Xinjiang Agricultural Sciences ›› 2020, Vol. 57 ›› Issue (12): 2325-2331.DOI: 10.6048/j.issn.1001-4330.2020.12.019

• Agricultural Equipment Engineering and Mechanization·Agricultural Eeconomy • Previous Articles     Next Articles

Numerical Simulation Analysis of Wind Load on Front Roof of Solar Greenhouse in Xinjiang

MA Yuehong1, LI Baoming2, WANG Guoqiang1, SONG Bingwei1, LIU Na1   

  1. 1. Institute of Agricultural Mechanization Xinjiang Academy of Agricultural Sciences Academy of Agricultural Sciences, Urumqi, 830091;
    2. College of Water Resources and Civil Engineering China Agricultural University, Beijing 100083
  • Received:2020-03-19 Online:2020-12-20 Published:2020-12-24
  • Correspondence author: LI Baoming(1960-), male, Zhejiang people, professor, doctor,doctoral supervisor, Facilities agricultural engineering and environmental research direction,(E-mail)libm @cau.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China "Optimization of Structure Parameters and Heat Transfer Mechanism of Solar Greenhouse Composite Wall in Gobi Desert" (51768072) and the Key R & D Project "Research and Demonstration on Key Agricultural Techniques of Non-cultivated Land Facilities in Southern Xinjiang" (2018B01002)

新疆日光温室前屋面的风载数值模拟分析

马月虹1, 李保明2, 王国强1, 宋兵伟1, 刘娜1   

  1. 1.新疆农业科学院农业机械化研究所,乌鲁木齐 830091;
    2.中国农业大学水利与土木工程学院,农业农村部设施农业工程重点实验室,北京 100083
  • 通讯作者: 李保明(1960-),男,浙江人,教授,博士,博士生导师,研究方向为设施农业工程工艺与环境,(E-mail)libm@cau.edu.cn
  • 作者简介:马月虹(1974-),女,新疆库尔勒人,研究员,博士,硕士生导师,研究方向为设施农业工程,(E-mail)923999218@qq.com
  • 基金资助:
    国家自然科学基金“戈壁沙漠区日光温室复合墙体结构参数优化及传热机理的研究”(51768072);新疆维吾尔自治区重点研发专项“南疆非耕地设施农业关键技术研究与示范”(2018B01002)

Abstract: 【Objective】 The simulation of wind load and its changing trend of front roof of solar greenhouse has the function of predicting and preventing disasters in advance.Wind load simulation can be used to assist the tructural optimization design of front roof and the actual wind load calculation of each enclosure structure. 【Method】 The structure of a solar greenhouse wall insulation quilt, a framework and the like is simplified. anufacturing Model of Sunlight Greenhouse Using UG Software. The difference between the model and air boolean is calculated to obtain the overall model. Importing the whole model into ANSYS ICEM for meshing. The wind pressure of that film unde four conditions is obtain. Then draw the contrast curve of wind pressure change under different conditions through nine curves in Y direction. 【Result】 The wind pressure on the southernmost side of the film is the highest,about1.014×105Pa,the wind pressure on the north side gradually decreases, the minimum wind pressure at the ridge height is about 1.010×105Pa,when there is no thermal insulation quilt and the thermal insulation quilt is fully paved. The wind pressure rises due to the film obstruction of the southernmost wind. The north side is near the top of the greenhouse. The wind speed is fast, so the wind pressure is small. When the thermal insulation quilt is fully rolled and half rolled, the wind pressure on the southernmost side is highest, about 1.014×105Pa,the wind pressure decreases in the north, the wind pressure variation of the overall roof changes small, about 1.013×105Pa.Just when the thermal insulation quilt is half rolled, the abrupt changes in wind pressure is 1.012×105Pa at the place where the thermal insulation quilt is rolled. 【Conclusion】 In all four cases, the wind pressure on the south side is relatively large, with little difference. However, a full or half roll of the thermal insulation quilt to the north will cause a rise in the wind pressure of the film, especially a sudden rise at the top. Therefore, the thermal insulation quilt can be completely paved to prevent wind. The high wind pressure on the south side indicates that the performance of the arched section of the front roof steel skeleton is crucial to the structural stability and safety of the greenhouse. The design and construction should focus on calculation and verification of steel skeleton performance.This study provides a theoretical basis for the optimal design of solar greenhouse structure and wind disaster reduction.

Key words: solar greenhouse; wind load; numerical simulation; wind pressure

摘要: 【目的】 对日光温室前屋面风载大小和变化趋势进行模拟,可辅助前屋面骨架结构优化设计和前屋面实际风载计算,为提前预测和防灾功能提供科学依据。【方法】 将日光温室墙体、保温被和骨架等结构简化,使用UG 软件对日光温室进行造型,将模型与空气进行布尔求差,得到整体模型,将整体模型导入到ANSYS ICEM中,进行网格划分,得到保温被4种工作状态薄膜风压。再通过Y向的9条曲线画出不同条件下风压变化对比曲线。【结果】 在无保温被和保温被全铺时,薄膜最南侧风压最高,约1.014×105Pa,往北侧风压逐渐降低,脊高位置风压最小约1.010×105Pa。由于最南侧风遇到薄膜阻碍,造成风压的升高,而北侧接近日光温室顶端,风速快,而风速快的位置风压小。在保温被全卷及半卷时,也是最南侧风压较最高,约1.014×105Pa,往北有风压的降低,总体屋面风压变化比较小,约1.013×105Pa。只是保温被半卷时,在保温被卷放位置会有风压的突变为1.012×105Pa。【结论】 无保温被、保温被全铺、保温被全卷及保温被半卷4种情况南侧风压较大且相差不大,但越往北侧,保温被全卷或半卷会造成薄膜风压的升高,尤其是顶部的突然升高。保温被全铺是最佳防风方案。南侧风压高,南侧前屋面钢骨架拱形段的性能对日光温室结构稳定性和安全性至关重要,设计和建设时需要着重计算和核验。

关键词: 日光温室, 风载荷, 数值模拟, 风压

CLC Number: