

新疆农业科学 ›› 2022, Vol. 59 ›› Issue (5): 1051-1059.DOI: 10.6048/j.issn.1001-4330.2022.05.002
• 作物遗传育种·耕作栽培·生理生化·种质资源 • 上一篇 下一篇
徐彦军1(
), 廉苇佳1, 刘翔宇1, 斯拉依丁·司马义1, 唐秋菊2, 艾尼瓦尔·阿不都拉1(
)
收稿日期:2021-09-19
出版日期:2022-05-20
发布日期:2022-06-09
通信作者:
艾尼瓦尔·阿不都拉(1980-),男,新疆吐鲁番人,助理研究员,研究方向为作物栽培,(E-mail) 1696351773@qq.com作者简介:徐彦军(1996-),男,甘肃陇西人,助理农艺师,研究方向为作物栽培及育种,(E-mail) 3069549741@qq.com
基金资助:
XU Yanjun1(
), LIAN Weijia1, LIU Xiangyu1, Slayidin Smayi1, TANG Qiuju2, Ernival Abdulah1(
)
Received:2021-09-19
Published:2022-05-20
Online:2022-06-09
Correspondence author:
Ainiwar Abdullah (1980 -), male, Uygur, from Turpan, Xinjiang, assistant researcher, undergraduate, research direction: crop cultivation, (E-mail) 1696351773@qq.comSupported by:摘要:
【目的】研究水氮耦合对棉田土壤水分时空分布及产量效应的影响。【方法】采用裂区试验设计,以灌溉量为主区,设2 250.0 m3/hm2(低灌溉量,W1)、3 450.0 m3/hm2(常规灌溉量,W2)和4 650.0 m3/hm2(高灌溉量,W3),3个灌溉量(W1、W2和W3)。设0 kg/hm2(空白)、300.0 kg/hm2(常规施肥量)和600.0 kg/hm2(高施氮量),3个纯氮投入量(N1、N2和N3),测定土壤水分、盐分含量,以及不同时期棉花植株干物质积累量及不同处理下最终产量,评估不同水氮施用处理下棉花植株生长发育及最终产量变化。【结果】在W3N2处理下土壤中的盐分和水分有着相对较好的吸收能力,相较于W1N1处理盐分消耗量高出64.2%,水分消耗量显著高92.4%;在W3N2水氮施用组合下,花期、铃期、吐絮期这3个时期不同处理下干物质积累量均有显著提高,相较于W1N1处理显著高39.0%。【结论】W3N3水氮施用组合下棉花植株单株铃数、单铃质量、籽棉产量等3项指标达到最高,比W1N1处理显著高30.0%。
中图分类号:
徐彦军, 廉苇佳, 刘翔宇, 斯拉依丁·司马义, 唐秋菊, 艾尼瓦尔·阿不都拉. 水氮耦合对棉田土壤水分时空分布及产量效应的影响[J]. 新疆农业科学, 2022, 59(5): 1051-1059.
XU Yanjun, LIAN Weijia, LIU Xiangyu, Slayidin Smayi, TANG Qiuju, Ernival Abdulah. Effects of Water - Nitrogen Coupling on Soil Water Distribution and Yield in Cotton Field[J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1051-1059.
| 组合方式 Treatments | 灌溉量 Nitrogen application (m3/hm2) | 施氮量(纯氮) Nitrogen application (pure nitrogen) (kg/hm2) | 基肥(纯氮) Base fertilizer (pure nitrogen) (kg/hm2) |
|---|---|---|---|
| W1N1 | 225.0 | 0 | 10.0 |
| W1N2 | 225.0 | 3.0 | 10.0 |
| W1N3 | 225.0 | 6.0 | 10.0 |
| W2N1 | 345.0 | 0 | 10.0 |
| W2N2 | 345.0 | 3.0 | 10.0 |
| W2N3 | 345.0 | 6.0 | 10.0 |
| W3N1 | 465.0 | 0 | 10.0 |
| W3N2 | 465.0 | 3.0 | 10.0 |
| W3N3 | 465.0 | 6.0 | 10.0 |
表1 水氮施用配比组合
Table 1 Combination Table of Water and Nitrogen Application Ratio
| 组合方式 Treatments | 灌溉量 Nitrogen application (m3/hm2) | 施氮量(纯氮) Nitrogen application (pure nitrogen) (kg/hm2) | 基肥(纯氮) Base fertilizer (pure nitrogen) (kg/hm2) |
|---|---|---|---|
| W1N1 | 225.0 | 0 | 10.0 |
| W1N2 | 225.0 | 3.0 | 10.0 |
| W1N3 | 225.0 | 6.0 | 10.0 |
| W2N1 | 345.0 | 0 | 10.0 |
| W2N2 | 345.0 | 3.0 | 10.0 |
| W2N3 | 345.0 | 6.0 | 10.0 |
| W3N1 | 465.0 | 0 | 10.0 |
| W3N2 | 465.0 | 3.0 | 10.0 |
| W3N3 | 465.0 | 6.0 | 10.0 |
| 灌溉量 Irrigation rate (m3/hm2) | 施肥量 Fertilizer rate (kg/hm2) | 方程 Equation | R2 | t0 | t1 | t2 | △t | Vm (g/ plant·d) | GT (g/plant) |
|---|---|---|---|---|---|---|---|---|---|
| d | |||||||||
| W1 | N1 | Y=62.3/[1+e(6.2-0.066t)] | 0.991 1 | 93.9 | 74.1 | 113.7 | 39.6 | 1.0 | 41.0 |
| N2 | Y=114.4/[1+e(6.4-0.058t)] | 0.997 0 | 109.0 | 86.5 | 131.6 | 45.1 | 1.7 | 75.3 | |
| N3 | Y=63.0/[1+e(7.7-0.088t)] | 0.991 8 | 87.8 | 72.8 | 102.8 | 30.0 | 1.4 | 41.5 | |
| W2 | N1 | Y=87.1/[1+e(5.9-0.057t)] | 0.991 5 | 103.0 | 79.9 | 126.1 | 46.2 | 1.2 | 57.4 |
| N2 | Y=141.0/[1+e(7.1-0.067t)] | 0.998 7 | 105.8 | 86.3 | 125.3 | 39.1 | 2.4 | 92.8 | |
| N3 | Y=168.8/[1+e(6.4-0.056t)] | 0.998 7 | 113.8 | 90.4 | 137.1 | 46.7 | 2.4 | 111.2 | |
| W3 | N1 | Y=138./[1+e(6.1-0.056t)] | 0.996 8 | 109.8 | 86.1 | 133.5 | 47.4 | 1.9 | 91.2 |
| N2 | Y=168.5/[1+e(6.9-0.061t)] | 0.996 6 | 112.2 | 90.7 | 133.7 | 43.1 | 2.6 | 111.0 | |
| N3 | Y=164.7/[1+e(6.0-0.053t)] | 0.997 2 | 114.2 | 89.3 | 139.2 | 49.9 | 2.2 | 108.4 | |
表2 不同处理棉花干物质积累的Logistic函数生长模型及相关参数
Table 2 Logistic function growth model and related parameters of cottons bioaccumulation under different treatments
| 灌溉量 Irrigation rate (m3/hm2) | 施肥量 Fertilizer rate (kg/hm2) | 方程 Equation | R2 | t0 | t1 | t2 | △t | Vm (g/ plant·d) | GT (g/plant) |
|---|---|---|---|---|---|---|---|---|---|
| d | |||||||||
| W1 | N1 | Y=62.3/[1+e(6.2-0.066t)] | 0.991 1 | 93.9 | 74.1 | 113.7 | 39.6 | 1.0 | 41.0 |
| N2 | Y=114.4/[1+e(6.4-0.058t)] | 0.997 0 | 109.0 | 86.5 | 131.6 | 45.1 | 1.7 | 75.3 | |
| N3 | Y=63.0/[1+e(7.7-0.088t)] | 0.991 8 | 87.8 | 72.8 | 102.8 | 30.0 | 1.4 | 41.5 | |
| W2 | N1 | Y=87.1/[1+e(5.9-0.057t)] | 0.991 5 | 103.0 | 79.9 | 126.1 | 46.2 | 1.2 | 57.4 |
| N2 | Y=141.0/[1+e(7.1-0.067t)] | 0.998 7 | 105.8 | 86.3 | 125.3 | 39.1 | 2.4 | 92.8 | |
| N3 | Y=168.8/[1+e(6.4-0.056t)] | 0.998 7 | 113.8 | 90.4 | 137.1 | 46.7 | 2.4 | 111.2 | |
| W3 | N1 | Y=138./[1+e(6.1-0.056t)] | 0.996 8 | 109.8 | 86.1 | 133.5 | 47.4 | 1.9 | 91.2 |
| N2 | Y=168.5/[1+e(6.9-0.061t)] | 0.996 6 | 112.2 | 90.7 | 133.7 | 43.1 | 2.6 | 111.0 | |
| N3 | Y=164.7/[1+e(6.0-0.053t)] | 0.997 2 | 114.2 | 89.3 | 139.2 | 49.9 | 2.2 | 108.4 | |
| 灌溉量 Irrigation rate (m3/hm2) | 施肥量 Fertilizer rate (kg/hm2) | 收获株数 Number of harvest | 单株成铃 Boll number per plant | 单铃质量 Single boll weight(g) | 籽棉产量 Cotton seed yield (kg/hm2) | 衣分 Lint percentage (%) | 皮棉产量 Cotton lint yield (kg/hm2) |
|---|---|---|---|---|---|---|---|
| W1 W2 W3 | N1 N2 N3 N1 N2 N3 N1 N2 N3 | 146.0a 137.0b 139. 135.7b 142. 136.0b 135.0b 141. 140. | 4.7d 5.5c 5.3c 6.2b 6.4b 6.8a 6.4b 6.8a 6.9a | 4.9d 5.1c 5.0d 5.0d 5.4a 5.2b 5.2b 5. 5. | 4 032.3f 4 749.8e 4 476.1e 5 067.2d 5 905.9c 5 929. 5 505.5d 6 094. 6 171.0a | 44.4a 45.7a 45.6a 46.5a 46.7a 44.8a 42.1b 46.8a 44.7a | 1 791.9d 2 168.4c 2 042.7c 2 357.7b 2 754.8a 2 656. 2 317.1b 2 854.0a 2 757.2a |
| 两因素分析(F值)Two factor analysis (F value) | |||||||
| 灌溉量Irrigation rate(W) | 0.3* | 56.6** | 9.5* | 120.9*** | 0.2 ns | 72.0*** | |
| 施肥量Fertilizer rate (N) | 0.1* | 8.6* | 3.7ns | 29.9** | 1.2 ns | 29.7** | |
| 灌溉量×施肥量 Irrigation quantity × Fertilization amount(W×N) | 3.6** | 2.9 ns | 19.2*** | 5.5** | 1.2 ns | 2.5* | |
表3 不同处理下产量及产量构成因素变化
Table 3 yield and yield components under different treatments
| 灌溉量 Irrigation rate (m3/hm2) | 施肥量 Fertilizer rate (kg/hm2) | 收获株数 Number of harvest | 单株成铃 Boll number per plant | 单铃质量 Single boll weight(g) | 籽棉产量 Cotton seed yield (kg/hm2) | 衣分 Lint percentage (%) | 皮棉产量 Cotton lint yield (kg/hm2) |
|---|---|---|---|---|---|---|---|
| W1 W2 W3 | N1 N2 N3 N1 N2 N3 N1 N2 N3 | 146.0a 137.0b 139. 135.7b 142. 136.0b 135.0b 141. 140. | 4.7d 5.5c 5.3c 6.2b 6.4b 6.8a 6.4b 6.8a 6.9a | 4.9d 5.1c 5.0d 5.0d 5.4a 5.2b 5.2b 5. 5. | 4 032.3f 4 749.8e 4 476.1e 5 067.2d 5 905.9c 5 929. 5 505.5d 6 094. 6 171.0a | 44.4a 45.7a 45.6a 46.5a 46.7a 44.8a 42.1b 46.8a 44.7a | 1 791.9d 2 168.4c 2 042.7c 2 357.7b 2 754.8a 2 656. 2 317.1b 2 854.0a 2 757.2a |
| 两因素分析(F值)Two factor analysis (F value) | |||||||
| 灌溉量Irrigation rate(W) | 0.3* | 56.6** | 9.5* | 120.9*** | 0.2 ns | 72.0*** | |
| 施肥量Fertilizer rate (N) | 0.1* | 8.6* | 3.7ns | 29.9** | 1.2 ns | 29.7** | |
| 灌溉量×施肥量 Irrigation quantity × Fertilization amount(W×N) | 3.6** | 2.9 ns | 19.2*** | 5.5** | 1.2 ns | 2.5* | |
| [1] | 李培岭, 张富仓, 贾运岗. 不同滴灌毛管布置模式棉花水氮耦合效应[J]. 中国农业科学, 2009, 42(5):1672-1681. |
| LI Peiling, ZHANG Fucang, JIA Yungang. Coupling effects of water and nitrogen on Cotton under different capillary arrangement modes of drip irrigation[J]. Scientia Agricultura Sinica, 2009, 42(5):1672-1681. | |
| [2] | 李培岭, 张富仓, 贾运岗. 沙漠绿洲地区膜下滴灌棉花水分利用的水氮耦合效应[J]. 干旱地区农业研究, 2009, 27(3):53-59. |
| LI Peiling, ZHANG Fucang, JIA Yungang. Coupling effect of water and nitrogen on water use of cotton under film drip irrigation in desert oasis[J]. Agricultural Research in Arid Areas, 2009, 27(3):53-59. | |
| [3] | 李培岭, 张富仓, 贾运岗. 不同沟灌方式棉花的水氮耦合效应[J]. 应用生态学报, 2009, 20(6):1346-1354. |
| LI Peiling, ZHANG Fucang, JIA Yungang. Water nitrogen coupling effect of cotton under different furrow irrigation methods[J]. Journal of Applied Ecology, 2009, 20(6):1346-1354. | |
| [4] | 李文娆, 范雨龙, 冯士珍, 等. 水氮耦合对棉花幼苗根冠生长和水分利用效率的影响[J]. 河南农业科学, 2017, 46(9):18-24. |
| LI Wenrao, FAN Yulong, FENG Shizhen, et al. Effects of water and nitrogen coupling on root and shoot growth and water use efficiency of cotton seedlings[J]. Henan Agricultural Sciences, 2017, 46(9):18-24. | |
| [5] | Yang S L, Jia X L, Zhang F L, et al. Effects of Water and Nitrogen Coupling in Winter Wheat on Leaves NRA, Plant Nitrogen Absorption and Yield[J]. Acta Agriculturae Boreali-Sinica, 2008. |
| [6] | 王丽萍, 汪耀富, 王伯武, 等. 覆盖集水措施对烟田土壤水分时空分布和利用效率的影响[J]. 水土保持学报, 2005, 19(5):117-119. |
| WANG Liping, WANG Yaofu, WANG Bowu, et al. Effects of mulching and catchment measures on temporal and spatial distribution and utilization efficiency of soil water in tobacco field[J]. Journal of Soil and Water Conservation, 2005, 19(5):117-119. | |
| [7] | 汪昌树, 杨鹏年, 姬亚琴, 等. 不同灌水下限对膜下滴灌棉花土壤水盐运移和产量的影响[J]. 干旱地区农业研究, 2016, 34(2):232-238. |
| WANG Changshu, YANG Pengnian, JI Yaqin, et al. Effects of different irrigation lower limits on soil water and salt transport and yield of cotton under film drip irrigation[J]. Agricultural Research in Arid Areas, 2016, 34(2):232-238. | |
| [8] | 王海江, 崔静, 侯振安, 等. 膜下滴灌棉花水氮耦合对其干物质和水分利用效率的影响[J]. 西北农业学报, 2010, 19(3):76-80. |
| WANG Haijiang, CUI Jing, HOU Zhenan, et al. Effects of water nitrogen coupling on dry matter and water use efficiency of cotton under drip irrigation under film[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(3):76-80. | |
| [9] |
贺怀杰, 王振华, 郑旭荣, 等. 水氮耦合对膜下滴灌棉花生长及产量的影响[J]. 新疆农业科学, 2017, 54(11):1983-1989.
DOI |
|
HE Huaijie, WANG Zhenhua, ZHENG Xurong, et al. Effects of water nitrogen coupling on cotton growth and yield under film drip irrigation[J]. Xinjiang Agricultural Sciences, 2017, 54(11):1983-1989.
DOI |
|
| [10] | 陈剑, 高旭, 孔繁涛, 等. 不同肥料对土壤物理特性和棉花产量的影响[J]. 安徽农业科学, 2019, 47(17):140-141,145. |
| CHEN Jian, GAO Xu, KONG Fantao, et al. Effects of different fertilizers on soil physical properties and cotton yield[J]. Journal of Anhui Agricultural Sciences, 2019, 47(17):140-141,145. | |
| [11] | 罗毅. 塔里木灌区棉花盐分生产函数及典型棉田水盐平衡研究[D]. 北京: 中国科学院大学, 2013. |
| LUO Yi. Study on cotton salt production function and water salt balance in typical cotton fields in Tarim Irrigation Area[D]. Beijing: University of Chinese Academy of Sciences, 2013. | |
| [12] | 康苗苗, 张衡. 控肥比例对棉花农艺性状及产量的影响[J]. 园艺与种苗, 2019, 39(4):65-68. |
| KANG Miaomiao, ZHANG Heng. Effects of fertilizer control ratio on Agronomic Characters and yield of cotton[J]. Horticulture and Seedlings, 2019, 39(4):65-68. | |
| [13] | Gao L, Bi H, Xu H, et al. Spatial and temporal distribution of soil moisture in young Malus pumila+Arachis hypogaea intercropping system on the Loess Plateau of West Shanxi Province[J]. Science of Soil & Water Conservation, 2013, 11(4):93-98. |
| [14] | 焦会青. 绿洲棉田膜下滴灌土壤水盐运移模型构建及应用[D]. 北京: 中国农业大学, 2018. |
| JIAO Huiqing. Construction and application of soil water and salt transport model under film drip irrigation in Oasis Cotton Field[D]. Beijing: China Agricultural University, 2018. | |
| [15] | 杨首乐, 邓忠, 翟国亮, 等. 干旱区水氮耦合效应对棉花生长性状及产量的影响[J]. 中国农学通报, 2016, 32(24):103-108. |
| YANG Shoule, DENG Zhong, ZHAI Guoliang, et al. Effects of water and nitrogen coupling effects on Cotton Growth Traits and yield in arid areas[J]. Chinese Agricultural Science Bulletin, 2016, 32(24):103-108. | |
| [16] | 李永竟. 棉花幼苗根冠生长及叶绿素荧光特性对水氮磷耦合的响应[D]. 郑洲: 河南大学, 2017. |
| LI Yongjing. Response of root and shoot growth and chlorophyll fluorescence characteristics of cotton seedlings to water, nitrogen and phosphorus coupling[D]. Zhengzhou: Henan University, 2017. | |
| [17] | 李培岭, 张富仓. 膜下分区交替滴灌和施氮对棉花干物质累积与氮肥利用的影响[J]. 应用生态学报, 2013, 24(2):416-422. |
| LI Peiling, ZHANG Fucang. Effects of alternate drip irrigation and nitrogen application under plastic film on dry matter accumulation and nitrogen utilization of cotton[J]. Journal of Applied Ecology, 2013, 24(2):416-422. | |
| [18] | 吴立峰, 张富仓, 范军亮, 等. 水肥耦合对棉花产量收益及水分利用效率的效应[J]. 农业机械学报, 2015, 46(12):164-172. |
| WU Lifeng, ZHANG Fucang, FAN Junliang, et al. Effect of water fertilizer coupling on cotton yield and water use efficiency[J]. Journal of Agricultural Machinery, 2015, 46(12):164-172. | |
| [19] | 李冬冬, 王海江, 吕新. 膜下滴灌不同盐度土壤棉田水盐运移规律研究[J]. 灌溉排水学报, 2012, 31(4):108-110,135. |
| LI Dongdong, WANG Haijiang, LÜ Xin. Study on water and salt transport law of cotton field under film drip irrigation with different salinity[J]. Journal of Irrigation and Drainage, 2012, 31(4):108-110,135. | |
| [20] | 弋鹏飞. 膜下滴灌棉田土壤水盐运移规律试验研究[D]. 乌鲁木齐: 新疆农业大学, 2011. |
| YI Pengfei. Experimental study on soil water and salt transport law of drip irrigation under film in cotton field[D]. Urumqi: Xinjiang Agricultural University, 2011. | |
| [21] | 吴艳琴. 水氮互作对膜下滴灌杂交棉花生理调控的影响[D]. 石河子: 石河子大学, 2011. |
| WU Yanqin. Effects of water nitrogen interaction on physiological regulation of Hybrid Cotton under drip irrigation under film[D]. Shihezi: Shihezi University, 2011. | |
| [22] | 雷咏雯, 郭金强, 危常州, 等. 棉花膜下滴灌水氮耦合的初步研究[J]. 石河子大学学报(自然科学版), 2005,(1):43-47. |
| LEI Yongwen, GUO Jinqiang, WEI Changzhou, et al. Preliminary study on nitrogen coupling of drip irrigation under cotton film[J]. Journal of Shihezi University (Natural Science Ed.), 2005,( 1):43-47. | |
| [23] | 龚江, 王海江, 谢海霞, 等. 膜下滴灌水氮耦合对棉花生长和产量的影响[J]. 灌溉排水学报, 2008, 27(6):51-54. |
| GONG Jiang, WANG Haijiang, XIE Haixia, et al. Effects of nitrogen coupling of drip irrigation under film on cotton growth and yield[J]. Journal of Irrigation and Drainage, 2008, 27(6):51-54. | |
| [24] | 郭金强. 棉花膜下滴灌水氮耦合机理的研究[D]. 石河子: 石河子大学, 2005. |
| GUO Jinqiang. Study on nitrogen coupling mechanism of drip irrigation under cotton film[D]. Shihezi: Shihezi University, 2005. |
| [1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
| [2] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
| [3] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
| [4] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
| [5] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
| [6] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
| [7] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
| [8] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
| [9] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
| [10] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
| [11] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
| [12] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
| [13] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
| [14] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
| [15] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||