Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (1): 79-91.DOI: 10.6048/j.issn.1001-4330.2024.01.009
• Horticultural Special Local Products·Agricultural Product Processing Engineering • Previous Articles Next Articles
BAI Shijian1(), HU Jinge1, LI Shuai2, XUE Feng3, ZHANG Wen4, PAN Xubing3, WEI Dengpan3, ZHAO Ronghua1, CAI Junshe1
Received:
2023-06-05
Online:
2024-01-20
Published:
2024-02-21
Correspondence author:
BAI Shijian(1986-),male,Yunnan province,senior agronomist,research field:grape cultivation,(E-mail) Supported by:
白世践1(), 户金鸽1, 李帅2, 薛锋3, 张雯4, 潘绪兵3, 魏登攀3, 赵荣华1, 蔡军社1
作者简介:
白世践(1986-),男,云南人,高级农艺师,研究方向为葡萄栽培,(E-mail)594748964@qq.com
基金资助:
CLC Number:
BAI Shijian, HU Jinge, LI Shuai, XUE Feng, ZHANG Wen, PAN Xubing, WEI Dengpan, ZHAO Ronghua, CAI Junshe. Effects of two cultivation modes on the cluster region micro-environment,berry development and quality of marselan grape in turpan-hami basin[J]. Xinjiang Agricultural Sciences, 2024, 61(1): 79-91.
白世践, 户金鸽, 李帅, 薛锋, 张雯, 潘绪兵, 魏登攀, 赵荣华, 蔡军社. 2种栽培模式对酿酒葡萄马瑟兰果际微域环境和果实发育的影响[J]. 新疆农业科学, 2024, 61(1): 79-91.
Fig.1 Changes of temperature on Marselan grape culster region under two cultivation modes Note:H-Mean:daily mean temperature of H-MVSP; L-mean:daily average temperature of L-MVSP;H-Max:daily maximum temperature of H-MVSP; L-Max:daily maximum temperature of L-MVSP; H-Min:daily minimum temperature of H-MVSP; L-min:daily minimum temperature of L-MVSP; H-TD:daily temperature difference of H-MVSP; L-TD:daily temperature difference of L-MVSP; H-≥35℃ TDS:the sum of temperature differences exceeding 35℃ of H-MVSP; L-≥35℃ TDS:the sum of temperature differences exceeding 35℃ of L-MVSP; H-≥35℃ HTT:time of temperature exceeding 35℃ of H-MVSP; L-≥35℃ HTT:time of temperature exceeding 35℃ of L-MVSP
月份 Month | 处理 Treatment | 日最高温均值 The maximum temperature (℃) | 日最低温均值 The minimum temperature (℃) | 日均温度 Average temperature (℃) | 日均温差 Average temperature difference (℃) | 超过35℃ 温差总和 The sum of temperature difference above 35℃(℃) | ≥35℃高温时长 Time of temperature above 35℃(h) |
---|---|---|---|---|---|---|---|
5 May | H-MVSP | 36.98 | 15.82 | 21.16 | 26.11 | 62.50 | 70.50 |
L-MVSP | 36.78 | 16.10 | 20.68 | 25.90 | 56.00 | 72.00 | |
6 June | H-MVSP | 37.40 | 16.48 | 20.92 | 26.92 | 90.00 | 132.00 |
L-MVSP | 35.75 | 16.88 | 18.87 | 26.20 | 57.00 | 85.00 | |
7 July | H-MVSP | 38.69 | 18.76 | 19.94 | 28.24 | 121.00 | 169.00 |
L-MVSP | 35.82 | 19.45 | 16.37 | 27.18 | 52.50 | 91.00 | |
8 August | H-MVSP | 38.97 | 17.52 | 21.45 | 27.23 | 129.00 | 154.50 |
L-MVSP | 37.03 | 18.31 | 18.73 | 26.87 | 80.00 | 117.50 | |
均值Mean | H-MVSP | 38.01 | 17.15 | 20.87 | 27.13 | 100.63 | 131.50 |
L-MVSP | 36.35 | 17.69 | 18.66 | 26.54 | 61.38 | 91.38 |
Tab.1 The culster region temperature of Marselan grape under two cultivation modes during high temperature months
月份 Month | 处理 Treatment | 日最高温均值 The maximum temperature (℃) | 日最低温均值 The minimum temperature (℃) | 日均温度 Average temperature (℃) | 日均温差 Average temperature difference (℃) | 超过35℃ 温差总和 The sum of temperature difference above 35℃(℃) | ≥35℃高温时长 Time of temperature above 35℃(h) |
---|---|---|---|---|---|---|---|
5 May | H-MVSP | 36.98 | 15.82 | 21.16 | 26.11 | 62.50 | 70.50 |
L-MVSP | 36.78 | 16.10 | 20.68 | 25.90 | 56.00 | 72.00 | |
6 June | H-MVSP | 37.40 | 16.48 | 20.92 | 26.92 | 90.00 | 132.00 |
L-MVSP | 35.75 | 16.88 | 18.87 | 26.20 | 57.00 | 85.00 | |
7 July | H-MVSP | 38.69 | 18.76 | 19.94 | 28.24 | 121.00 | 169.00 |
L-MVSP | 35.82 | 19.45 | 16.37 | 27.18 | 52.50 | 91.00 | |
8 August | H-MVSP | 38.97 | 17.52 | 21.45 | 27.23 | 129.00 | 154.50 |
L-MVSP | 37.03 | 18.31 | 18.73 | 26.87 | 80.00 | 117.50 | |
均值Mean | H-MVSP | 38.01 | 17.15 | 20.87 | 27.13 | 100.63 | 131.50 |
L-MVSP | 36.35 | 17.69 | 18.66 | 26.54 | 61.38 | 91.38 |
Fig.2 Changes of humidity on Marselan grape culster region under two cultivation modes Note:H-Mean:daily average humidity of H-MVSP; L-mean:daily average humidity of L-MVSP; H-Max:daily maximum humidity of H-MVSP; L-Max:daily maximum humidity of L-MVSP; H-Min:daily minimum humidity of H-MVSP; L-min:daily minimum humidity of L-MVSP; H-TD:Low humidity duration of H-MVSP; L-TD:Low humidity duration of L-MVSP
月份 Month | 处理 Treatment | 日最大湿度均值 The maximum humidity(%) | 日最小湿度均值 The minimum humidity(%) | 日均湿度 Average humidity(%) | 日均低湿时长 Low humidity duration(h) |
---|---|---|---|---|---|
5 May | H-MVSP | 48.00 | 16.08 | 29.27 | 20.88 |
L-MVSP | 49.26 | 16.72 | 30.81 | 19.86 | |
6 June | H-MVSP | 56.75 | 19.33 | 35.10 | 18.48 |
L-MVSP | 61.80 | 21.43 | 38.69 | 16.63 | |
7 July | H-MVSP | 70.95 | 27.03 | 46.76 | 11.90 |
L-MVSP | 74.27 | 30.00 | 50.70 | 9.60 | |
8 August | H-MVSP | 63.00 | 23.57 | 42.42 | 12.65 |
L-MVSP | 64.94 | 24.66 | 43.91 | 11.55 | |
均值Mean | H-MVSP | 59.68 | 21.50 | 38.39 | 15.97 |
L-MVSP | 62.57 | 23.20 | 41.03 | 14.41 |
Tab.2 The culster region humidity of Marselan grape under two cultivation modes during high temperature months
月份 Month | 处理 Treatment | 日最大湿度均值 The maximum humidity(%) | 日最小湿度均值 The minimum humidity(%) | 日均湿度 Average humidity(%) | 日均低湿时长 Low humidity duration(h) |
---|---|---|---|---|---|
5 May | H-MVSP | 48.00 | 16.08 | 29.27 | 20.88 |
L-MVSP | 49.26 | 16.72 | 30.81 | 19.86 | |
6 June | H-MVSP | 56.75 | 19.33 | 35.10 | 18.48 |
L-MVSP | 61.80 | 21.43 | 38.69 | 16.63 | |
7 July | H-MVSP | 70.95 | 27.03 | 46.76 | 11.90 |
L-MVSP | 74.27 | 30.00 | 50.70 | 9.60 | |
8 August | H-MVSP | 63.00 | 23.57 | 42.42 | 12.65 |
L-MVSP | 64.94 | 24.66 | 43.91 | 11.55 | |
均值Mean | H-MVSP | 59.68 | 21.50 | 38.39 | 15.97 |
L-MVSP | 62.57 | 23.20 | 41.03 | 14.41 |
Fig.3 The culster region diurnal variation of PAR on Marselan grape under two cultivation modes Note:H-PARtran:PARtran of H-MVSP; L-PARtran:PARtran of L-MVSP; H-PARsoil:PARsoil of H-MVSP; L-PARsoil:PARsoil of L-MVSP
处理 Treatment | 叶幕透射 辐射均值 Daily average PARtran (μmol/ (m2·s)) | 土壤反射 辐射均值 Daily average PARsoil (μmol/ (m2·s)) | 总辐射均值 Daily average total PAR (μmol/ (m2·s)) |
---|---|---|---|
H-MVSP | 15.35±1.96a | 22.33±3.69a | 37.68±1.84a |
L-MVSP | 9.68±0.87b | 11.08±2.05b | 20.76±2.92b |
Tab.3 PAR of Marselan grape culster region under two cultivation modes
处理 Treatment | 叶幕透射 辐射均值 Daily average PARtran (μmol/ (m2·s)) | 土壤反射 辐射均值 Daily average PARsoil (μmol/ (m2·s)) | 总辐射均值 Daily average total PAR (μmol/ (m2·s)) |
---|---|---|---|
H-MVSP | 15.35±1.96a | 22.33±3.69a | 37.68±1.84a |
L-MVSP | 9.68±0.87b | 11.08±2.05b | 20.76±2.92b |
Fig.4 Changes of berry mass,sugar and acid in Marselan grape during fruit development under two cultivation modes Note:* indicate significant difference at P<0.05,the same as below
处理 Treatment | 果穗质量 Cluster mass(g) | 果粒质量 Berry mass(g) | 萎蔫率 Wilting rate(%) | 可溶性固形物 TSS (°Brix) | 总酸 Total acid (g/L) | 酒石酸 Tartaric acid (g/L) | 苹果酸 Malic acid (g/L) |
---|---|---|---|---|---|---|---|
H-MVSP | 82.24±3.76 b | 0.82±0.04 b | 15.44±4.82 a | 26.10±0.17 a | 7.35±0.34 b | 5.75±0.24 b | 1.03±0.08 a |
L-MVSP | 114.10±8.02 a | 1.03±0.05 a | 1.24±0.79 b | 23.43±1.37 b | 8.18±0.22 a | 6.57±0.18 a | 1.06±0.03 a |
Tab.4 Basic physical and chemical indexes and wilting rate of Marselan berries during harvest
处理 Treatment | 果穗质量 Cluster mass(g) | 果粒质量 Berry mass(g) | 萎蔫率 Wilting rate(%) | 可溶性固形物 TSS (°Brix) | 总酸 Total acid (g/L) | 酒石酸 Tartaric acid (g/L) | 苹果酸 Malic acid (g/L) |
---|---|---|---|---|---|---|---|
H-MVSP | 82.24±3.76 b | 0.82±0.04 b | 15.44±4.82 a | 26.10±0.17 a | 7.35±0.34 b | 5.75±0.24 b | 1.03±0.08 a |
L-MVSP | 114.10±8.02 a | 1.03±0.05 a | 1.24±0.79 b | 23.43±1.37 b | 8.18±0.22 a | 6.57±0.18 a | 1.06±0.03 a |
处理 Treatment | 皮总酚 Skin total phenol | 皮单宁 Skin tannins | 皮总黄烷醇 Skin total flavanos | 籽总酚 Seed total phenol | 籽单宁 Seed tannins | 籽总黄烷醇 Seed total flavanos |
---|---|---|---|---|---|---|
H-MVSP | 10.31±0.71 a | 1.75±0.12 a | 22.49±2.08 b | 14.66±1.28 a | 5.59±0.36 a | 17.33±0.10 a |
L-MVSP | 10.41±0.65 a | 1.71±0.09 a | 27.85±2.08 a | 16.73±0.99 a | 5.48±0.60 a | 17.55±0.20 a |
Tab.5 Phenolic content of Marselan berries during harvest(mg/g)
处理 Treatment | 皮总酚 Skin total phenol | 皮单宁 Skin tannins | 皮总黄烷醇 Skin total flavanos | 籽总酚 Seed total phenol | 籽单宁 Seed tannins | 籽总黄烷醇 Seed total flavanos |
---|---|---|---|---|---|---|
H-MVSP | 10.31±0.71 a | 1.75±0.12 a | 22.49±2.08 b | 14.66±1.28 a | 5.59±0.36 a | 17.33±0.10 a |
L-MVSP | 10.41±0.65 a | 1.71±0.09 a | 27.85±2.08 a | 16.73±0.99 a | 5.48±0.60 a | 17.55±0.20 a |
花色苷 Anthocyanins | H-MVSP | L-MVSP |
---|---|---|
花青素类花色苷Cyanidin anthocyanins(mg/kg) | 4.688±0.535b | 7.934±0.435a |
花青素香豆酰化类花色苷Cyanidin coumaryl anthocyanins(mg/kg) | 0.187±0.012b | 0.293±0.030 a |
花青素咖啡酰化类花色苷Cyanidin caffeoyl anthocyanins(mg/kg) | 0.005±0.000 a | 0.005±0.000 a |
总花青素类花色苷Total cyanidin anthocyanins(mg/kg) | 4.880±0.547 b | 8.232±0.465 a |
甲基花青素类花色苷Peonidin anthocyanins(mg/kg) | 37.688±0.568 b | 43.815±1.434 a |
甲基花青素丙二酰化类花色苷Peonidin malonyl anthocyanins(mg/kg) | 0.047±0.006 a | 0.056±0.004 a |
总花甲基青素类花色苷Total Peonidin anthocyanins(mg/kg) | 37.735±0.562 b | 43.852±1.465 a |
花翠素类花色苷Delphinidin anthocyanins(mg/kg) | 189.400±3.186 b | 234.687±4.282 a |
花翠素乙酰化类花色苷Delphinidin acetyl anthocyanins(mg/kg) | 64.777±1.764 a | 65.763±2.828 a |
花翠素丙二酰化类花色苷Delphinidin malonyl anthocyanins(mg/kg) | 0.023±0.003 a | 0.029±0.004 a |
花翠素香豆酰化类花色苷Delphinidin coumaryl anthocyanins(mg/kg) | 2.437±0.185 b | 3.148±0.275 a |
总花翠素类花色苷Total delphinidin anthocyanins(mg/kg) | 256.636±6.055 b | 303.627±7.382 a |
甲基花翠素类花色苷Petunidin anthocyanins(mg/kg) | 80.328±2.032 b | 104.940±3.039 a |
甲基花翠素丙二酰化类花色苷Petunidin malonyl anthocyanins(mg/kg) | 0.058±0.004 a | 0.063±0.001 a |
甲基花翠素香豆酰化类花色苷Petunidin coumaryl anthocyanins(mg/kg) | 0.293±0.021 a | 0.303±0.035 a |
总甲基花翠素类花色苷Total petunidin anthocyanins(mg/kg) | 80.679±2.056 b | 105.305±3.075 a |
二甲基花翠素类花色苷Malvidin anthocyanins(mg/kg) | 408.742±3.664 a | 374.115±14.826 b |
二甲基花翠素丙二酰化类花色苷Malvidin malonyl anthocyanins(mg/kg) | 5.513±0.256 a | 4.873±0.410 a |
二甲基花翠素乙酰化类花色苷Malvidin acetyl anthocyanins(mg/kg) | 0.471±0.099 a | 0.387±0.067 a |
总二甲基花翠素类花色苷Total malvidin anthocyanins(mg/kg) | 414.726±5.699 a | 379.375±7.303 b |
花葵素类花色苷Pelnidin anthocyanins(mg/kg) | 0.471±0.105 b | 0.810±0.012 a |
花葵素丙二酰化类花色苷Pelnidin malonyl anthocyanins(mg/kg) | 0.001±0.000 a | 0.001±0.000 a |
总花葵素类花色苷Total pelnidin anthocyanins(mg/kg) | 0.472±0.105 b | 0.811±0.021 a |
总花色苷Total anthocyanins(mg/kg) | 795.128±15.98 b | 841.202±27.68 a |
总3'-羟基取代类花色苷Total 3'-substituent anthocyanins(mg/kg) | 256.642±6.054 b | 303.635±7.381 a |
总3',5'-羟基取代类花色苷Total 3',5'-substituent anthocyanins(mg/kg) | 752.048±14.810 b | 788.318±25.753 a |
3',5'-羟基取代类花色苷/3'-羟基取代类花色苷Ratio 3',5'/3' | 17.654±0.131 a | 15.142±0.105 b |
甲基化比例Methylation percentage(%) | 67.054±0.223 a | 62.832±0.066 b |
酰化比例Acylation percentage(%) | 9.280±0.235 a | 8.901±0.230 a |
总修饰比例Total anthocyanins modification percentage(%) | 75.531±0.035 a | 71.060±0.116 b |
Tab.6 The components of anthocyanins in the peel during harvest
花色苷 Anthocyanins | H-MVSP | L-MVSP |
---|---|---|
花青素类花色苷Cyanidin anthocyanins(mg/kg) | 4.688±0.535b | 7.934±0.435a |
花青素香豆酰化类花色苷Cyanidin coumaryl anthocyanins(mg/kg) | 0.187±0.012b | 0.293±0.030 a |
花青素咖啡酰化类花色苷Cyanidin caffeoyl anthocyanins(mg/kg) | 0.005±0.000 a | 0.005±0.000 a |
总花青素类花色苷Total cyanidin anthocyanins(mg/kg) | 4.880±0.547 b | 8.232±0.465 a |
甲基花青素类花色苷Peonidin anthocyanins(mg/kg) | 37.688±0.568 b | 43.815±1.434 a |
甲基花青素丙二酰化类花色苷Peonidin malonyl anthocyanins(mg/kg) | 0.047±0.006 a | 0.056±0.004 a |
总花甲基青素类花色苷Total Peonidin anthocyanins(mg/kg) | 37.735±0.562 b | 43.852±1.465 a |
花翠素类花色苷Delphinidin anthocyanins(mg/kg) | 189.400±3.186 b | 234.687±4.282 a |
花翠素乙酰化类花色苷Delphinidin acetyl anthocyanins(mg/kg) | 64.777±1.764 a | 65.763±2.828 a |
花翠素丙二酰化类花色苷Delphinidin malonyl anthocyanins(mg/kg) | 0.023±0.003 a | 0.029±0.004 a |
花翠素香豆酰化类花色苷Delphinidin coumaryl anthocyanins(mg/kg) | 2.437±0.185 b | 3.148±0.275 a |
总花翠素类花色苷Total delphinidin anthocyanins(mg/kg) | 256.636±6.055 b | 303.627±7.382 a |
甲基花翠素类花色苷Petunidin anthocyanins(mg/kg) | 80.328±2.032 b | 104.940±3.039 a |
甲基花翠素丙二酰化类花色苷Petunidin malonyl anthocyanins(mg/kg) | 0.058±0.004 a | 0.063±0.001 a |
甲基花翠素香豆酰化类花色苷Petunidin coumaryl anthocyanins(mg/kg) | 0.293±0.021 a | 0.303±0.035 a |
总甲基花翠素类花色苷Total petunidin anthocyanins(mg/kg) | 80.679±2.056 b | 105.305±3.075 a |
二甲基花翠素类花色苷Malvidin anthocyanins(mg/kg) | 408.742±3.664 a | 374.115±14.826 b |
二甲基花翠素丙二酰化类花色苷Malvidin malonyl anthocyanins(mg/kg) | 5.513±0.256 a | 4.873±0.410 a |
二甲基花翠素乙酰化类花色苷Malvidin acetyl anthocyanins(mg/kg) | 0.471±0.099 a | 0.387±0.067 a |
总二甲基花翠素类花色苷Total malvidin anthocyanins(mg/kg) | 414.726±5.699 a | 379.375±7.303 b |
花葵素类花色苷Pelnidin anthocyanins(mg/kg) | 0.471±0.105 b | 0.810±0.012 a |
花葵素丙二酰化类花色苷Pelnidin malonyl anthocyanins(mg/kg) | 0.001±0.000 a | 0.001±0.000 a |
总花葵素类花色苷Total pelnidin anthocyanins(mg/kg) | 0.472±0.105 b | 0.811±0.021 a |
总花色苷Total anthocyanins(mg/kg) | 795.128±15.98 b | 841.202±27.68 a |
总3'-羟基取代类花色苷Total 3'-substituent anthocyanins(mg/kg) | 256.642±6.054 b | 303.635±7.381 a |
总3',5'-羟基取代类花色苷Total 3',5'-substituent anthocyanins(mg/kg) | 752.048±14.810 b | 788.318±25.753 a |
3',5'-羟基取代类花色苷/3'-羟基取代类花色苷Ratio 3',5'/3' | 17.654±0.131 a | 15.142±0.105 b |
甲基化比例Methylation percentage(%) | 67.054±0.223 a | 62.832±0.066 b |
酰化比例Acylation percentage(%) | 9.280±0.235 a | 8.901±0.230 a |
总修饰比例Total anthocyanins modification percentage(%) | 75.531±0.035 a | 71.060±0.116 b |
[1] |
Anesi A, Stocchero M, Dal Santo S, et al. Towards a scientific interpretation of the terroir concept:plasticity of the grape berry metabolome[J]. BMC Plant Biology, 2015, 15:191-227.
DOI URL |
[2] |
Rienth M, Vigneron N, Darriet P, et al. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario-A review[J]. Frontiers in Plant Science, 2021, 12:643258.
DOI URL |
[3] | 张山清, 普宗朝, 宋良娈, 等. 吐鲁番地区气候变化对参考作物蒸散量的影响[J]. 中国农业气象, 2009, 30(4):532-537,542. |
ZHANG Shanqing, PU Zongchao, SONG Liangluan, et al. Effect of climate change on potential evapotranspiration in Turpan region[J]. Chinese Journal of Agrometeorology, 2009, 30(4):532-537,542. | |
[4] | 刘敏, 成正龙, 张晋升, 等. 遮阳网对酿酒葡萄果实及葡萄酒品质的影响[J]. 西北植物学报, 2017, 37(9):1764-1772. |
LIU Min, CHENG Zhenglong, ZHANG Jinsheng, et al. Influence of shading net on qualities of cabernet sauvignon and Syrah berries and wines[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9):1764-1772. | |
[5] |
Tian M B, Liu Y, Lu H C, et al. Cluster spatial positions varied the phenolics profiles of ‘Cabernet Sauvignon’ grapes and wines under a fan training system with multiple trunks[J]. Food Chemistry, 2022, 387(1):132930.
DOI URL |
[6] | Cheng G, Zhou S H, Liu Y, et al. Effect of bearing position on phenolics profiles in the skins of four cultivars of grapevine(Vitis vinifera L.)[J]. Journal of Horticultural Science & Biotechnology, 2015, 90(3):356-363. |
[7] | 谢沙, 胡帆, 张振文. 酿酒葡萄直立独龙蔓不同结果部位果实品质的差异[J]. 果树学报, 2016, 33(3):298-306. |
XIE Sha, HU Fan, ZHANG Zhenwen. Quality differences of berries at different- heights on vinegrapes under vertical independent long-stem training system[J]. Journal of Fruit Science, 2016, 33(3):298-306. | |
[8] | 张雯, 钟海霞, 张付春, 等. 结果高度、留芽量及叶幕厚度对“厂”形“赤霞珠”果际微环境和果实品质的影响[J]. 新疆农业科学, 2017, 54(1):76-87. |
ZHANG Wen, ZHONG Haixia, ZHANG Fuchun, et al. Effect of different fruit set heights,shoot sensities and canopy thicknesses on microenvironment and berry quality of "厂" shape Cabernet Sauvignon[J]. Xinjiang Agricultural Sciences, 2017, 54(1):76-87. | |
[9] |
Jayaprakasha G K, Singh R P, Sakariah K K. Antioxidant activity of grape seed(Vitis vinifera) extracts on peroxidation models in vitro[J]. Food Chemistry, 2001, 73(3):285-290.
DOI URL |
[10] | 王华. 葡萄与葡萄酒实验技术操作规范[M]. 西安: 西安地图出版社,1999. |
WANG Hua. Experimental Specification of Grape and Wine[M]. Xi’an: Xi’an Cartographic Press,1999. | |
[11] |
Li Y G, Tanner G, Larkin P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes[J]. Journal of the Science of Food and Agriculture, 1996, 70(1):89-101.
DOI URL |
[12] | 黄艳, 文露, 庞亚卓, 等. 喷施钙肥对‘夏黑’葡萄果实糖酸积累的影响[J]. 中国土壤与肥料, 2020,(2):166-172. |
HUANG Yan, WEN Lu, PANG Yazhuo, et al. Effect of spraying calcium on sugar and acid accumulation in ‘Summer Black’ grape[J]. Soils and Fertilizers Sciences in China, 2020,(2):166-172. | |
[13] |
Wolf T K, Dry P R, Iland P G, et al. Response of Shiraz grapevines to five different training systems in the Barossa Valley,Australia[J]. Australian Journal of Grape and Wine Research, 2003, 9(2):82-95.
DOI URL |
[14] | 郭金丽, 张芳, 李志伟, 等. 深畦栽培对干旱胁迫下葡萄叶幕微气候和光合作用的影响[J]. 西北植物学报, 2019, 39(5):840-847. |
GUO Jinli, ZHANG Fang, LI Zhiwei, et al. Effects of deep-furrow planting on canopy microclimate and photosynthesis in grape under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(5):840-847. | |
[15] |
Buttrose M S, Hale C R, Kliewer W M. Effect of Temperature on the Composition of “cabernet sauvignon” berries[J]. American Journal of Enology and Viticulture, 1971, 22(2):71-75.
DOI URL |
[16] | 王敏, 麦合木提·图如普, 韩守安, 等. 不同光质处理对梅鹿辄葡萄光合特性及果实品质的影响[J]. 西南农业学报, 2022, 35(7):1665-1672. |
WANG Min, Maihemuti Turupu, HAN Shouan, et al. Effects of different light quality treatments on photosynthetic characteristics and fruit quality of Merlot grape[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(7):1665-1672. | |
[17] |
Pastore C, Zenoni S, Fasoli M, et al. Selective defoliation affects plant growth,fruit transcriptional ripening program and flavonoid metabolism in grapevine[J]. BMC Plant Biology, 2013, 13:30.
DOI PMID |
[18] | Guti'errez-Gamboa G, Pardo C, Moreno-Simunovic Y. Effects on berry shrinkage in Vitis vinifera. L cv. ‘Merlot’ from changes in canopy/root ratio:A Preliminary approach[J]. South African Journal of Enology and Viticulture, 2018, 40(1):47-52. |
[19] |
Carlomagno A, Novello V, Ferrandino A, et al. Pre-harvest berry shrinkage in cv ‘Shiraz’(Vitis vinifera L.):Understanding sap flow by means of tracing[J]. Scientia Horticulturae, 2018, 233:394-406.
DOI URL |
[20] |
Torres N, Martínez-Lüscher J, Porte E, et al. Optimal ranges and thresholds of grape berry solar radiation for flavonoid biosynthesis in warm climates[J]. Frontiers in Plant Science, 2020, 11:931.
DOI PMID |
[21] | Zheng J, Huang C H, Yang B R, et al. Regulation of phytochemicals in fruits and berries by environmental variation-Sugars and organic acids[J]. Journal of Food Biochemistry, 2019, 43(6):e12642. |
[22] |
Pereira G E, Gaudillere J P, Pieri P, et al. Microclimate influence on mineral and metabolic profiles of grape berries[J]. Journal of Agricultural and Food Chemistry, 2006, 54(18):6765-6775.
PMID |
[23] |
Coombe B G, Bovio M, Schneider A. Solute accumulation by grape pericarp cells V. Relationship to berry size and the effects of defoliation[J]. Journal of Experimental Botany, 1987, 38(11):1789-1798.
DOI URL |
[24] | Keller M. The Science of Grapevines[J]. Science of Grapevines, 2010:311-368. |
[25] |
Mato I, Suárez-Luque S, Huidobro J F. A review of the analytical methods to determine organic acids in grape juices and wines[J]. Food Research International, 2005, 38(10):1175- 1188.
DOI URL |
[26] |
Sweetman C, Sadras V O, Hancock R D, et al. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit[J]. Journal of Experimental Botany, 2014, 65(20):5975-5988.
DOI PMID |
[27] |
Rienth M, Torregrosa L, Sarah G, et al. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome[J]. BMC Plant Biology, 2016, 16(1):164.
DOI PMID |
[28] |
Reshef N, Walbaum N, Agam N, et al. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster[J]. Frontiers in Plant Science, 2017, 8:70.
DOI PMID |
[29] |
Martínez-Lüscher J, Chen C C L, Brillante L, et al. Partial solar radiation exclusion with color shade nets reduces the degradation of organic acids and flavonoids of grape berry(Vitis vinifera L.)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(49):10693-10702.
DOI PMID |
[30] |
Torres N, Martínez-Lüscher J, Porte E, et al. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine(Vitis vinifera L.) berry and wine chemistry in warm climates[J]. Food Chemistry, 2021, 343:128447.
DOI URL |
[31] |
Gutierrez-Gamboa G, Zheng W, Martinez de Toda F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality:A comprehensive review[J]. Food Research International, 2021, 139:109946.
DOI URL |
[32] |
Mori K, Sugaya S, Gemma H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition[J]. Scientia Horticulturae, 2005, 105(3):319-330.
DOI URL |
[33] |
Movahed N, Pastore C, Cellini A, et al. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature[J]. Journal of Plant Research, 2016, 129(3):513-526.
DOI PMID |
[34] |
Spayd S E, Tarara J M, Mee D L, et al. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. merlot berries[J]. American Journal of Enology and Viticulture, 2002, 53(3):171-182.
DOI URL |
[35] |
Guan L, Dai Z, Wu B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries[J]. Planta, 2016, 243(1):23-41.
DOI PMID |
[36] |
Mori K, Goto-Yamamoto N, Kitayama M, et al. Loss of anthocyanins in red-wine grape under high temperature[J]. Journal of Experimental Botany, 2007, 58(8):1935-1945.
DOI PMID |
[37] |
de Rosas I, Ponce M T, Malovini E, et al. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions[J]. Plant Science, 2017, 258:137-145.
DOI PMID |
[38] |
Tarara J M, Lee J, Spayd S E, et al. Berry temperature and solar radiation alter acylation,proportion,and concentration of anthocyanin in merlot grapes[J]. American Journal of Enology and Viticulture, 2008, 59(3):235-247.
DOI URL |
[1] | HU Jinge, BAI Shijian, CHEN Guang, CAI Junshe. Effects of different ground mulch types on the berry quality of Marselan wine grape and comprehensive evaluation [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1131-1139. |
[2] | BAI Shijian, HU Jinge, XUE Feng, ZHANG Wen, XIE Hui, ZHAO Ronghua, CHEN Guang, CAI Junshe. Effects of Fruit Set Heights on the Cluster Micro-Environment, Fruit Development and Wine Quality of ‘M-VSP’ Cultivation Cabernet Sauvignon Grapes in Extreme Arid Region [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1907-1918. |
[3] | BAI Shijian, HU Jinge, CAI Junshe, ZHAO Ronghua, CHEN Guang. Studies on Photosynthetic and Vinification Characteristics of Wine Grape Variety Marseland in Extremely Arid Regions [J]. Xinjiang Agricultural Sciences, 2021, 58(3): 511-521. |
[4] | ZHAO Ni;YU Song-lin;ZHAO Bao-long;YU Kun;DONG Ming-ming;YNAG Xi. Effects of Different Training Systems on Photosynthesis and Berry Quality of Grapes in Solar Greenhouses [J]. , 2016, 53(11): 2023-2032. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||