic acid bacterium strain from broussonetia papyrifera silage[J]. Acta Agrestia Sinica, 2022, 30(1):38-45.
DOI |
|
[7] | ZHANG F F, WANG X Z, LU W H, et al. Meta-analysis of the effects of combined homo- and hetero-fermentative lactic acid bacteria on the fermentation and aerobic stability of corn silage[J]. International Journal of Agriculture and Biology, 2018, 20(8):1846-1852. |
[8] |
Zhao C, Wang L H, Ma G M, et al. Cellulase Interacts with lactic acid bacteria to affect fermentation quality,microbial community,and ruminal degradability in mixed silage of soybean residue and corn stover[J]. Animals, 2021, 11(2):334.
DOI URL |
[9] |
Zhang B, Wang L J, Shahbazi A, et al. Dilute-sulfuric acid pretreatment of cattails for cellulose conversion[J]. Bioresource Technology, 2011, 102(19):9308-9312.
DOI PMID |
[10] | 宫秀杰, 钱春荣, 于洋, 等. 近年纤维素降解菌株筛选研究进展[J]. 纤维素科学与技术, 2021, 29(2):68-77. |
GONG Xiujie, QIAN Chunrong, YU Yang, et al. Progress on screening of cellulose degrading strains in recent years[J]. Journal of Cellulose Science and Technology, 2021, 29(2):68-77. | |
[11] | 许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解[J]. 生物工程学报, 2019, 35(11):2081-2091. |
XU Congfeng, AI Shiqi, SHEN Guinan, et al. Microbial degradation of lignocelluloses[J]. Chinese Journal of Biotechnology, 2019, 35(11):2081-2091.
DOI PMID |
|
[12] |
Hasunuma T, Okazaki F, Okai N, et al. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology-Science Direct[J]. Bioresource Technology, 2013, 135:513-522.
DOI PMID |
[13] | 戴芸芸, 钟卫鸿. 细菌降解木质纤维素的研究进展[J]. 化学与生物工程, 2016, 33(6):11-16. |
DAI Yunyun, ZHONG Weihong. Research Progress on Degradation of Lignocellulose by Bacteria[J]. Chemistry & Bioengineering, 2016, 33(6):11-16. | |
[14] |
杨杨, 石超, 郭旭生. 高寒草甸魏斯氏乳酸菌的分离鉴定及理化特性研究[J]. 草业学报, 2014, 23(1):266-275.
DOI |
YANG Yang, SHI Chao, GUO Xusheng. Characterization and identification of Weissella species isolated from Kobresia littledalei growing in alpine meadows[J]. Acta Prataculturae Sinica, 2014, 23(1):266-275.
DOI |
|
[15] |
陈堞, 林凯程, 林沁, 等. 大米草中耐盐乳酸菌的分离鉴定及对大米草青贮品质的影响[J]. 草地学报, 2020, 28(2):565-570.
DOI |
CHEN Die, LIN Kaicheng, LIN Qin, et al. Isolation and identification of salt-tolerant lactic acid bacteria in Spartina anglica hubb.and its effect on the quality of silage[J]. Acta Agrestia Sinica, 2020, 28(2):565-570.
DOI |
|
[16] |
尹雪, 郭雪峰, 刘俊峰, 等. 盐穗木青贮中乳酸菌的分离及筛选[J]. 中国农业科学, 2018, 51(14):2825-2834.
DOI |
YIN Xue, GUO Xuefeng, LIU Junfeng, et al. Isolation and identification of lactic acid bacteria from Halostachys Caspica silage[J]. Scientia Agricultura Sinica, 2018, 51(14):2825-2834.
DOI |
|
[17] |
王得武, 姚拓, 杨巧丽, 等. 高效稳定纤维素分解菌群筛选及其分解特性研究[J]. 草业学报, 2014, 23(2):253-259.
DOI |
WANG Dewu, YAO Tuo, YANG Qiaoli, et al. Screening and degradation characterization of efficient and stable cellulose degrading microbial communities[J]. Acta Prataculturae Sinica, 2014, 23(2):253-259.
DOI |
|
[18] | 李红亚, 李术娜, 王树香, 等. 解淀粉芽孢杆菌MN-8对玉米秸秆木质纤维素的降解[J]. 应用生态学报, 2015, 26(5):1404-1410. |
LI Hongya, LI Shuna, WANG Shuxiang, et al. Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1404-1410.
PMID |
|
[19] | 凌代文. 乳酸细菌分类鉴定及实验方法[J]. 微生物学通报, 1999, 26(1):23. |
LING Daiwen. Classification,identification and experimental methods of lactic acid bacteria[J]. Microbiology, 1999, 26(1):23. | |
[20] | 高建民, 翁海波, 席宇, 等. 一株嗜热嗜酸纤维素酶高产霉菌分离鉴定及其酶学性质研究[J]. 微生物学通报, 2007, 34(4):715-718. |
GAO Jianmin, WENG Haibo, XI Yu, et al. Isolation and identification on a thermoacidophilic fungus of high-producing cellulase and the characteristics of its enzyme[J]. Microbiology, 2007, 34(4):715-718. | |
[21] | 房兴堂, 陈宏, 赵雪锋, 等. 秸秆纤维素分解菌的酶活力测定[J]. 生物技术通讯, 2007, 18(4):628-630. |
FANG Xingtang, CHEN Hong, ZHAO Xuefeng, et al. Determination of Enzyme Activity of Straw Cellulose-Decomposing Microorganisms[J]. Letters in Biotechnology, 2007, 18(4):628-630. | |
[22] |
孙美娜, 张凡凡, 王永强, 等. 棉花秸秆纤维素降解菌的筛选鉴定与降解棉秆效果研究[J]. 新疆农业科学, 2018, 55(1):16-23.
DOI |
SUN Meina, ZHANG Fanfan, WANG Yongqiang, et al. Screening and Identification of Cellulolytic Strains from Cotton Straw and Its Effect on Degradation of Cotton Stalk[J]. Xinjiang Agricultural Sciences, 2018, 55(1):16-23.
DOI |
|
[23] |
Kumar S, Tamura K, Nei M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment[J]. Briefings in Bioinformatics, 2004, 5(2):150-163.
DOI URL |
[24] | 郭刚, 霍文婕, 刘强, 等. 玉米秸秆青贮饲料发酵早期优良乳酸菌的分离和鉴定[J]. 畜牧与兽医, 2016, 48(7):60-64. |
GUO Gang, HUO Wenjie, LIU Qiang, et al. Isolation and identification of good lactic acid bacteria in early fermentation of corn straw silage[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(7):60-64. | |
[25] |
司丙文, 王宗礼, 孙启忠, 等. 山竹岩黄芪青贮中优质乳酸菌的分离和鉴定[J]. 草地学报, 2012, 20(1):166-170.
DOI |
SI Bingwen, WANG Zongli, SUN Qizhong, et al. Isolation and identification of high-quality lactic acid bacteria in Hedysarum fruticosum Pall. Silage[J]. Acta Agrectir Sinica, 2012, 20(1):166-170. | |
[26] |
Lindow S E, Brandl M T. Microbiology of the phyllosphere[J]. Appl Environ Microbiol, 2003, 69(4):1875-1883.
DOI URL |
[27] |
Yu A O, Leveau J H J, Marco M L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria[J]. Environ Microbiol Rep, 2020, 12(1):16-29.
DOI URL |
[28] | 王智伟. 白蚁体内产纤维素酶细菌的分离鉴定及其相关基因的载体构建与原核表达[D]. 杨凌: 西北农林科技大学, 2018. |
WANG Zhiwei. Isolation and identification of cellulase-producing bacteria in termites and their related gene vector construction and prokaryotic expression[D]. Yangling: Northwest A & F University, 2018. | |
[29] | 熊乙, 欧翔, 贾蓉, 等. 阿氏芽孢杆菌应用研究进展[J]. 生物技术, 2018, 28(3):302-306. |
XIONG Yi, OU Xiang, JIA Rong, et al. Research progress in application of Bacillus aryabhattai[J]. Biotechnology, 2018, 28(3):302-306. | |
[30] | 熊乙. 木质纤维素降解菌的筛选鉴定及降解产物研究[D]. 太谷: 山西农业大学, 2019. |
XIONG Yi. Screening and identification of lignocellulose-degrading bacteria and study on degradation products[D]. Taigu: Shanxi Agricultural University, 2019. | |
[31] | 任津莹, 陈鹏. 一株贝莱斯芽孢杆菌的分离鉴定及其生物学特性研究[J]. 饲料研究, 2022, 45(2):79-82. |
REN Jinying, CHEN Peng. Isolation,identification and biological characteristics of a strain of Bacillus velezensis[J]. Feed Research, 2022, 45(2):79-82. | |
[32] |
张凡凡, 张玉琳, 王旭哲, 等. 纤维素分解菌与布氏乳杆菌联合接种对青贮玉米发酵品质、有氧稳定性和瘤胃降解参数的影响[J]. 动物营养学报, 2021, 33(3):1735-1746.
DOI |
ZHANG Fanfan, ZHANG Yulin, WANG Xuzhe, et al. Effects of cellulose decomposing bacteria and Lactobacillus buchneri combined culture on fermentation quality,aerobic stability and rumen degradation parameters of corn silage[J]. Chinese Journal of Animal Nutrition, 2021, 33(3):1735-1746. |
[1] | 罗文杰, 张海春, 刘旋峰, 张丽, 周欣. 二次抛送式秸秆粉碎还田及残膜回收联合作业机的研制[J]. 新疆农业科学, 2024, 61(S1): 142-146. |
[2] | 王浩中, 林青, 曾军, 高雁, 赵燕慧, 时红玲, 马贵军, 马正海, 娄恺, 霍向东. 产植酸酶益生乳酸菌的筛选[J]. 新疆农业科学, 2024, 61(9): 2290-2298. |
[3] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[4] | 洪飞, 贾丰莲, 刘易, 吴燕, 杨茹薇, 孙慧, 李广悦. 新疆马铃薯黑痣病病原菌的分离及定[J]. 新疆农业科学, 2024, 61(7): 1766-1771. |
[5] | 苗书魁, 王俊伟, 陆桂丽, 汪萍, 王杰, 魏玉荣, 魏婕, 米晓云, 沙依兰·卡依扎. 犊牛腹泻症的病原学检测及鉴定[J]. 新疆农业科学, 2024, 61(6): 1535-1543. |
[6] | 张宏芝, 王立红, 时佳, 孔德鹏, 王重, 高新, 李剑峰, 王春生, 夏建强, 樊哲儒, 张跃强. 土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1041-1047. |
[7] | 王莉, 周小云, 鄢蓉, 张军高, 李进, 梁晶, 龚静云, 杜雨, 马德英, 雷斌. 由雪腐微座孢引起的小麦雪腐病病原鉴定及生物学特性分析[J]. 新疆农业科学, 2024, 61(5): 1201-1208. |
[8] | 孙建, 李雪, 楚敏, 顾美英, 艾尼江·尔斯满, 朱静, 何齐, 谭慧林, 张志东. 原驼乳中乳酸菌的分离筛选及特性分析[J]. 新疆农业科学, 2024, 61(4): 1021-1028. |
[9] | 唐丽, 李春艳, 孟紫微, 李亚鹏, 张王斌. 梨树腐烂病病原菌种群结构分析[J]. 新疆农业科学, 2024, 61(3): 681-689. |
[10] | 柳丰, 祖丽皮耶·安外尔, 李克梅, 托伦巴特·毕亚洪. 紫花苜蓿炭疽病病原新记录种(Colletotrichum liriopes)的鉴定及生物学特性分析[J]. 新疆农业科学, 2024, 61(3): 690-698. |
[11] | 姚宇翔, 王国强, 王可, 伊莎, 杨欣雅, 罗晓霞. 塔里木河上游不同生境细菌群落结构及多样性分析[J]. 新疆农业科学, 2024, 61(3): 708-718. |
[12] | 巴哈依丁·吾甫尔, 阿布来克·尼牙孜, 胡西旦·买买提, 吕小龙, 王浩淼, 马会勤. 60Co-γ射线对不同无花果品种一年生枝条的辐射效应分析[J]. 新疆农业科学, 2024, 61(2): 373-381. |
[13] | 罗文芳, 周军辉, 何伟, 许建军. 新疆茄子绒菌斑病原菌的分离及鉴定[J]. 新疆农业科学, 2024, 61(2): 455-460. |
[14] | 刘会芳, 王强, 韩宏伟, 庄红梅, 王浩, 常亚南. 盐、碱及复合盐碱胁迫对番茄幼苗光合特性及抗氧化酶活性的影响[J]. 新疆农业科学, 2024, 61(11): 2658-2666. |
[15] | 徐路明, 靳范, 张俊三, 阿力木·买买提吐尔逊, 李谦绪, 孙利峰. 玉米籽粒收获机喂抛组合式脱粒分离装置设计与试验[J]. 新疆农业科学, 2024, 61(10): 2500-2513. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||