Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (11): 2815-2824.DOI: 10.6048/j.issn.1001-4330.2024.11.023
• Prataculture • Previous Articles Next Articles
YANG Gongxin(), Aliya Baidurela(
), ZHANG Wenya, CHENG Sisi, SUN Qian, LI Liu
Received:
2024-04-03
Online:
2024-11-20
Published:
2025-01-08
Correspondence author:
Aliya Baidurela
Supported by:
杨公新(), 阿丽亚·拜都热拉(
), 张文雅, 程思思, 孙倩, 李柳
通讯作者:
阿丽亚·拜都热拉
作者简介:
杨公新(1998-),男,山东单县人,硕士研究生,研究方向为林业生态工程与管理,(E-mail)847313984@qq.com
基金资助:
CLC Number:
YANG Gongxin, Aliya Baidurela, ZHANG Wenya, CHENG Sisi, SUN Qian, LI Liu. Research on the urban forest landscape pattern and carbon storage characteristics in Urumqi using remote sensing technology[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2815-2824.
杨公新, 阿丽亚·拜都热拉, 张文雅, 程思思, 孙倩, 李柳. 基于遥感技术分析乌鲁木齐市城市森林景观格局及碳储量特征[J]. 新疆农业科学, 2024, 61(11): 2815-2824.
树种名称 Name of tree species | 生物量计算方程 Biomass calculation equation | 平均胸径 Average diameter at breast height (cm) | 平均树高 Average tree height (m) | 所占总数 百分比 Percentage of total (%) |
---|---|---|---|---|
新疆杨 Populus alba var.pyramidalis | Y=0.136 2(D2H)0.779 6 | 13.32 | 10.43 | 3.8 |
箭杆杨 Populus nigra var.thevestina | Y=0.136 2(D2H)0.779 6 | 15.32 | 17.61 | 2.8 |
雪岭云杉Picea schrenkiana | Y=0.738 6(D2H)0.560 8 | 8.21 | 8.43 | 0.1 |
白榆Ulmus pumila | Y=0.924 0+0.042 0(D2H) | 11.58 | 7.07 | 45.4 |
欧洲白榆Ulmus laevis | Y=0.924 0+0.042 0(D2H) | 14.36 | 8.14 | 2.7 |
裂叶榆Ulmus laciniata | Y=0.924 0+0.042 0(D2H) | 13.19 | 7.73 | 2.8 |
青海云杉Picea crassifolia | Y=0.084 5(D2H)0.849 2 | 9.05 | 5.23 | 0.2 |
白柳Salix alba | Y=0.443 9D1.975 0 | 40.16 | 12.70 | 0.12 |
白蜡Fraxinus chinensis | Y=0.028 8(D2H)1.004 1 | 9.25 | 6.15 | 17.3 |
北美海棠Malus sieboldi | Y=0.178 0D1.101 0+0.124 0D1.1234 0 +0.160 0D0.656 0 | 4.15 | 3.06 | 8.3 |
黄太平Malus robusta | Y=0.178 0D1.101 0+ 0.124 0D1.123 40 +0.160 0D0.656 0 | 9.52 | 3.71 | 2.8 |
红皮云杉Picea koraiensis | lg(Y)=-0.954 5+0.847 2·lg(D2H) | 22.02 | 17.58 | 0.5 |
胡杨Populus euphratica | Y=0.122 1(D2H)0.781 3 | 37.78 | 8.31 | 0.3 |
白桦Betula platyphylla | Y=0.064 3(D2H)0.884 7 | 12.17 | 5.07 | 2.1 |
山桃Armeniaca davidiana | Y=0.178 0D1.101 0+ 0.124 0D1.123 40 +0.160 0D0.656 0 | 10.26 | 6.91 | 1.5 |
圆冠榆Ulmus densa | Y=0.924 0+0.042 0(D2H) | 16.96 | 7.97 | 4.1 |
Tab.1 Calculation equation for species
树种名称 Name of tree species | 生物量计算方程 Biomass calculation equation | 平均胸径 Average diameter at breast height (cm) | 平均树高 Average tree height (m) | 所占总数 百分比 Percentage of total (%) |
---|---|---|---|---|
新疆杨 Populus alba var.pyramidalis | Y=0.136 2(D2H)0.779 6 | 13.32 | 10.43 | 3.8 |
箭杆杨 Populus nigra var.thevestina | Y=0.136 2(D2H)0.779 6 | 15.32 | 17.61 | 2.8 |
雪岭云杉Picea schrenkiana | Y=0.738 6(D2H)0.560 8 | 8.21 | 8.43 | 0.1 |
白榆Ulmus pumila | Y=0.924 0+0.042 0(D2H) | 11.58 | 7.07 | 45.4 |
欧洲白榆Ulmus laevis | Y=0.924 0+0.042 0(D2H) | 14.36 | 8.14 | 2.7 |
裂叶榆Ulmus laciniata | Y=0.924 0+0.042 0(D2H) | 13.19 | 7.73 | 2.8 |
青海云杉Picea crassifolia | Y=0.084 5(D2H)0.849 2 | 9.05 | 5.23 | 0.2 |
白柳Salix alba | Y=0.443 9D1.975 0 | 40.16 | 12.70 | 0.12 |
白蜡Fraxinus chinensis | Y=0.028 8(D2H)1.004 1 | 9.25 | 6.15 | 17.3 |
北美海棠Malus sieboldi | Y=0.178 0D1.101 0+0.124 0D1.1234 0 +0.160 0D0.656 0 | 4.15 | 3.06 | 8.3 |
黄太平Malus robusta | Y=0.178 0D1.101 0+ 0.124 0D1.123 40 +0.160 0D0.656 0 | 9.52 | 3.71 | 2.8 |
红皮云杉Picea koraiensis | lg(Y)=-0.954 5+0.847 2·lg(D2H) | 22.02 | 17.58 | 0.5 |
胡杨Populus euphratica | Y=0.122 1(D2H)0.781 3 | 37.78 | 8.31 | 0.3 |
白桦Betula platyphylla | Y=0.064 3(D2H)0.884 7 | 12.17 | 5.07 | 2.1 |
山桃Armeniaca davidiana | Y=0.178 0D1.101 0+ 0.124 0D1.123 40 +0.160 0D0.656 0 | 10.26 | 6.91 | 1.5 |
圆冠榆Ulmus densa | Y=0.924 0+0.042 0(D2H) | 16.96 | 7.97 | 4.1 |
PLAND | LPI | AI | FRAC_MN | PARA_MN | PD | LSI | COHESION | |
---|---|---|---|---|---|---|---|---|
道路林Road forest | 22.522 4 | 1.774 7 | 79.120 3 | 1.113 2 | 687.867 6 | 2.997 4 | 40.426 3 | 93.596 3 |
附属林Auxiliary forest | 10.104 4 | 1.138 4 | 81.748 5 | 1.115 4 | 448.993 8 | 0.957 5 | 23.980 4 | 94.198 1 |
风景游憩林 landscape recreation forest | 36.995 6 | 7.298 7 | 92.655 1 | 1.115 2 | 308.667 2 | 0.624 5 | 18.796 7 | 98.066 7 |
生态公益林 Ecological public welfare forest | 27.173 4 | 6.026 1 | 95.365 5 | 1.102 4 | 149.528 5 | 0.277 5 | 10.602 9 | 97.930 6 |
生产经营林 Production and operation forest | 3.204 1 | 0.7 | 90.798 6 | 1.106 7 | 181.952 6 | 0.104 1 | 7.465 3 | 95.344 7 |
Tab.2 Changes of forest landscape pattern index in different cities
PLAND | LPI | AI | FRAC_MN | PARA_MN | PD | LSI | COHESION | |
---|---|---|---|---|---|---|---|---|
道路林Road forest | 22.522 4 | 1.774 7 | 79.120 3 | 1.113 2 | 687.867 6 | 2.997 4 | 40.426 3 | 93.596 3 |
附属林Auxiliary forest | 10.104 4 | 1.138 4 | 81.748 5 | 1.115 4 | 448.993 8 | 0.957 5 | 23.980 4 | 94.198 1 |
风景游憩林 landscape recreation forest | 36.995 6 | 7.298 7 | 92.655 1 | 1.115 2 | 308.667 2 | 0.624 5 | 18.796 7 | 98.066 7 |
生态公益林 Ecological public welfare forest | 27.173 4 | 6.026 1 | 95.365 5 | 1.102 4 | 149.528 5 | 0.277 5 | 10.602 9 | 97.930 6 |
生产经营林 Production and operation forest | 3.204 1 | 0.7 | 90.798 6 | 1.106 7 | 181.952 6 | 0.104 1 | 7.465 3 | 95.344 7 |
区域 Areas | 碳储量 Carbon reserves (kt) | 面积 Area (ha) | 碳密度 Carbon density (kg/m2) | 样方数 Sample number | 平均胸径 Average diameter at breast height (D/cm) | 平均树高 Average tree height (H/m) | 植株数 Number of plants | 株数密度 Density of plant number (ha) |
---|---|---|---|---|---|---|---|---|
道路林Road forest | 74.24 | 3 246.03 | 4.47 | 33 | 10.68±2.81 | 5.98±1.04 | 2 883 | 802.36 |
风景游憩林 Landscape recreation forest | 142.92 | 5 331.96 | 5.25 | 57 | 15.22±4.68 | 9.39±2.36 | 2 969 | 578.75 |
附属林 Auxiliary forest | 43.17 | 1 456.29 | 5.81 | 15 | 23.62±5.63 | 10.51±3.26 | 433 | 320.74 |
生产经营林 Production and operation forest | 16.34 | 461.79 | 6.93 | 5 | 4.09±1.13 | 3.02±1.81 | 951 | 2 113.33 |
生态公益林 Ecological public welfare forest | 71.90 | 3 916.35 | 3.60 | 39 | 8.69±2.12 | 6.12±1.03 | 3 335 | 950.14 |
Tab.3 Basic information of sampling points in the study area
区域 Areas | 碳储量 Carbon reserves (kt) | 面积 Area (ha) | 碳密度 Carbon density (kg/m2) | 样方数 Sample number | 平均胸径 Average diameter at breast height (D/cm) | 平均树高 Average tree height (H/m) | 植株数 Number of plants | 株数密度 Density of plant number (ha) |
---|---|---|---|---|---|---|---|---|
道路林Road forest | 74.24 | 3 246.03 | 4.47 | 33 | 10.68±2.81 | 5.98±1.04 | 2 883 | 802.36 |
风景游憩林 Landscape recreation forest | 142.92 | 5 331.96 | 5.25 | 57 | 15.22±4.68 | 9.39±2.36 | 2 969 | 578.75 |
附属林 Auxiliary forest | 43.17 | 1 456.29 | 5.81 | 15 | 23.62±5.63 | 10.51±3.26 | 433 | 320.74 |
生产经营林 Production and operation forest | 16.34 | 461.79 | 6.93 | 5 | 4.09±1.13 | 3.02±1.81 | 951 | 2 113.33 |
生态公益林 Ecological public welfare forest | 71.90 | 3 916.35 | 3.60 | 39 | 8.69±2.12 | 6.12±1.03 | 3 335 | 950.14 |
[1] | 王成, 蔡春菊, 陶康华. 城市森林的概念、范围及其研究[J]. 世界林业研究, 2004, 17(2): 23-27. |
WANG Cheng, CAI Chunju, TAO Kanghua. The concept, range and research area of urban forest[J]. World Forestry Research, 2004, 17(2): 23-27. | |
[2] | 肖睿, 刘建琳, 江苏省科学技术协会, 等. 碳中和[M]. 南京: 南京大学出版社, 2022. |
Xiao Rui, Liu Jianlin, Jiangsu Association of Science and Technology, et al. Carbon Neutrality[M]. Nanjing: Nanjing University Press, 2022. | |
[3] |
毛媛媛, 徐凡, 高义轩, 等. 基于形态学空间格局分析的汝州市蓝绿生态网络构建与规划应用[J]. 应用生态学报, 2023, 34(8): 2226-2236.
DOI |
MAO Yuanyuan, XU Fan, GAO Yixuan, et al. Construction and planning application of blue-green ecological network in Ruzhou City based on morphological spatial pattern analysis (MSPA)[J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2226-2236.
DOI |
|
[4] |
石天戈, 张小雷, 杜宏茹, 等. 乌鲁木齐市居民出行行为的空间特征和碳排放分析[J]. 地理科学进展, 2013, 32(6): 897-905.
DOI |
SHI Tiange, ZHANG Xiaolei, DU Hongru, et al. Spatial characteristics of residents’outings and carbon emissions in Urumqi City[J]. Progress in Geography, 2013, 32(6): 897-905.
DOI |
|
[5] | 杨俊孝, 刘霄, 张飞云. 乌鲁木齐市中心城区土地多功能利用空间分异研究[J]. 国土资源科技管理, 2023, 40(3): 61-73. |
YANG Junxiao, LIU Xiao, ZHANG Feiyun. On spatial differentiation of multifunctional land use in the central urban area of Urumqi[J]. Scientific and Technological Management of Land and Resources, 2023, 40(3): 61-73. | |
[6] | Subhan, Anhar A, Muslih A M, et al. Urban forest carbon stock and biodiversity assesment at Nagan Raya Regency[J]. IOP Conference Series: Earth and Environmental Science, 2022, 951(1): 012071. |
[7] | Arlita T, Yanti L A, Farida A, et al. Total carbon stock in Langsa Urban Forest, Langsa City, Aceh Province[J]. IOP Conference Series: Earth and Environmental Science, 2022, 951(1). |
[8] | Pregitzer C C, Hanna C, Charlop-Powers S, et al. Estimating carbon storage in urban forests of New York City[J]. Urban Ecosystems, 2022, 25(2): 617-631. |
[9] | 邹琪, 孙华, 王广兴, 等. 基于Landsat 8的深圳市森林碳储量遥感反演研究[J]. 西北林学院学报, 2017, 32(4): 164-171. |
ZOU Qi, SUN Hua, WANG Guangxing, et al. Remote sensing retrieval of forest carbon storage in Shenzhen based on landsat 8 images[J]. Journal of Northwest Forestry University, 2017, 32(4): 164-171. | |
[10] | 张彪, 谢紫霞, 高吉喜. 上海城市森林植被固碳功能及其抵消能源碳排放效果评估[J]. 生态学报, 2021, 41(22): 8906-8920. |
ZHANG Biao, XIE Zixia, GAO Jixi. Assessment on the carbon fixation of urban forests and their efficacy on offsetting energy carbon emissions in Shanghai[J]. Acta Ecologica Sinica, 2021, 41(22): 8906-8920. | |
[11] | 马杰. 北京市六环内城市森林结构及其生态服务功能研究[D]. 北京: 中国林业科学研究院, 2019. |
MA Jie. The Study on Urban Forest Structure and Eco-service in the Sixth Ring Road of Beijing[D]. Beijing: Chinese Academy of Forestry, 2019. | |
[12] | 李源清, 张晓东, 胡娜, 等. 基于统计数据郑州市全口径碳汇估算研究[J]. 计量学报, 2022, 43(2): 281-286. |
LI Yuanqing, ZHANG Xiaodong, HU Na, et al. Study on estimating all carbon sink resources of Zhengzhou based on statistics[J]. Acta Metrologica Sinica, 2022, 43(2): 281-286. | |
[13] | 林广思, 杨锐. 我国城乡园林绿化法规分析[J]. 中国园林, 2010, 26(12): 29-32. |
LIN Guangsi, YANG Rui. Analysis of the urban and rural greening laws in China[J]. Chinese Landscape Architecture, 2010, 26(12): 29-32. | |
[14] | 何兴元, 刘常富, 陈玮, 等. 城市森林分类探讨[J]. 生态学杂志, 2004, 23(5): 175-178, 185. |
HE Xingyuan, LIU Changfu, CHEN Wei, et al. Discussion on urban forest classification[J]. Chinese Journal of Ecology, 2004, 23(5): 175-178, 185. | |
[15] |
王钰莹, 王海军, 周新刚, 等. 耦合元胞和斑块尺度分层驱动机制的城镇扩展CA模拟[J]. 地球信息科学学报, 2023, 25(9): 1784-1797.
DOI |
WANG Yuying, WANG Haijun, ZHOU Xingang, et al. Urban expansion cellular automata simulation by coupling hierarchical driving mechanism of cell and patch scales[J]. Journal of Geo-Information Science, 2023, 25(9): 1784-1797. | |
[16] | 魏嘉馨, 干晓宇, 黄莹, 等. 成都市城市绿地景观与生态系统服务的关系[J]. 西北林学院学报, 2022, 37(6): 232-241. |
WEI Jiaxin, GAN Xiaoyu, HUANG Ying, et al. Relationship between urban green space landscape and ecosystem services in Chengdu city[J]. Journal of Northwest Forestry University, 2022, 37(6): 232-241. | |
[17] | 杨英书. 基于生态效益分析的怀化城市公园植物群落优化研究[D]. 长沙: 中南林业科技大学, 2022. |
YANG Yingshu. Optimization of Plant Community in Urban Parks of Huaihua City Based on Ecological Benefits Analysis[D]. Changsha: Central South University of Forestry & Technology, 2022. | |
[18] | 罗云建, 王效科, 逯非. 中国主要林木生物量模型手册[M]. 北京: 中国林业出版社, 2015. |
LUO Yunjian, WANG Xiaoke, LU Fei. Comprehensive database of biomass regressions for China’s tree species[M]. Beijing: China Forestry Publishing House, 2015. | |
[19] | Mcpherson E G, Nowak D J, Heisler G, et al. Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project,1994. |
[20] | Nowak D J, Crane D E, Stevens J C, et al. The urban forest effects (UFORE) model: Field data collection manual, 2003. |
[21] |
王海熠, 王洪荣, 陈树新, 等. 成都市龙泉山城市森林公园植被覆盖度与景观格局特征动态变化分析[J]. 遥感技术与应用, 2023, 38(6): 1455-1466.
DOI |
WANG Haiyi, WANG Hongrong, CHEN Shuxin, et al. Dynamic change analysis of vegetation coverage and landscape pattern characteristics in Longquan Mountain urban forest park, Chengdu city[J]. Remote Sensing Technology and Application, 2023, 38(6): 1455-1466. | |
[22] | 张璐, 吕楠, 程临海. 干旱区生态系统稳态转换及其预警信号——基于景观格局特征的识别方法[J]. 生态学报, 2023, 43(15): 6486-6498. |
ZHANG Lu, Lyu Nan,CHENG Linhai. Regime shifts and early warning signals in dryland ecosystems-an identification method based on landscape pattern characteristics[J]. Acta Ecologica Sinica, 2023, 43(15): 6486-6498. | |
[23] | 钟嘉琳, 李心, 刘玮, 等. 南昌城市化强度对森林植被特征和景观格局指数的影响[J/OL]. 生态学杂志,1-12[2023-12-29]. |
Zhong Jialin, Li Xin, Liu Wei, et al. The impact of urbanization intensity on forest vegetation characteristics and landscape pattern indices in Nanchang[J/OL]. Journal of Ecology, 1-12 [2023-12-29]. | |
[24] | 王亚男, 周正广, 朱文浩, 等. 城市化强度对城市森林景观格局的影响[J]. 山东林业科技, 2021, 51(5): 29-35, 48. |
WANG Yanan, ZHOU Zhengguang, ZHU Wenhao, et al. Impact of urbanization intensity on urban forest spatial pattern[J]. Journal of Shandong Forestry Science and Technology, 2021, 51(5): 29-35, 48. | |
[25] | 谢天资, 陈俊华, 谢川, 等. 南充市主城区城市森林结构特征分析[J]. 四川林业科技, 2022, 43(2): 118-123. |
XIE Tianzi, CHEN Junhua, XIE Chuan, et al. Analysis on the characteristics of urban forest structure in the main urban area of Nanchong city[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(2): 118-123. | |
[26] | 曾雨露, 陈彩虹, 陈明皋, 等. 汨罗市城市森林结构特征分析[J]. 中南林业科技大学学报, 2023, 43(9): 136-143. |
ZENG Yulu, CHEN Caihong, CHEN Minggao, et al. Analysis on the structural characteristics of urban forests in Miluo City[J]. Journal of Central South University of Forestry & Technology, 2023, 43(9): 136-143. | |
[27] | 马杰, 贾宝全, 张文, 等. 北京市六环内城市森林结构总体特征[J]. 生态学杂志, 2019, 38(8): 2318-2325. |
MA Jie, JIA Baoquan, ZHANG Wen, et al. The characteristics of urban forest structure within the Sixth Ring Road of Beijing[J]. Chinese Journal of Ecology, 2019, 38(8): 2318-2325. | |
[28] | 梁璇, 刘萍, 徐正春. 广州城市森林林分结构及林下植物多样性研究[J]. 西南林业大学学报, 2015, 35(2): 37-42. |
LIANG Xuan, LIU Ping, XU Zhengchun. Study on stand structure and undergrowth species diversity of urban forest in Guangzhou[J]. Journal of Southwest Forestry University, 2015, 35(2): 37-42. | |
[29] |
张桂莲. 基于遥感估算的上海城市森林碳储量空间分布特征[J]. 生态环境学报, 2021, 30(9): 1777-1786.
DOI |
ZHANG Guilian. Spatial distribution characteristics of carbon storage of urban forests in Shanghai based on remote sensing estimation[J]. Ecology and Environmental Sciences, 2021, 30(9): 1777-1786. | |
[30] | 张丹. 城市化背景下城市森林结构与碳储量时空变化研究——以长春市为例[D]. 哈尔滨: 中国科学院研究生院(东北地理与农业生态研究所), 2015. |
ZHANG Dan. Spatial-temporal Changes of Urban Forest Structure And Carbon Storage under Rapid Urbanization[D]. Harbin:Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2015. |
[1] | Abudousaimaiti Naihemaiti;Aikebaier Yilahong;Saiyaranmu · Halipu. The Vertical Distribution Characteristics of Ili Zhaosu Grassland Chernozem Soil Organic Carbon at Different Altitudes [J]. , 2017, 54(1): 156-164. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 8
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||