新疆农业科学 ›› 2023, Vol. 60 ›› Issue (12): 2921-2931.DOI: 10.6048/j.issn.1001-4330.2023.12.008
• 作物遗传育种·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
曹琦1(), 毛廷勇2, 汪志强2, 万素梅2(
), 陈国栋2(
)
收稿日期:
2023-03-14
出版日期:
2023-12-20
发布日期:
2024-01-03
作者简介:
曹琦(1985-),女,新疆昌吉人,高级实验师,硕士,研究方向为果树生产与生态农业,(E-mail)443157330@qq.com
基金资助:
CAO Qi1(), MAO Tingyong2, WANG Zhiqiang2, WAN Sumei2(
), CHEN Guodong2(
)
Received:
2023-03-14
Published:
2023-12-20
Online:
2024-01-03
Supported by:
摘要:
【目的】比较新疆塔里木盆地西北缘单作棉田与2种枣棉间作棉田对生态的改善程度及单位土地面积内的经济效益。【方法】以棉花品种新陆中36号为材料,设置单作棉田(CK)、1膜2行枣棉间作棉田(C1)及1膜4行枣棉间作棉田(C2)。研究不同间作模式对棉田的微环境指标、棉花不同生育期生长、产量以及经济效益的影响。【结果】不同间作模式棉田光强变化为CK>C1>C2;C1、C2的3个冠位CO2总浓度均高于单作棉田;单作棉田的光强、风速、空气及土壤温度均高于2个间作棉田,而空气、土壤湿度均低于2个间作棉田。C2模式棉田的空气、土壤温度、风速明显低于C1,空气及土壤湿度则相反。蕾期-花铃期的棉花各生长指标表现为间作棉田>单作棉田。CK模式棉花产量最高,达到398.00 kg/667m2。净收入表现为C1>C2>CK>CK0,C1模式棉田净收入为2 517.28元/(667m2·a),但收益率(37.96%),排名第2。【结论】最佳枣棉种植模式为1膜2行模式。
中图分类号:
曹琦, 毛廷勇, 汪志强, 万素梅, 陈国栋. 塔里木盆地西北缘不同种植模式棉田微环境及经济效益比较[J]. 新疆农业科学, 2023, 60(12): 2921-2931.
CAO Qi, MAO Tingyong, WANG Zhiqiang, WAN Sumei, CHEN Guodong. Comparison of microenvironment and economic benefits of cotton fields with different planting patterns in northwest margin of tarim basin[J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2921-2931.
图1 不同种植模式微环境指标测点示意 注: 代表枣树, 代表棉株。a1~i1为C1种植模式下微环境指标的测点,a2~i2为C2种植模式下微环境指标的测点,a3~i3为CK种植模式下微环境指标的测点。
Fig.1 Schematic diagram of microenvironment index test points under different planting methods Note: represent jujube trees and represent cotton plants.a1-i1 is the measurement point of microenvironmental indicators under C1 planting mode, a2-i2 is the measurement point of microenvironmental indicators under C2 planting mode, and a3-i3 is the measurement point of microenvironmental indicators under CK planting mode.
图2 不同种植模式下棉田光照强度变化 注:不同字母表示不同种植模式间的差异达到5%显著水平,下同
Fig.2 Effects of different planting patterns on light intensity Note: different letters of the superscript indicate that the difference between different planting patterns reaches the significance level of 5%, the same as below
种植模式 Plantation mode | 防风效能 Windproof effect | 相对风速 Relative wind speed | 风速降低值的回归方程 Regression equation of wind speed reducing values | 相关性 Relevance | 预测值的标准差 Standard error of predicting value |
---|---|---|---|---|---|
C1 | 43 | 57 | W = 0.780 4a + 0.674 6 | 0.893 6 | 0.24 |
C2 | 38 | 62 | W = 1.031 5a + 0.220 7 | 0.885 5 | 0.23 |
表1 间作棉田的防风效应比较
Tab.1 Comparison of windbreak effect in intercropped cotton fields
种植模式 Plantation mode | 防风效能 Windproof effect | 相对风速 Relative wind speed | 风速降低值的回归方程 Regression equation of wind speed reducing values | 相关性 Relevance | 预测值的标准差 Standard error of predicting value |
---|---|---|---|---|---|
C1 | 43 | 57 | W = 0.780 4a + 0.674 6 | 0.893 6 | 0.24 |
C2 | 38 | 62 | W = 1.031 5a + 0.220 7 | 0.885 5 | 0.23 |
种植模式 Plantation mode | 生育期 Growth period | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 果枝数 Fruit branch numbers (台) | 蕾数 Number of buds (个) | 花数 Flower Count (朵) | 铃数 Boll number (个) | 产量 Yield (kg/667m2) |
---|---|---|---|---|---|---|---|---|
C1 | 蕾期 | 24.48±0.84b | 5.13±0.34a | 1.17±0.17b | 1.17±0.17c | 308.00±20.51a | ||
开花期 | 36.78±1.30b | 7.03±0.80b | 4.67±0.17b | 5.83±0.17b | 3.00±0.58b | |||
花铃期 | 46.71±0.86b | 8.49±0.74b | 6.83±0.17b | 7.67±0.44b | 1.17±0.17a | 2.17±0.17a | ||
C2 | 蕾期 | 24.48±0.73b | 5.39±0.33a | 1.83±0.17b | 3.83±0.17a | 332.00±29.24a | ||
开花期 | 37.06±0.53b | 6.70±1.10b | 4.50±0.29b | 5.50±0.29b | 2.00±0.00b | |||
花铃期 | 43.35±1.74b | 7.90±0.66b | 5.83±0.17c | 5.50±0.29c | 1.67±0.44a | 1.83±0.17a | ||
CK | 蕾期 | 27.33±0.70a | 6.21±0.64a | 4.5±0.29a | 2.83±0.17b | 398.00±34.79a | ||
开花期 | 46.36±0.69a | 10.31±0.91a | 5.67±0.17a | 7.50±0.29a | 5.00±0.58a | |||
花铃期 | 71.09±4.20a | 11.00±0.76a | 8.33±0.17a | 10.67±0.44a | 1.33±0.17a | 2.17±0.17a |
表2 不同种植模式下棉田棉花生长及产量变化
Tab.2 Cotton growth and yield changes in cotton fields with different planting patterns
种植模式 Plantation mode | 生育期 Growth period | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 果枝数 Fruit branch numbers (台) | 蕾数 Number of buds (个) | 花数 Flower Count (朵) | 铃数 Boll number (个) | 产量 Yield (kg/667m2) |
---|---|---|---|---|---|---|---|---|
C1 | 蕾期 | 24.48±0.84b | 5.13±0.34a | 1.17±0.17b | 1.17±0.17c | 308.00±20.51a | ||
开花期 | 36.78±1.30b | 7.03±0.80b | 4.67±0.17b | 5.83±0.17b | 3.00±0.58b | |||
花铃期 | 46.71±0.86b | 8.49±0.74b | 6.83±0.17b | 7.67±0.44b | 1.17±0.17a | 2.17±0.17a | ||
C2 | 蕾期 | 24.48±0.73b | 5.39±0.33a | 1.83±0.17b | 3.83±0.17a | 332.00±29.24a | ||
开花期 | 37.06±0.53b | 6.70±1.10b | 4.50±0.29b | 5.50±0.29b | 2.00±0.00b | |||
花铃期 | 43.35±1.74b | 7.90±0.66b | 5.83±0.17c | 5.50±0.29c | 1.67±0.44a | 1.83±0.17a | ||
CK | 蕾期 | 27.33±0.70a | 6.21±0.64a | 4.5±0.29a | 2.83±0.17b | 398.00±34.79a | ||
开花期 | 46.36±0.69a | 10.31±0.91a | 5.67±0.17a | 7.50±0.29a | 5.00±0.58a | |||
花铃期 | 71.09±4.20a | 11.00±0.76a | 8.33±0.17a | 10.67±0.44a | 1.33±0.17a | 2.17±0.17a |
种植模式 Plantation mode | 产量Yield(kg/667m2) | 总收入 Total Income (元/(667m2·a)) | 成本 Cost (元/(667m2·a)) | 净收入 Net receipt (元/(667m2·a)) | 收益率 Rate of return (%) | |
---|---|---|---|---|---|---|
枣 Jujube | 棉花 Cotton | |||||
C1 | 821.00 | 308.00 | 6 630.60 | 4 113.32 | 2 517.28 | 37.96 |
C2 | 771.00 | 332.00 | 6 577.40 | 5 017.20 | 1 560.20 | 23.72 |
CK | 398.00 | 3 263.60 | 1 937.20 | 1 326.40 | 40.64 | |
CK0 | 900.00 | 4 500.00 | 3 210.05 | 1 289.95 | 28.67 |
表3 不同种植模式棉田经济效益比较
Tab.3 Comparison of economic benefits of cotton fields with different planting patterns
种植模式 Plantation mode | 产量Yield(kg/667m2) | 总收入 Total Income (元/(667m2·a)) | 成本 Cost (元/(667m2·a)) | 净收入 Net receipt (元/(667m2·a)) | 收益率 Rate of return (%) | |
---|---|---|---|---|---|---|
枣 Jujube | 棉花 Cotton | |||||
C1 | 821.00 | 308.00 | 6 630.60 | 4 113.32 | 2 517.28 | 37.96 |
C2 | 771.00 | 332.00 | 6 577.40 | 5 017.20 | 1 560.20 | 23.72 |
CK | 398.00 | 3 263.60 | 1 937.20 | 1 326.40 | 40.64 | |
CK0 | 900.00 | 4 500.00 | 3 210.05 | 1 289.95 | 28.67 |
[1] |
侯彤瑜, 郝婷丽, 王海江, 等. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6):1112-1126.
DOI |
HOU Tongyu, HAO Tingli, WANG Haijiang, et al. Growth and development model of cotton and its research and application progress in China[J]. Scientia Agricultura Sinica, 2021, 54(6):1112-1126. | |
[2] | 黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用[J]. 作物学报, 1999, 25(1):9. |
HUANG Gaobao. Development of Light Utilization Theory for Wheat/Corn Intercropping in Condition of Intensive Cultivation[J]. Acta Agronomica Sinica, 1999, 25(1):9. | |
[3] | 蔺芳. 紫花苜蓿/禾本科牧草间作提高其生产潜力和营养品质机理及家畜对其利用效果研究[D]. 兰州: 甘肃农业大学, 2019. |
LIN Fang. Study on mechanism of improving production potential and nutritional quality of alfalfa/grass intercropping and utilization effect of livestock[D]. Lanzhou: Gansu Agricultural University, 2019. | |
[4] | 梁琴, 蒋进, 周泽弘, 等. 四川丘陵柑橘园种植豆科绿肥的环境和增产提质效应[J]. 中国土壤与肥料, 2021,(6):143-148. |
LIANG Qin, JIANG Jin, ZHOU Zehong, et al. Environmental and quality improvement effects of leguminous green manure planted in hilly citrus orchards of Sichuan Province[J]. Soil and Fertilizer in China, 2021,(6):143-148. | |
[5] | 李巧玲, 肖忠, 安杰, 等. 不同间作模式对田间杂草防控及栀子产量的影响[J]. 西南师范大学学报(自然科学版), 2021, 46(3):172-178. |
LI Qiaoling, XIAO Zhong, AN Jie, et al. Effects of different intercropping patterns on weed control and Gardenia yield in the field[J]. Journal of Southwest China Normal University (Natural Science Ed.), 2021, 46(3):172-178. | |
[6] | 张永志, 王淼, 高健健, 等. 间作鼠茅对茶园杂草抑制效果和茶叶品质与产量指标的影响[J]. 安徽农业大学学报, 2020, 47(3):340-344. |
[42] | LI Lingli, RUAN Yuan, LIU Wei, et al. Effects of Intercropping Alfalfa on Growth and Yield of Cotton, Microorganism and Enzyme Activities of Cotton Field Soil[J]. Journal of Henan Agricultural Sciences, 2019, 48(6):52-59. |
[6] | ZHANG Yongzhi, WANG Miao, GAO Jianjian, et al. Effects of intercropping Vulpia myuros on weed control and indexes of tea quality and production[J]. Journal of Anhui Agricultural University, 2020, 47(3):340-344. |
[7] | 潘文勤, 李华英, 颜文好, 等. 武鸣县木薯朱砂叶螨发生规律初探[J]. 热带农业科学, 2011, 31(8):34-38. |
PAN Wenqin, LI Huaying, YAN Wenhao, et al. Outbreak Regularity of Cassava Tetranychus cinnabarinus in Wuming County[J]. Chinese Journal of Tropical Agriculture, 2011, 31(8):34-38. | |
[8] | 李会科. 渭北旱地苹果园生草的生态环境效应及综合技术体系构建[D]. 杨凌: 西北农林科技大学, 2008. |
LI Huike. Eco-environmental effect and integrated technical system of green cover in apple orchard in weibei dryl and farming areas[D]. Yangling: Northwest A&F University, 2008. | |
[9] | 李珍, 谢世清, 徐文果, 等. 套种于不同树龄橡胶林下谢君魔芋(Amorphophallus xiei)的光合特性研究[J]. 热带作物学报, 2016, 37(2):241-246. |
LI Zhen, XIE Shiqing, XU Wenguo, et al. Photosynthetic Characteristics of Amorphophallus xiei Intercropped to Rubber Plantation with Different Ages[J]. Chinese Journal of Tropical Crops, 2016, 37(2):241-246. | |
[10] | 王宇先, 魏湜, 刘玉涛, 等. 寒地玉米育苗移栽间作中草药防风高效栽培技术[J]. 黑龙江农业科学, 2010,(10):169-171. |
WANG Yuxian, WEI Di, LIU Yutao, et al. High efficient cultivation technology of Chinese herbal medicine for windbreak in maize seedling transplanting in cold region[J]. Heilongjiang Agricultural Sciences, 2010,(10):169-171. | |
[11] | 严芳, 娄艳华, 陈建兴, 等. 间作白三叶草对茶园温湿度和茶树根系生长的影响[J]. 热带作物学报, 2017, 38(12):2243-2247. |
YAN Fang, LOU Yanhua, CHEN Jianxing, et al. The Effect of Intercropping Trifolium repens on Temperature Humidity and Growth of Tea Root System in Tea Plantation[J]. Chinese Journal of Tropical Crops, 2017, 38(12):2243-2247. | |
[12] | 刘晨, 哈斯亚提·托逊江, 艾比布拉·伊马木. 库尔勒香梨果园间作饲草作物对土壤养分及小环境的影响[J]. 新疆农业科学, 2014, 51(11):2073-2078. |
LIU Chen, Hasiyati Tuoxunjiang, Aibibula Yimamu. Effects of Intercropping Forage Grass on Soil Nutrients and Microclimate in Korla Pear Orchard[J]. Xinjiang Agricultural Sciences, 2014, 51(11):2073-2078. | |
[13] | 黄天忠, 曹国璠, 赵明书, 等. 不同种植模式对油茶林地小气候和土壤养分含量的影响[J]. 南方农业学报, 2019, 50(11):2512-2518. |
HUANG Tianzhong, CAO Guofan, ZHAO Mingshu, et al. Effects of different planting patterns on microclimate indicators and soil nutrient contents in Camellia oleifera forest[J]. Journal of Southern Agriculture, 2019, 50(11):2512-2518. | |
[14] |
艾鹏睿, 马英杰. 间作模式农田小气候效应对棉花生理生态指标的影响[J]. 新疆农业科学, 2021, 58(9):1594-1602.
DOI |
AI Pengrui, MA Yingjie. Effects of Field Microclimate on Physiological and Ecological Indexes of Cotton under Intercropping Mode[J]. Xinjiang Agricultural Sciences, 2021, 58(9):1594-1602.
DOI |
|
[15] | 蔡智才, 毕华兴, 许华森, 等. 晋西黄土区苹果花生间作系统小气候效应[J]. 干旱地区农业研究, 2018, 36(2):234-241. |
CAI Zhicai, BI Huaxing, XU Huasen, et al. The microclimate effect of Malus pumila and Arachis hypogaea intercropping system in the loess plateau of West Shanxi Province[J]. Agricultural Research in the Arid Areas, 2018, 36(2):234-241. | |
[16] | 汪瑞琪, 马文礼, 郭丁菡, 等. 根域限制栽培葡萄树与冬小麦间作对树麦的冠层温湿度、光合和产量的影响[J]. 麦类作物学报, 2021, 41(8):984-996. |
WANG Ruiqi, MA Wenli, GUO Dinghan, et al. Effects of root-limited grape - winter wheat intercropping on temperature, humidity, photosynthesis and yield of tree and wheat canopy[J]. Journal of Triticeae Crops, 2021, 41(8):984-996. | |
[17] |
宫香伟, 李境, 马洪驰, 等. 黄土高原旱作区糜子-绿豆带状种植农田小气候特征与产量效应[J]. 应用生态学报, 2018, 29(10):3256-3266.
DOI |
GONG Xiangwei, LI Jing, MA Hongchi, et al. Field microclimate and yield for proso millet intercropping with mung bean in the dryland of Loess Plateau,Northwest China[J]. Chinese Journal of Applied Ecology, 2018, 29(10):3256-3266.
DOI |
|
[18] | 陈久红, 马建江, 李永丰, 等. 行间生草对‘库尔勒香梨’果园小气候、光合特性及果实品质的影响[J]. 北方园艺, 2019,(22):49-59. |
CHEN Jiuhong, MA Jianjiang, LI Yongfeng, et al. Effects of Herbage on Ecological Environment and Photosynthetic Characteristics Fruits Quality of 'Korla Fragrant Pear'[J]. Northern Horticulture, 2019,(22):49-59. | |
[19] | 刘传迹, 金晓斌, 徐伟义, 等. 2000-2020年南疆地区棉花种植空间格局及其变化特征分析[J]. 农业工程学报, 2021, 37(16):223-232. |
LIU Chuanji, JIN Xiaobin, XU Weiyi, et al. Analysis of the spatial distribution and variation characteristics of cotton planting in southern Xinjiang from 2000 to 2020[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16):223-232. | |
[20] |
李飞, 毛树春, 韩迎春, 等. 遮阴对基质育苗裸苗移栽棉花苗期生长的影响[J]. 棉花学报, 2013, 25(1):30-36.
DOI |
LI Fei, MAO Shuchun, HAN Yingchun, et al. Responses of Growth in the Seedling Period of Transplanted Cotton to the Shading Treatment[J]. Cotton Science, 2013, 25(1):30-36. | |
[21] | 刘瑜, 尹飞虎, 曾胜和, 等. 大气CO2浓度升高对棉花叶绿素和光合指标的影响[J]. 新疆农业科学, 2013, 50(11):1991-1999. |
LIU Yu, YIN Feihu, ZENG Shenghe, et al. Effects of CO2 Enrichment on Cotton Chlorophyll and Photosynthetic Indicators[J]. Xinjiang Agricultural Sciences, 2013, 50(11):1991-1999. | |
[22] | Loka D A, Oosterhuis D M. Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content[J]. Environmental & Experimental Botany, 2010, 68(3):258-263. |
[23] | Reddy K R, Hodges H F, Mckinion J M. Temperature Effects on Pima Cotton Leaf Growth[J]. Agronomy Journal, 1993, 85(3). |
[24] |
邢芳芳, 韩迎春, 雷亚平, 等. 不同种植模式棉田土壤温度的时空变化特征[J]. 棉花学报, 2020, 32(3):219-232.
DOI |
XING Fangfang, HAN Yingchun, LEI Yaping, et al. Temporal and Spatial Variation Characteristics of Soil Temperature in Cotton Fields under Different Cropping Systems[J]. Cotton Science, 2020, 32(3):219-232. | |
[25] |
HUANG Fan, ZHAN Wenfeng, JU Weimin. Improved reconstruction of soil thermal field using two-depth measurements of soil temperature[J]. Journal of Hydrology, 2014, 519:711-719.
DOI URL |
[26] | 张建新, 柴付军, 何江勇, 等. 不同氮肥处理下滴灌棉花气孔导度与土壤体积含水率的响应特征[J]. 灌溉排水学报, 2015, 34(12):85-88. |
ZHANG Jianxin, CHAI Fujun, HE Jiangyong, et al. Response characteristics of stomatal conductance and volumetric water content in drip irrigated cotton under different nitrogen fertilizer rates[J]. Journal of Irrigation and Drainage, 2015, 34(12):85-88. | |
[27] | 姬亚琴, 杨鹏年. 不同土壤含水量条件棉花光合作用日变化特性研究[J]. 节水灌溉, 2015,(2):21-23, 30. |
JI Yaqin, YANG Pengnian. Diurnal Variation Characteristics of Cotton Photosynthesis under Different SoiI Moisture Conditions[J]. Water Saving Irrigation, 2015,(2):21-23, 30. | |
[28] | 宁虎森, 朱雅娟, 吉小敏, 等. 新疆精河县不同人工植被对小气候的影响[J]. 干旱区资源与环境, 2015, 29(5):64-68. |
NING Husen, ZHU Yajuan, JI Xiaomin, et al. Effects of different types of artificial vegetations on microclimate in Jinghe County Xinjiang[J]. Journal of Arid Land Resources and Environment, 2015, 29(5):64-68. | |
[29] | 祖超, 杨建峰, 李志刚, 等. 胡椒园间作槟榔体系小气候对胡椒产量的影响[J]. 热带作物学报, 2017, 38(3):426-431. |
ZU Chao, YANG Jianfeng, LI Zhigang, et al. Effects of Microclimate Factors on Black Pepper Yield in the Black Pepper / Arecanut Intercropping System[J]. Chinese Journal of Tropical Crops, 2017, 38(3):426-431. | |
[30] | 许华森, 毕华兴, 高路博, 等. 晋西黄土区苹果+大豆间作系统小气候及其对作物生产力的影响[J]. 中国水土保持科学, 2014, 12(2):9-15. |
XU Huasen, BI Huaxing, GAO Lubo, et al. Microclimate and its effects on crop productivity in the Malus pumila and Glycine max intercropping systems on the Loess Plateau of West Shanxi Province[J]. Science of Soil and Water Conservation, 2014, 12(2):9-15. | |
[31] | Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):105-109. |
[32] | 张文会, 魏秀俭, 吕艳伟, 等. 强光胁迫对18个冬小麦幼苗叶片光合特性的影响[J]. 麦类作物学报, 2010, 30(3):454-458. |
ZHANG Wenhui, WEI Xiujian, LYU Yanwei, et al. Effects of Highlight Stress on Photosynthesis-related Indicators in Leaves of Eighteen Winter Wheat Seedlings[J]. Journal of Triticeae Crops, 2010, 30(3):454-458. | |
[33] | 方剑锋, 王文祥, 葛萃萃, 等. CO2气调技术防治害虫研究进展与展望[J]. 南方农业学报, 2014, 45(6):1000-1004. |
FANG Jianfeng, WANG Wenxiang, GE Cuicui. Development and application of CO2 controlled atmospheres for pest control[J]. Journal of Southern Agriculture, 2014, 45(6):1000-1004. | |
[34] | 牛建龙, 彭杰, 王家强, 等. 新疆阿拉尔地区近53年气候变化特征分析[J]. 干旱区资源与环境, 2016, 30(1):72-77. |
NIU Jianlong, PENG Jie, WANG Jiaqiang, et al. Analysis of climate changing characteristics in Alar area from 1961 to 2013[J]. Journal of Arid Land Resources and Environment, 2016, 30(1):72-77. | |
[35] | 代云豪, 管瑶, 刘孟琴, 等. 1990-2020年阿拉尔垦区生态环境质量动态监测与评价[J]. 水土保持通报, 2022, 42(2):122-128. |
DAI Yunhao, GUAN Yao, LIU Mengqin, et al. Dynamic Monitoring and Evaluation of Ecological Environment Quality in Alar Reclamation Area from 1990 to 2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(2):122-128. | |
[36] | 史彦江, 卓热木·塔西, 宋锋惠, 等. 枣农间作系统小气候水平分布特征研究[J]. 新疆农业科学, 2010, 47(5):888-892. |
SHI Yanjiang, Zhuoremu Taxi, SONG Fenghui, et al. Study on Horizontal Distribution Character of ield Microclimate in Jujube-rops Intercropping System[J]. Xinjiang Agricultural Sciences, 2010, 47(5):888-892. | |
[37] | Larkindale J, Mishkind M, Vierling E. Plant Responses to High Temperature[M]. Oxford: Blackwell Publishing Ltd, 2007:100-144. |
[38] | 段志平, 刘天煜, 张永强, 等. 枣棉间作系统棉花产量的形成与影响因素[J]. 干旱地区农业研究, 2018, 36(3):93-100. |
DUAN Zhiping, LIU Tianyu, ZHANG Yongqiang, et al. Formation and influencing factors of cotton yield in jujube-cotton intercropping system[J]. Agricultural Research in the Arid Areas, 2018, 36(3):93-100. | |
[39] | Liang Z. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China[J]. Agricultural Water Management, 2020, 240. |
[40] |
李鑫, 王剑, 李亚兵, 等. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8):2041-2052.
DOI |
LI Xin, WANG Jian, LI Yabing, et al. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation[J]. Acta Agronomica Sinica, 2022, 48(8):2041-2052.
DOI |
|
[41] | 郭仁松, 田立文, 林涛, 等. 枣棉间作棉田花铃期小气候变化特征及对产量的影响[J]. 西北农业学报, 2014, 23(2):92-98. |
GUO Rensong, TIAN Liwen, LIN Tao, et al. Effect of Jujube-cotton Intercropping on Characteristics of Microclimate during Cotton Flowering and Boll-setting Period and Cotton Yield[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(2):92-98. | |
[42] | 李伶俐, 阮元, 刘伟, 等. 间套紫花苜蓿对棉花生长发育、产量及棉田土壤微生物和酶活性的影响[J]. 河南农业科学, 2019, 48(6):52-59. |
[1] | 李俊华, 毛建才, 杨君妍, 王豪杰. 新疆伽师瓜产业发展现状及影响因素分析[J]. 新疆农业科学, 2024, 61(S1): 101-105. |
[2] | 巩雪花, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 乔小燕, 叶晓琴, 郭文超, 丁新华. 新疆绿洲灌区玉米田杂草种子库及环境因子对杂草种子萌发的影响[J]. 新疆农业科学, 2024, 61(S1): 49-59. |
[3] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[4] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[5] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[6] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[7] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[8] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[9] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[10] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[11] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[12] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[13] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[14] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[15] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||