Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (10): 2466-2474.DOI: 10.6048/j.issn.1001-4330.2022.10.015
• Horticultural Special Local Products·Forestry·Agricultural Product Processing Engineering • Previous Articles Next Articles
HU Xin1,2(), XIAN He3, ZHANG Fuchun2, ZHOU Xiaoming2, HAN Shouan2, WANG Min2, DING Xiang1,2, PAN Mingqi2, ZHONG Haixia2(
), ZENG Bin1(
), WU Xinyu1
Received:
2021-12-15
Online:
2022-10-20
Published:
2022-12-21
Correspondence author:
ZHONG Haixia, ZENG Bin
Supported by:
胡鑫1,2(), 仙鹤3, 张付春2, 周晓明2, 韩守安2, 王敏2, 丁祥1,2, 潘明启2, 钟海霞2(
), 曾斌1(
), 伍新宇1
通讯作者:
钟海霞,曾斌
作者简介:
胡鑫(1997-),女,吉村九台人,硕士研究生,研究方向为葡萄栽培生理与品质调控(E-mail)1361354120@qq.com
基金资助:
CLC Number:
HU Xin, XIAN He, ZHANG Fuchun, ZHOU Xiaoming, HAN Shouan, WANG Min, DING Xiang, PAN Mingqi, ZHONG Haixia, ZENG Bin, WU Xinyu. Effects of Different Rootstocks on Leaf Characteristics of Crimson Seedless Grape[J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2466-2474.
胡鑫, 仙鹤, 张付春, 周晓明, 韩守安, 王敏, 丁祥, 潘明启, 钟海霞, 曾斌, 伍新宇. 不同砧木对克瑞森无核葡萄叶片特性的影响[J]. 新疆农业科学, 2022, 59(10): 2466-2474.
处理 Treatment | 叶长 Leaf length (mm) | 叶宽 Leaf width (mm) | 叶面积 leaf area (mm2) | 叶柄长 Petiole length (mm) | 叶柄宽 Petiole width(mm) | 叶柄厚 Petiole thic kness(mm) |
---|---|---|---|---|---|---|
克瑞森无核/5BB Crimson seedless/5BB | 145.92±22.63a | 202.35±23.64a | 145.69±19.77a | 124.59±22.80a | 3.95±0.56a | 3.60±0.47a |
克瑞森无核/101-14MG Crimson seedless/101-14MG | 120.23±17.04c | 170.55±33.24bc | 146.85±11.54a | 102.60±19.89b | 3.38±0.41bcd | 2.99±0.45b |
克瑞森无核/110R Crimson seedless/110R | 132.42±22.18abc | 186.75±31.78abc | 136.60±18.49abc | 124.04±27.50a | 3.52±0.62abc | 3.10±0.58b |
克瑞森无核/5C Crimson seedless/5C | 134.12±27.06abc | 181.03±27.03bc | 139.94±2.78ab | 122.09±28.89a | 3.69±0.73ab | 3.14±0.62b |
克瑞森无核/SO4 Crimson seedless/SO4 | 135.44±11.69ab | 187.88±22.61ab | 130.09±19.50abc | 108.69±12.21ab | 3.68±0.44ab | 3.03±0.36b |
克瑞森无核/贝达 Crimson seedless/Beta | 92.43±11.83d | 132.90±22.36d | 118.76±7.32abc | 82.10±14.80c | 2.91±0.56d | 2.52±0.46c |
克瑞森无核/克瑞森无核 Crimson seedless/Crimson seedless | 126.65±13.76bc | 166.73±21.55c | 109.44±12.95bc | 86.01±14.07c | 3.22±0.94bcd | 3.03±0.62b |
克瑞森无核自根 Crimson seedless self-rooted | 124.70±14.96bc | 166.29±22.58c | 109.48±9.21bc | 105.31±19.58b | 3.07±0.46cd | 2.46±0.37c |
Table 1 Effects of Different Rootstocks on Leaf Appearance Characters of Crimson seedless Grape
处理 Treatment | 叶长 Leaf length (mm) | 叶宽 Leaf width (mm) | 叶面积 leaf area (mm2) | 叶柄长 Petiole length (mm) | 叶柄宽 Petiole width(mm) | 叶柄厚 Petiole thic kness(mm) |
---|---|---|---|---|---|---|
克瑞森无核/5BB Crimson seedless/5BB | 145.92±22.63a | 202.35±23.64a | 145.69±19.77a | 124.59±22.80a | 3.95±0.56a | 3.60±0.47a |
克瑞森无核/101-14MG Crimson seedless/101-14MG | 120.23±17.04c | 170.55±33.24bc | 146.85±11.54a | 102.60±19.89b | 3.38±0.41bcd | 2.99±0.45b |
克瑞森无核/110R Crimson seedless/110R | 132.42±22.18abc | 186.75±31.78abc | 136.60±18.49abc | 124.04±27.50a | 3.52±0.62abc | 3.10±0.58b |
克瑞森无核/5C Crimson seedless/5C | 134.12±27.06abc | 181.03±27.03bc | 139.94±2.78ab | 122.09±28.89a | 3.69±0.73ab | 3.14±0.62b |
克瑞森无核/SO4 Crimson seedless/SO4 | 135.44±11.69ab | 187.88±22.61ab | 130.09±19.50abc | 108.69±12.21ab | 3.68±0.44ab | 3.03±0.36b |
克瑞森无核/贝达 Crimson seedless/Beta | 92.43±11.83d | 132.90±22.36d | 118.76±7.32abc | 82.10±14.80c | 2.91±0.56d | 2.52±0.46c |
克瑞森无核/克瑞森无核 Crimson seedless/Crimson seedless | 126.65±13.76bc | 166.73±21.55c | 109.44±12.95bc | 86.01±14.07c | 3.22±0.94bcd | 3.03±0.62b |
克瑞森无核自根 Crimson seedless self-rooted | 124.70±14.96bc | 166.29±22.58c | 109.48±9.21bc | 105.31±19.58b | 3.07±0.46cd | 2.46±0.37c |
Fig.2 Leaf organization chart Note: A.Crimson seedless/5BB; B.Crimson seedless/101-14MG; C.Crimson seedless/110R; D.Crimson seedless/5C; E.Crimson seedless/SO4; F.Crimson seedless/Beta; G.Crimson seedless/Crimson seedless; H.Crimson seedless self-rooted.a.Upper-epidermis; b.Lower-epidermis; c.Palisade tissue; d.Spongy tissue
处理 Treatment | 上表皮厚度 Thickness of Upper- epidermis(μm) | 下表皮厚度 Thickness of Lower- epidermis(μm) | 叶片厚度 Thickness of leaf(μm) | 栅栏组织厚 Thickness of Palisade tissue(μm) | 海绵组织厚度 Thickness of Spongy tissue(μm) | 栅栏组织/ 海绵组织 Palisade tissue/ Spongy tissue |
---|---|---|---|---|---|---|
克瑞森无核/5BB Crimson seedless/5BB | 12.58±3.27d | 20.81±6.11a | 183.18±12.61d | 56.83±10.38a | 81.45±13.85d | 0.72±0.20a |
克瑞森无核/101-14MG Crimson seedless/101-14MG | 16.40±3.03bc | 16.23±2.67b | 187.77±9.19cd | 46.03±7.07b | 98.80±10.40b | 0.47±0.09f |
克瑞森无核/110R Crimson seedless/110R | 15.75±1.67bc | 21.48±3.92a | 207.80±8.95a | 55.94±6.46a | 109.75±14.11a | 0.52±0.10def |
克瑞森无核/5C Crimson seedless/5C | 16.32±2.87bc | 15.80±2.95bc | 172.33±8.89e | 48.60±5.45b | 88.61±11.35c | 0.56±0.12bcd |
克瑞森无核/SO4 Crimson seedless/SO4 | 16.61±3.20b | 19.94±3.96a | 191.95±13.12c | 55.50±9.08a | 91.75±10.34c | 0.61±0.13b |
克瑞森无核/贝达 Crimson seedless/Beta | 14.74±2.35c | 14.06±2.52c | 182.56±8.79d | 48.52±6.94b | 100.36±8.86b | 0.49±0.09ef |
克瑞森无核/克瑞森无核 Crimson seedless/Crimson seedless | 16.34±3.94bc | 14.14±3.39c | 175.51±10.70e | 53.09±6.49a | 89.26±12.19c | 0.61±0.11bc |
克瑞森无核自根 Crimson seedless self-rooted | 18.26±3.42a | 19.38±4.12a | 197.08±6.72b | 53.20±4.49a | 97.92±8.47b | 0.55±0.07cde |
Table 2 Effects of Different Rootstocks on Leaf Tissue Structure of Crimson seedless
处理 Treatment | 上表皮厚度 Thickness of Upper- epidermis(μm) | 下表皮厚度 Thickness of Lower- epidermis(μm) | 叶片厚度 Thickness of leaf(μm) | 栅栏组织厚 Thickness of Palisade tissue(μm) | 海绵组织厚度 Thickness of Spongy tissue(μm) | 栅栏组织/ 海绵组织 Palisade tissue/ Spongy tissue |
---|---|---|---|---|---|---|
克瑞森无核/5BB Crimson seedless/5BB | 12.58±3.27d | 20.81±6.11a | 183.18±12.61d | 56.83±10.38a | 81.45±13.85d | 0.72±0.20a |
克瑞森无核/101-14MG Crimson seedless/101-14MG | 16.40±3.03bc | 16.23±2.67b | 187.77±9.19cd | 46.03±7.07b | 98.80±10.40b | 0.47±0.09f |
克瑞森无核/110R Crimson seedless/110R | 15.75±1.67bc | 21.48±3.92a | 207.80±8.95a | 55.94±6.46a | 109.75±14.11a | 0.52±0.10def |
克瑞森无核/5C Crimson seedless/5C | 16.32±2.87bc | 15.80±2.95bc | 172.33±8.89e | 48.60±5.45b | 88.61±11.35c | 0.56±0.12bcd |
克瑞森无核/SO4 Crimson seedless/SO4 | 16.61±3.20b | 19.94±3.96a | 191.95±13.12c | 55.50±9.08a | 91.75±10.34c | 0.61±0.13b |
克瑞森无核/贝达 Crimson seedless/Beta | 14.74±2.35c | 14.06±2.52c | 182.56±8.79d | 48.52±6.94b | 100.36±8.86b | 0.49±0.09ef |
克瑞森无核/克瑞森无核 Crimson seedless/Crimson seedless | 16.34±3.94bc | 14.14±3.39c | 175.51±10.70e | 53.09±6.49a | 89.26±12.19c | 0.61±0.11bc |
克瑞森无核自根 Crimson seedless self-rooted | 18.26±3.42a | 19.38±4.12a | 197.08±6.72b | 53.20±4.49a | 97.92±8.47b | 0.55±0.07cde |
[1] |
韩守安, 廖康, 潘明启, 等. 克瑞森葡萄主干环剥后果实可溶性糖组分及含量分析[J]. 新疆农业科学, 2018, 55(11): 2021-2027.
DOI |
HAN Shouan, LIAO Kang, PAN Mingqi, et al. Analysis of the soluble sugar components and content of the girdling of the main stem of Crimson grape[J]. Xinjiang Agricultural Sciences, 2018, 55(11): 2021-2027.
DOI |
|
[2] | 罗龙, 井双泉, 刘怀锋, 等. 着色期通风降温对设施克伦生葡萄品质的影响[J]. 黑龙江农业科学, 2019,(9): 81-84. |
LUO Long, JING Shuangquan, LIU Huaifeng, et al. The effect of ventilation and temperature reduction during the coloring period on the quality of green grapes in facility[J]. Heilongjiang Agricultural Sciences, 2019,(9): 81-84. | |
[3] | 阮班录, 刘承德, 司春爱. 晚熟克瑞森无核葡萄栽培技术[J]. 陕西农业科学, 2014, 60(4): 115-118. |
RUAN Banlu, LIU Chengde, SI Chun'ai. Cultivation technology of late-ripening Crimson seedless grapes[J]. Shaanxi Agricultural Sciences, 2014, 60(4): 115-118. | |
[4] | 张永辉, 刘力水, 周友缘, 等. 克瑞森无核葡萄在云南干热河谷区引种表现及关键栽培技术[J]. 热带农业科学, 2018, 38(9): 14-17. |
ZHANG Yonghui, LIU Lishui, ZHOU Youyuan, et al. Introduction performance and key cultivation techniques of Crimson seedless grapes in the dry and hot valley of Yunnan[J]. Chinese Journal of Tropical Agriculture, 2018, 38(9): 14-17. | |
[5] | 邱毅, 史祥宾, 魏长存, 等. 新疆产区‘克瑞森无核’葡萄轻简化生产关键技术[J]. 中国果树, 2018,(4): 100-102. |
QIU Yi, SHI Xiangbin, WEI Changcun, et al. The key technology of lightly simplified production of ‘Crimson Seedless’ grapes in Xinjiang production area[J]. China Fruits, 2018,(4): 100-102. | |
[6] | 马建江, 罗树祥. 新疆南疆地区“克瑞森”葡萄设施栽培技术[J]. 北方园艺, 2016,(6): 43-45. |
MA Jianjiang, LUO Shuxiang. Facility cultivation technology of “Crimson" grapes in southern Xinjiang[J]. Northern Horticulture, 2016,(6): 43-45. | |
[7] | 杨湘, 苏学德, 李鹏程, 等. 不同土壤水势对克瑞森葡萄光合生理及果实品质的影响[J]. 西南农业学报, 2020, 33(7): 1429-1434. |
YANG Xiang, SU Xuede, LI Pengcheng, et al. Effects of different soil water potentials on photosynthetic physiology and fruit quality of Crimson grape[J]. Journal of Southwest Agriculture, 2020, 33(7): 1429-1434. | |
[8] | 沐婵, 钱荣青, 胡选江, 等. 不同施肥对克瑞森葡萄产量及养分带走量的影响[J]. 农业科技通讯, 2020,(6): 181-183,272. |
MU Chan, QIAN Rongqing, HU Xuanjiang, et al. Effects of different fertilization on the yield and nutrient removal of Crimsongrapes[J]. Bulletin of Agricultural Science and Technology, 2020,(6): 181-183,272. | |
[9] | 杨江山, 许尔文, 吴玉霞, 等. 临泽县克瑞森无核葡萄设施延后优质丰产栽培技术[J]. 中外葡萄与葡萄酒, 2016,(3): 34-36. |
YANG Jiangshan, XU Erwen, WU Yuxia, et al. Cultivation techniques for high-quality and high-yield cultivation of Crimson seedless grapes in Linze County[J]. Sino-Overseas Grapeswine & Wine, 2016,(3): 34-36. | |
[10] |
Forneck A, Powell K S, Walker M A. Scientific opinion:improving the definition of grape phylloxera biotypes and standardizing biotype screening protocols[J]. American Journal of Enology and Viticulture, 2016, 67: 371-376.
DOI URL |
[11] |
Markus W E, Julia L, and Jacqueline M R, et al. Polyphenolic profiling of roots (Vitis spp.) under grape phylloxera (D.vitifoliae Fitch) attack[J]. Plant Physiology and Biochemistry, 2019, 135: 174-181.
DOI PMID |
[12] | 李超, 白世践, 赵荣华, 等. 葡萄砧木及其应用的研究进展[J]. 农学学报, 2016, 6(5): 53-59. |
LI Chao, BAI Shijian, ZHAO Ronghua, et al. Research progress on grape rootstocks and their applications[J]. Journal of Agriculture, 2016, 6(5): 53-59. | |
[13] | 李鹏程, 李铭, 郭绍杰, 等. 几种葡萄砧木的引种表现及抗寒性分析[J]. 中国农学通报, 2015, (34): 93-97. |
LI Pengcheng, LI Ming, GUO Shaojie, et al. Introduction performance and cold resistance analysis of several grape rootstocks[J]. Chinese Agricultural Science Bulletin, 2015, (34): 93-97. | |
[14] | 高振, 翟衡, 臧兴隆, 等. 利用低温放热法分析8个葡萄砧木和6个栽培品种芽的抗寒性[J]. 园艺学报, 2014, 41(1): 17-25. |
GAO Zhen, ZHAI Heng, ZANG Xinglong, et al. Using low temperature exothermic method to analyze the cold resistance of 8 grape rootstocks and 6 cultivars buds[J]. Acta Horticulturae Sinica, 2014, 41(1): 17-25. | |
[15] | 陈绍莉, 郭修武. 葡萄砧木的抗旱性鉴定与研究[J]. 中国果树, 2009,(1):38-42. |
CHEN Shaoli, GUO Xiuwu. Identification and research on drought resistance of grape rootstocks[J]. China Fruits, 2009,(1): 38-42. | |
[16] | 李敏敏, 袁军伟, 刘长江, 等. 砧木对河北昌黎产区赤霞珠葡萄生长和果实品质的影响[J]. 应用生态学报, 2016, 27(1):59-63. |
LI Minmin, YUAN Junwei, LIU Changjiang, et al. Effects of rootstocks on the growth and fruit quality of Cabernet Sauvignon grapes in Changli, Hebei[J]. Journal of Applied Ecology, 2016, 27(1): 59-63. | |
[17] | 沈碧薇, 魏灵珠, 崔鹏飞, 等. 不同砧木对‘瑞都红玉’葡萄生长结果与果实品质的影响[J]. 果树学报, 2020, 37 (3): 350-361. |
SHEN Biwei, WEI Lingzhu, CUI Pengfei, et al. The effects of different rootstocks on the growth and fruit quality of the'Ruidu Hongyu' grape[J]. Journal of Fruit Science, 2020, 37(3): 350-361. | |
[18] |
Lourens, Poorter F, Bongers. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733-43.
PMID |
[19] | 陈栋, 涂美艳, 李靖, 等. 不同黄化程度桃叶片生理指标及矿质养分含量差异研究[J]. 西南农业学报, 2014, 27(4):1522-1526. |
CHEN Dong, TU Meiyan, LI Jing, et al. Differences in physiological indexes and mineral nutrient contents of peach leaves with different degrees of yellowing[J]. Southwest Agricultural Journal, 2014, 27(4): 1522-1526. | |
[20] | 陈德兴, 王天铎. 叶片叶肉结构对环境光强的适应及对光合作用的影响[J]. 应用生态学报, 1990,(2):142-148. |
CHEN Dexing, WANG Tianduo. The adaptation of leaf mesophyll structure to environmental light intensity and its influence on photosynthesis[J]. Chinese Journal of Applied Ecology, 1990,(2): 142-148. | |
[21] | 张付春, 宋晓辉, 钟海霞, 等. 砧木对赤霞珠9葡萄叶片质量和光合光效的影响研究[J]. 新疆农业科学, 2017, 54(7):1223-1231. |
ZHANG Fuchun, SONG Xiaohui, ZHONG Haixia, et al. The effect of rootstocks on the leaf quality and photosynthetic efficiency of Cabernet Sauvignon 9 grape[J]. Xinjiang Agricultural Sciences, 2017, 54(7): 1223-1231. | |
[22] |
Bascuñán-Godoy L, Franck N, Zamorano D, et al. Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion[J]. Scientia Horticulturae, 2017, 218: 284-292..
DOI URL |
[23] | 程建徽. 3种砧木对金手指葡萄的影响[J]. 山西果树, 2009,(3):55. |
CHENG Jianhui. The influence of three rootstocks on Golden Finger grape[J]. Shanxi Fruit Tree, 2009,(3): 55. | |
[24] |
高展, 彭媛媛, 董凯向, 等. 不同砧木对马瑟兰葡萄生长及果实品质的影响[J]. 华北农学报, 2019, 34(5): 170-176.
DOI |
GAO Zhan, PENG Yuanyuan, DONG Kaixiang, et al. Effects of different rootstocks on the growth and fruit quality of Marselan grape[J]. North China Agricultural Journal, 2019, 34(5): 170-176. | |
[25] | 翟晨, 赵宝龙, 潘立忠, 等. 不同抗性砧木对2年生赤霞珠葡萄生长发育的影响[J]. 河南农业科学, 2017, 46(10): 104-109. |
ZHAI Chen, ZHAO Baolong, PAN Lizhong, et al. Effects of different resistant rootstocks on the growth and development of 2-year-old Cabernet Sauvignon grapes[J]. Henan Agricultural Sciences, 2017, 46(10): 104-109. | |
[26] | 李双岑, 马丹阳, 王振平. 不同砧木对1年生赤霞珠葡萄光合特性和生长的影响[J]. 广东农业科学, 2016,(2): 45-48. |
LI Shuangcen, MA Danyang, WANG Zhenping. Effects of different rootstocks on photosynthetic characteristics and growth of one-year-old Cabernet Sauvignon grapes[J]. Guangdong Agricultural Sciences, 2016,(2): 45-48. | |
[27] | 李超, 白世践, 陈光, 等. 砧木对‘赤霞珠’葡萄初期生长及果实品质的影响[J]. 农学学报, 2016, 6(4):57-62. |
LI Chao, BAI Shijian, CHEN Guang, et al. The effect of rootstock on the initial growth and fruit quality of'Cabernet Sauvignon' grape[J]. Journal of Agricultural Sciences, 2016, 6(4): 57-62. | |
[28] | 韩晓, 王海波, 王孝娣, 等. 不同砧木对“87-1”葡萄叶片质量及净光合速率的影响[J]. 中国南方果树, 2017, 46(3): 143-147. |
HAN Xiao, WANG Haibo, WANG Xiaodi, et al. Effects of different rootstocks on the leaf quality and net photosynthetic rate of "87-1" grape[J]. South China Fruit Tree, 2017, 46(3): 143-147. |
[1] | MA Yuejun, TAN Zhanming, CHENG Yunxia, WU Hui, ZHANG Qiaoqiao, DU Jiageng, WANG Qi, CUI Hewei, MA Xing. Effects of different matrix ratios and anvil combinations on cucumber growth and development [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2635-2647. |
[2] | YU Qiuhong, XU Panyun, GUO Chunmiao, Dilixiati Hasimu, Mubareke Ayoupu. Relationship between the anatomical structure of xylem and embolization characteristics of drought tolerant rootstocks of almond [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2693-2704. |
[3] | HU Jinge, BAI Shijian, CHEN Guang, CAI Junshe. Effects of different rootstocks on the composition and content of anthocyanin in Marselan wine grape [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1466-1475. |
[4] | ZHOU Weiquan, HOU Yixing, LIU Chunyan, Akejulidezi Nuergailide, XUE Jing, LI Shude, ZHOU Long. Effects of hard branch grafting on root growth characteristics and anatomical structure of different grape rootstock and scion combinations [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1170-1180. |
[5] | TANG Xixi, Mubarek Ayup, XU Panyun, YU Qiuhong, GUO Chunmiao, ZHANG Ping, GONG Peng. Response of root anatomical structure of different rootstock resources of almond to drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 897-907. |
[6] | DING Xiang, XIAN He, ZHOU Xiaoming, ZHANG Fuchun, HU Xin, PAN Mingqi, ZHONG Haixia, ZENG Bin, WU Xinyu. Effects of Different Rootstock Grafting on the Growth, Yield and Quality of Flame Seedless [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 79-85. |
[7] | HU Jinge, BAI Shijian, CHEN Guang, CAI Junshe. Differential Evaluation of Heat Tolerance of 15 Grape Rootstocks [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 86-95. |
[8] | YOU Jiahui, GAO Lin, FENG Linjiao, Maimaiti Maidiniayi, ZHOU Long, LI Shude. Analysis of Leaf Anatomical Structure and Drought Resistance of 17 Grape Rootstock Varieties [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1896-1906. |
[9] | BAI Shijian, HU Jinge, LI Chao, CAI Junshe, WANG Yong, ZHAO Ronghua, CHEN Guang. Physiological Response to Complex Saline-alkali and Its Tolerance Capacity Evaluation of Grape Rootstocks at Seedling Stage [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1666-1679. |
[10] | CUI Huimin, Abulaike Niyazi, WANG Ruizhe, FAN Guoquan, Mansur Nasir. Effects of Branch Angle on the Dwarf Interstock Zhongai 1 Photosynthetic Fluorescence Parameters of Korla Fragrant Pear [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2644-2651. |
[11] | ZHONG Haixia, XIAN He, WU Jiuyun, ZHANG Fuchun, DING Xiang, ZHAO Laipeng, PAN Mingqi, HU Xin, ZHOU Xiaoming, QIAO Jiangxia, WU Xinyu. Effects of Different Rootstocks on Photosynthetic Efficiency of Grape Leaves in Crimson Seedless Grape [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 113-121. |
[12] | XU Panyun, LI Chunlan, SONG Jindi, WANG Xi, CHENG Jiabao, WU Yuxia, HE Tianming. Physiological Responses of Seedlings of Different Apple Rootstocks to Salt-Alkali Complex Stress [J]. Xinjiang Agricultural Sciences, 2021, 58(9): 1694-1703. |
[13] | WU Zezhen, WEN Yue, HU Zhen, WANG Anli, ZHOU Wenjing, LI Wensheng. Study on Leaf Characteristics and Photosynthetic Characteristics of Bud Mutation and Variety from Red Fuji [J]. Xinjiang Agricultural Sciences, 2021, 58(6): 1086-1094. |
[14] | WANG Haojie, MAO Jiancai, LI Junhua, ZHAI Wenqiang. Effects of Different Rootstock Grafting on the Growth, Yield and Fruit Quality of Muskmelon [J]. Xinjiang Agricultural Sciences, 2021, 58(6): 1048-1054. |
[15] | Abulaike Niyazi, ZHANG Shikui, FAN Guoquan, WANG Shaopeng, WANG Yatong, Du Runqing. Effects of Different Dwarf Interstocks on Photosynthetic Characteristics of Korla Fragrant Pear [J]. Xinjiang Agricultural Sciences, 2020, 57(9): 1681-1688. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||