Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (8): 1907-1918.DOI: 10.6048/j.issn.1001-4330.2022.08.011
• Horticultural Special Local Products·Germplasm Resources·Storage and Preservation Processing·Soil Fertilizer • Previous Articles Next Articles
BAI Shijian1(), HU Jinge1, XUE Feng2, ZHANG Wen3, XIE Hui3, ZHAO Ronghua1, CHEN Guang1, CAI Junshe1(
)
Received:
2021-11-15
Online:
2022-08-20
Published:
2022-10-01
Correspondence author:
CAI Junshe
Supported by:
白世践1(), 户金鸽1, 薛锋2, 张雯3, 谢辉3, 赵荣华1, 陈光1, 蔡军社1(
)
通讯作者:
蔡军社
作者简介:
白世践(1986-),男,云南人,农艺师,研究方向为葡萄栽培,(E-mail) 594748964@qq.com
基金资助:
CLC Number:
BAI Shijian, HU Jinge, XUE Feng, ZHANG Wen, XIE Hui, ZHAO Ronghua, CHEN Guang, CAI Junshe. Effects of Fruit Set Heights on the Cluster Micro-Environment, Fruit Development and Wine Quality of ‘M-VSP’ Cultivation Cabernet Sauvignon Grapes in Extreme Arid Region[J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1907-1918.
白世践, 户金鸽, 薛锋, 张雯, 谢辉, 赵荣华, 陈光, 蔡军社. 结果高度对‘厂’形栽培葡萄果穗微域环境、果实发育及酒品质的影响[J]. 新疆农业科学, 2022, 59(8): 1907-1918.
月份 Month | 处理 Treatment (cm) | 最高温 Highest temperature(℃) | 最低温 Minimum temperature (℃) | 极温差 Polar temperature difference(℃) | 平均温度Average temperature(℃) | 超过35℃温差总和 The sum of temperature difference exceeding 35℃(℃) | ≥35℃高温时长Time of temperature exceeding 35℃(h) | 平均湿度Average humidity(%) |
---|---|---|---|---|---|---|---|---|
6月下旬 Late June | 40 | 47.80±0.73a | 17.80±0.02a | 29.72±0.42a | 31.11±0.06d | 70.12±0.99a | 67.52±1.02c | 45.72±0.39b |
60 | 45.40±0.14b | 17.70±0.07a | 27.70±0.07b | 31.28±0.03c | 58.61±1.59c | 68.54±0.49c | 50.09±3.03a | |
80 | 44.90±0.08b | 17.80±0.29a | 27.10±0.25b | 31.55±0.05b | 62.74±1.92b | 75.5±1.37b | 43.54±0.78b | |
100 | 45.50±0.24b | 17.60±0.33a | 27.90±0.09b | 32.08±0.03a | 67.45±0.47a | 79.49±1.59a | 46.69±1.13b | |
7月 July | 40 | 44.00±0.49b | 17.60±0.12c | 26.40±0.37bc | 29.06±0.04c | 138.42±2.04b | 161.51±2.49c | 53.89±0.85a |
60 | 43.80±0.53b | 18.10±0.07b | 25.70±0.47c | 29.74±0.04b | 138.21±3.20b | 176.53±3.31b | 54.89±0.93a | |
80 | 45.50±0.34a | 18.40±0.07a | 27.10±0.28a | 30.37±0.13a | 169.34±6.30a | 194.08±5.55a | 46.05±0.12c | |
100 | 44.70±0.33ab | 17.80±0.12c | 26.90±0.25ab | 29.87±0.07b | 167.58±2.43a | 188.50±1.62a | 49.44±1.09b | |
8月 August | 40 | 46.30±0.08a | 12.10±0.03b | 34.20±0.11ab | 28.23±0.07c | 170.62±1.76bc | 153.25±5.51bc | 48.61±0.82 b |
60 | 46.60±0.45a | 12.30±0.10a | 34.30±0.35ab | 28.60±0.05b | 164.38±4.77c | 149.00±4.18c | 52.15±2.38 a | |
80 | 45.00±0.56b | 12.30±0.04a | 32.70±0.60b | 29.04±0.03a | 178.21±2.37b | 157.52±4.94b | 46.59±0.81 bc | |
100 | 46.50±0.07a | 12.00±0.07b | 34.50±0.30a | 28.67±0.06b | 202.82±8.38a | 175.56±3.97a | 45.17±0.53 c |
Table 1 The temperature and humidity of cluster microdomain in different fruit set heights of high temperature months
月份 Month | 处理 Treatment (cm) | 最高温 Highest temperature(℃) | 最低温 Minimum temperature (℃) | 极温差 Polar temperature difference(℃) | 平均温度Average temperature(℃) | 超过35℃温差总和 The sum of temperature difference exceeding 35℃(℃) | ≥35℃高温时长Time of temperature exceeding 35℃(h) | 平均湿度Average humidity(%) |
---|---|---|---|---|---|---|---|---|
6月下旬 Late June | 40 | 47.80±0.73a | 17.80±0.02a | 29.72±0.42a | 31.11±0.06d | 70.12±0.99a | 67.52±1.02c | 45.72±0.39b |
60 | 45.40±0.14b | 17.70±0.07a | 27.70±0.07b | 31.28±0.03c | 58.61±1.59c | 68.54±0.49c | 50.09±3.03a | |
80 | 44.90±0.08b | 17.80±0.29a | 27.10±0.25b | 31.55±0.05b | 62.74±1.92b | 75.5±1.37b | 43.54±0.78b | |
100 | 45.50±0.24b | 17.60±0.33a | 27.90±0.09b | 32.08±0.03a | 67.45±0.47a | 79.49±1.59a | 46.69±1.13b | |
7月 July | 40 | 44.00±0.49b | 17.60±0.12c | 26.40±0.37bc | 29.06±0.04c | 138.42±2.04b | 161.51±2.49c | 53.89±0.85a |
60 | 43.80±0.53b | 18.10±0.07b | 25.70±0.47c | 29.74±0.04b | 138.21±3.20b | 176.53±3.31b | 54.89±0.93a | |
80 | 45.50±0.34a | 18.40±0.07a | 27.10±0.28a | 30.37±0.13a | 169.34±6.30a | 194.08±5.55a | 46.05±0.12c | |
100 | 44.70±0.33ab | 17.80±0.12c | 26.90±0.25ab | 29.87±0.07b | 167.58±2.43a | 188.50±1.62a | 49.44±1.09b | |
8月 August | 40 | 46.30±0.08a | 12.10±0.03b | 34.20±0.11ab | 28.23±0.07c | 170.62±1.76bc | 153.25±5.51bc | 48.61±0.82 b |
60 | 46.60±0.45a | 12.30±0.10a | 34.30±0.35ab | 28.60±0.05b | 164.38±4.77c | 149.00±4.18c | 52.15±2.38 a | |
80 | 45.00±0.56b | 12.30±0.04a | 32.70±0.60b | 29.04±0.03a | 178.21±2.37b | 157.52±4.94b | 46.59±0.81 bc | |
100 | 46.50±0.07a | 12.00±0.07b | 34.50±0.30a | 28.67±0.06b | 202.82±8.38a | 175.56±3.97a | 45.17±0.53 c |
处理 Treatment (cm) | 最高温 Highest temperature(℃) | 最低温 Minimum temperature (℃) | 极温差 Polar temperature difference(℃) | 平均温度Average temperature(℃) | 超过35℃温差总和 The sum of temperature difference exceeding 35℃(℃) | ≥35℃高温时长Time of temperature exceeding 35℃(h) | 平均湿度Average humidity(%) | 平均光合有效辐射 Average hotosynthetic effective radiation(µmol/(m2·s)) |
---|---|---|---|---|---|---|---|---|
40 | 45.93±0.43a | 15.83±0.04b | 30.20±0.14a | 29.48±0.06d | 126.37±1.59c | 127.33±3.01b | 49.41±0.14b | 26.86±2.67c |
60 | 45.27±0.37a | 16.03±0.08ab | 29.23±1.36a | 29.87±0.02c | 120.37±3.19c | 130.67±2.66b | 52.38±2.11a | 33.92±1.65b |
80 | 45.13±0.33a | 16.17±0.10a | 28.97±0.21a | 30.32±0.07a | 136.73±3.53b | 142.33±3.95a | 45.39±0.57c | 34.37±1.80b |
100 | 45.57±0.21a | 15.80±0.18b | 29.77±0.03a | 30.21±0.03b | 145.90±3.76a | 147.83±1.33a | 47.10±0.92c | 43.29±3.21a |
Table 2 Statistics of average value of temperature, humidity and photosynthetic effective radiation index of cluster microdomain in different fruit set heights of high temperature months
处理 Treatment (cm) | 最高温 Highest temperature(℃) | 最低温 Minimum temperature (℃) | 极温差 Polar temperature difference(℃) | 平均温度Average temperature(℃) | 超过35℃温差总和 The sum of temperature difference exceeding 35℃(℃) | ≥35℃高温时长Time of temperature exceeding 35℃(h) | 平均湿度Average humidity(%) | 平均光合有效辐射 Average hotosynthetic effective radiation(µmol/(m2·s)) |
---|---|---|---|---|---|---|---|---|
40 | 45.93±0.43a | 15.83±0.04b | 30.20±0.14a | 29.48±0.06d | 126.37±1.59c | 127.33±3.01b | 49.41±0.14b | 26.86±2.67c |
60 | 45.27±0.37a | 16.03±0.08ab | 29.23±1.36a | 29.87±0.02c | 120.37±3.19c | 130.67±2.66b | 52.38±2.11a | 33.92±1.65b |
80 | 45.13±0.33a | 16.17±0.10a | 28.97±0.21a | 30.32±0.07a | 136.73±3.53b | 142.33±3.95a | 45.39±0.57c | 34.37±1.80b |
100 | 45.57±0.21a | 15.80±0.18b | 29.77±0.03a | 30.21±0.03b | 145.90±3.76a | 147.83±1.33a | 47.10±0.92c | 43.29±3.21a |
处理 Treatment (cm) | 果穗质量 Cluster mass (g) | 果粒质量 Berry mass (g) | 果穗紧密度 Cluster density | 萎蔫率 Wilting rate (%) | 果皮颜色值 Berry skin color value | 种皮颜色值 Seed coat color value |
---|---|---|---|---|---|---|
40 | 69.83±4.45a | 1.02±0.02b | 6.78±0.52a | 1.67±0.24c | 3.50±0.02b | 3.20±0.02b |
60 | 76.17±6.72a | 1.09±0.02a | 5.00±0.25b | 2.22±0.35c | 3.69±0.04a | 3.27±0.03ab |
80 | 55.34±5.25b | 0.91±0.03c | 4.33±0.78b | 7.22±1.49b | 3.37±0.06c | 3.25±0.03b |
100 | 38.14±10.42c | 0.85±0.02d | 2.78±0.21c | 19.44±3.21a | 3.76±0.08a | 3.34±0.05a |
Table 3 Appearance quality indicators of grapes in different fruit set heights
处理 Treatment (cm) | 果穗质量 Cluster mass (g) | 果粒质量 Berry mass (g) | 果穗紧密度 Cluster density | 萎蔫率 Wilting rate (%) | 果皮颜色值 Berry skin color value | 种皮颜色值 Seed coat color value |
---|---|---|---|---|---|---|
40 | 69.83±4.45a | 1.02±0.02b | 6.78±0.52a | 1.67±0.24c | 3.50±0.02b | 3.20±0.02b |
60 | 76.17±6.72a | 1.09±0.02a | 5.00±0.25b | 2.22±0.35c | 3.69±0.04a | 3.27±0.03ab |
80 | 55.34±5.25b | 0.91±0.03c | 4.33±0.78b | 7.22±1.49b | 3.37±0.06c | 3.25±0.03b |
100 | 38.14±10.42c | 0.85±0.02d | 2.78±0.21c | 19.44±3.21a | 3.76±0.08a | 3.34±0.05a |
处理 Treatment (cm) | 可溶性固形物 Soluble solids (%) | 还原糖 Reducing sugar (g/L) | 总酸 Total acid (g/L) | pH | 花色苷 Anthocyanins (mg/g) | 总酚 Total phenols (mg/g) | 单宁 Tannins (mg/g) |
---|---|---|---|---|---|---|---|
40 | 22.00± 1.11b | 178.36 ±1.49c | 6.59± 0.15a | 4.39±0.03b | 3.44±0.26c | 15.36±0.45a | 8.00± 0.09a |
60 | 23.17±1.21ab | 190.39±2.62b | 6.19±0.21b | 4.44±0.01a | 3.61±0.12c | 14.31± 0.27b | 7.94± 0.08a |
80 | 23.67± 1.50ab | 195.54±3.43b | 6.19±0.12b | 4.40±0.01b | 4.10±0.13b | 13.59±0.44c | 7.74± 0.09b |
100 | 24.67± 1.03a | 205.85±2.32a | 6.38±0.09ab | 4.44± 0.01a | 4.45±0.21a | 14.14±0.57bc | 7.91±0.05a |
Table 4 Physical and chemical indicators and phenolics contents of grapes in different fruit set heights
处理 Treatment (cm) | 可溶性固形物 Soluble solids (%) | 还原糖 Reducing sugar (g/L) | 总酸 Total acid (g/L) | pH | 花色苷 Anthocyanins (mg/g) | 总酚 Total phenols (mg/g) | 单宁 Tannins (mg/g) |
---|---|---|---|---|---|---|---|
40 | 22.00± 1.11b | 178.36 ±1.49c | 6.59± 0.15a | 4.39±0.03b | 3.44±0.26c | 15.36±0.45a | 8.00± 0.09a |
60 | 23.17±1.21ab | 190.39±2.62b | 6.19±0.21b | 4.44±0.01a | 3.61±0.12c | 14.31± 0.27b | 7.94± 0.08a |
80 | 23.67± 1.50ab | 195.54±3.43b | 6.19±0.12b | 4.40±0.01b | 4.10±0.13b | 13.59±0.44c | 7.74± 0.09b |
100 | 24.67± 1.03a | 205.85±2.32a | 6.38±0.09ab | 4.44± 0.01a | 4.45±0.21a | 14.14±0.57bc | 7.91±0.05a |
处理 Treatment (cm) | 酒精度 Alcohol content(%) | 残糖 Residual sugar (g/L) | 总酸 Total acid (g/L) | 单宁 Tannins (g/L) | 总酚 Total phenols (g/L) | 花色苷 Anthocyanins (mg/L) | pH |
---|---|---|---|---|---|---|---|
40 | 9.20±0.21b | 0.98±0.04d | 8.75±0.25a | 1.29±0.12a | 1.65±0.15b | 97.65±4.36c | 4.30±0.02c |
60 | 10.21±0.42a | 1.32±0.01b | 7.25±0.35c | 0.81±0.10b | 1.79±0.11ab | 103.42±2.45bc | 4.53±0.02a |
80 | 10.74±0.38a | 1.20±0.04c | 7.75±0.16bc | 0.80±0.08b | 1.75±0.15ab | 105.34±2.21b | 4.42±0.02b |
100 | 10.22±0.26a | 1.53±0.08a | 8.00±0.18b | 0.82±0.14b | 1.89±0.08a | 111.49±3.59a | 4.45±0.01b |
Table 5 Physical and chemical indicators and phenolics contents of wine in different fruit set heights
处理 Treatment (cm) | 酒精度 Alcohol content(%) | 残糖 Residual sugar (g/L) | 总酸 Total acid (g/L) | 单宁 Tannins (g/L) | 总酚 Total phenols (g/L) | 花色苷 Anthocyanins (mg/L) | pH |
---|---|---|---|---|---|---|---|
40 | 9.20±0.21b | 0.98±0.04d | 8.75±0.25a | 1.29±0.12a | 1.65±0.15b | 97.65±4.36c | 4.30±0.02c |
60 | 10.21±0.42a | 1.32±0.01b | 7.25±0.35c | 0.81±0.10b | 1.79±0.11ab | 103.42±2.45bc | 4.53±0.02a |
80 | 10.74±0.38a | 1.20±0.04c | 7.75±0.16bc | 0.80±0.08b | 1.75±0.15ab | 105.34±2.21b | 4.42±0.02b |
100 | 10.22±0.26a | 1.53±0.08a | 8.00±0.18b | 0.82±0.14b | 1.89±0.08a | 111.49±3.59a | 4.45±0.01b |
[1] | 刘笑宏, 宋一超, 刘兆宇, 等. 直立/水平两种叶幕对‘摩尔多瓦’葡萄次生代谢产物含量的影响[J]. 果树学报, 2019, 36(3):308-317. |
LIU Xianghong, SONG Yichao, LIU Zhaoyu, et al. Effect of vertical and horizontal canopy on the secondary metabolites in‘Moldova’grape[J]. Journal of Fruit Science, 2019, 36(3):308-317. | |
[2] | Goddenp P, Wilkes E, Johnson D. Trends in the composition of Australian wine 1984-2014[J]. Australian Journal of Grape & Wine Research, 2015, 21(S1): 741-753. |
[3] | 刘敏, 成正龙, 张晋升, 等. 遮阳网对酿酒葡萄果实及葡萄酒品质的影响[J]. 西北植物学报, 2017, 37(9):1764-1772. |
LIU Min, CHEN Zhenglong, ZHANG Jinsheng, et al. Influence of shading net on qualities of Cabernet Sauvignon and Syrah berries and wines[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1764-1772. | |
[4] | 成果, 陈立业, 王军, 等. 两种整形方式对‘赤霞珠’葡萄光合特性及果实品质的影响[J]. 果树学报, 2015, 32(2): 215-224. |
CHEN Guo, CHEN Liye, WANG Jun, et al. Effect of training system on photosynthesis and fruit characteristics of Cabernet Sauvignon[J]. Journal of Fruit Science, 2015, 32(2): 215-224. | |
[5] | 王蛟龙, 文旭, 容新民. 三种整形方式对赤霞珠葡萄生长及果实品质的影响[J]. 新疆农业科学, 2016, 53(9): 1602-1607. |
WANG Jiaolong, WEN Xue, RONG Xinming. Effects of Three Shaping Ways to Cabernet Sauvignon Growth and Fruit Quality[J]. Xinjiang Agricultural Sciences, 2016, 53(9): 1602-1607. | |
[6] | 沈甜, 单守明, 孙晔, 等. “厂字”架式对“赤霞珠”葡萄光合效率和果实品质的影响[J]. 北方园艺, 2015,(1): 27-30. |
SHEN Tian, SHAN Shoumin, SUN Ye, et al. Effect of ‘厂’shape training system on photosynthesis and berry quality of ‘Cabernet Sauvignon’[J]. Northern Horticulture, 2015,(1): 27-30. | |
[7] | 林朴. 摘叶处理对赤霞珠葡萄和葡萄酒品质的影响[J]. 中外葡萄与葡萄酒, 2013,(4):10-13. |
LIN Pu. Effect of priming leaf on fruit and wine quality of Cabernet Sauvignon[J]. Sino-Overseas Grapevine & Wine, 2013,(4):10-13. | |
[8] | 刘玲, 雷小明, 张军贤, 等. 不同高度结果部位对酿酒葡萄果实品质的影响[J]. 北方园艺, 2015,(1): 27-30. |
LIU ling, LEI Xiaoming, ZHANG Junxian, et al. Effect of different fruit set heights on quality of wine grapes[J]. Northern Horticulture, 2015,(1): 27-30. | |
[9] | 孙晔, 张军翔. 叶幕微气候对酿酒葡萄品质影响研究进展[J]. 广东农业科学, 2014,(10):30-33. |
SUN Ye, ZHANG Junxiang. Research progress in impacts of canopy microchlimate on quality of wine-grape[J]. Guangdong Agricultural Sciences, 2014,(10):30-33. | |
[10] | 刘晔, 张军贤, 张振文. 多主蔓扇形不同结果部位葡萄酒多酚物质含量变化的研究[J]. 中国酿造, 2012, 31(6): 27-30. |
LIU Ye, ZHANG Junxian, ZHANG Zhenwen. Effect of the height of fruiting zone on phenolic content of weine from fan-shaped vines[J]. China Brewing, 2012, 31(6): 27-30. | |
[11] | 谢沙, 胡帆, 张振文. 酿酒葡萄直立独龙蔓不同结果部位果实品质的差异[J]. 果树学报, 2016, 33(3): 298-306. |
XIE Sha, HU Fan, ZHANG Zhenwen. Quality differences of berries at different- heights on vine grapes under vertical independent long-stem training system[J]. Journal of Fruit Science, 2016, 33(3):298-306. | |
[12] | 张雯, 钟海霞, 张付春, 等. 结果高度、留芽量及叶幕厚度对“厂”形“赤霞珠”果际微环境和果实品质的影响[J]. 新疆农业科学, 2017, 54( 1): 76-87. |
ZHANG Wen, ZHONG Haixia, ZHANG Fuchun, et al. Effect of Different Fruit Set Heights,Shoot Densities and Canopy Thicknesses on Microenvironment and Berry Quality of "厂" Shape Cabernet Sauvignon[J]. Xinjiang Agricultural Sciences, 2017, 54(1): 76-87. | |
[13] | 孙晔. 贺兰山东麓产区酿酒葡萄适宜整形方式及其叶幕、结果高度参数的硏究[D]. 银川: 宁夏大学, 2015. |
SUN Ye. The researches on training systems and the parameters of canopy structure height and fruit part height of wine grapes in East Helan Mountain Growing Regions[D]. Yinchuan, Ningxia University, 2015. | |
[14] | Organtisation Internationle de la Vigne et du Vin. Organtisation internationle de la vigne et du vin descriptor list for grape varieties and Vitis species[M]. 2nd ed. Paris: Organisation internationale de la vigne et du vin, 2007. |
[15] | Winter E, Whiting J, Rousseau J. Wine grape berry sensory assessment in Australia [M]. Adelaide: Winetietles Pty Ltd., 2009. |
[16] | 白宝璋. 植物生理生化(Ⅱ)[M]. 北京: 中国农业科技出版社, 2003. |
BAI Baozhang. Plant physiology and biochemistry(Ⅱ)[M]. Beijing: China Agricultural Science and Technology Press, 2003. | |
[17] | GB/T 15038-2006. 葡萄酒,果酒通用分析方法[S]. |
GB/T 15038-2006. General analysis methods for wine and fruit wine [S]. | |
[18] |
Lee J, Durst R W, Wrolstad R E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study[J]. Journal of Aoac International, 2005, 88(5): 1269-1278.
PMID |
[19] |
Jayaprakasha G K, Singh R P,. Sakariah K K. Antioxidant activity of grape seed(Vitis vinifera) extracts on peroxidation models in vitro[J]. Food Chemistry, 2001, 73(3): 285-290.
DOI URL |
[20] | 王华. 葡萄与葡萄酒实验技术操作规范[M]. 西安: 西安地图出版社, 1999. |
WANG Hua. Experimental specification of grape and wine[M]. Xi’an: Xi’an Cartographic Press, 1999. | |
[21] | 李华. 现代葡萄酒工艺学[M]. 西安: 陕西人民出版社, 2000. |
LI Hua. Modern Enology[M]. Xi’an: People’s Press of Shaanxi, 2000. | |
[22] | 贾杨, 廖康, 刘曼曼, 等. 吐鲁番不同栽培架式葡萄叶幕微气候差异分析[J]. 北方园艺, 2014,(9): 23-26. |
JIA Yang, LIAO Kang, LIU Manman, et al. Analysis on the cano-py microclimate of the different grape cultivation trellis in Tur-pan[J]. Northern Horticulture, 2014,(9): 23-26. | |
[23] |
Wolf T K, Dry P R, Iland P G, et al. Response of Shiraz grapevines to fivedifferent training systems in the Barossa Valley, Australia[J]. Australian Journal of Grape and Wine Research, 2003, 9(2): 82-95.
DOI URL |
[24] | Buttrose M S, Hale C R, Kliewer W M. Effect of Temperature on the Composition of“Cabernet Sauvignon” Berries[J]. American Journal of Enology and Viticulture, 1971, 22:71-75. |
[25] |
Pereira G E, Gaudillerxe J P, Pieri P, et al. Micro-climate influence on mineral and metabolic profiles of grape berries[J]. Journal of Agricultural and Food Chemistry, 2006, 54(18):6765-6775.
PMID |
[26] |
Dchene E, Schneider C. Grapevine and climatic changes: a glance at the situation in Alsace[J]. Agronomy for Sustainable Development, 2005, 25(12):93-99.
DOI URL |
[27] |
Krasnow M N, Matthews M A, Smith R J, et al. Distinctive symptoms differentiate four common types of berry shrivel disorder in grape[J]. California Agriculture, 2010, 64(3): 155-159.
DOI URL |
[28] | 李俊楠, 宁鹏飞, 任瑞华, 等. 浆果皱缩对晋西南地区‘赤霞珠’葡萄及葡萄酒品质的影响[J]. 食品科学, 2020, 41(14):239-246. |
LI Junnan, NING Pengfei, REN Ruihua, et al. Influence of Berry Shriveling on Grape and Wine Composition of ‘Cabernet Sauvignon’ in Southwest Shanxi Province of China[J]. Food Science, 2020, 41(14):239-246. | |
[29] | Jackson D I, Lombard P B. Environmental and management practices affecting grape composition and wine quality — A review[J]. American Journal of Enology and Viticulture, 1993, 44(4): 409-430. |
[30] | 孙艳, 徐伟君. 高温胁迫对不同黄瓜品种幼苗中抗坏血酸代谢的影响[J]. 西北农业学报, 2007, 16(6): 164-169. |
SUN Yan, XU Weijun. Effect of high temperature stress on the metabolismof ascorbic acid in cucumber seedlings[J]. Acta Agriculturae Boreali- occidentalis Sinica, 2007, 16(6): 164-169. | |
[31] |
Wagner G, Loewus F A. l-Ascorbic acid metabolism in Vitaceaeconversion to(+)-tartaric acid and hexoses[J]. Plant Physiology, 1974, 54(5): 784-787.
DOI PMID |
[32] |
Krasnow M, Matthews M, Smith R, et al. Distinctive symptoms differentiate four common types of berry shrivel disorder in grape[J]. California Agriculture, 2008, 64(3): 155-159.
DOI URL |
[33] | Bergqvist J, Dokoozlian N, Ebisuda N. Sunlight exposure and temperature effects on beryy growth and composition of cabernet sauvignon and Grenache in the central san Joaquin valley of California[J]. American Journal of Enology & Viticulture, 2001, 52(1):1-7. |
[34] | 韩钰. 南疆炎热地区不同成熟阶段对赤霞珠葡萄质量的影响[D]. 杨凌: 西北农林科技大学, 2015. |
HAN Yu. Influence of different stages of maturity on cabernet sauvignon(vitis viniferal.) grape quality in southern xinjiang area [D]. Yangling: Northwest A & F University, 2015. | |
[35] | 刘笑宏, 孙永江, 孙红, 等. 不同叶幕类型对‘摩尔多瓦’葡萄果穗微域环境及果实品质的影响[J]. 中国农业科学, 2016, 49(21): 4246-4254. |
LIU Xiaohong, SUN Yongjiang, SUN Hong, et al. Effect of Canopy Types on the Cluster Micro-Environment and Fruit Quality of the ‘Moldova’ Grapes[J]. Scientia Agricultura Sinica, 2016, 49(21): 4246-4254. | |
[36] | 黄敬寒, 温可睿, 潘秋红, 等. 环境条件和栽培技术对葡萄花色苷生物合成的影响(上)-环境条件对葡萄花色苷生物合成的影响[J]. 中外葡萄与葡萄酒, 2011,(9): 71-76. |
[37] | HUANG Jinghan, WEN Kerui, PAN Qiuhong, et al. Effects of environmental conditions and cultivation techniques on biosynthesis of grape anthocyanins(I)-environmental conditions[J]. Sino-Overseas Grapevine & Wine, 2011,(9): 71-76. |
[38] |
Haselgrve L, Botting D, Heeswijck R, et al. Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries[J]. Australian Journal of Grape and Wine Research, 2000, 6(2): 141-149.
DOI URL |
[39] |
Griesser M, Martinez S C, Eitle M W, et al. The ripening disorder berry shrivel affects anthocyanin biosynthesis and sugar metabolism in Zweigelt grape berries[J]. Planta, 2018, 247: 471-481.
DOI PMID |
[1] | JIN Juan, LI lili, YANG Lei, FAN Dingyu, HAO Qing. Analysis on the Development status of Xinjiang Jujube Industry [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 106-110. |
[2] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[3] | ZHANG Fulin, LI Ning, LIU Yuxiang, CHEN Yijia, YU Qinghui, YAN Huizhuan. Effects of exogenous 2,4-Epibrassinolide and melatonin on fruit quality and peel morphology of cherry tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1738-1747. |
[4] | WANG Jijiao, PAN Yue, WANG Shiwei, HAN Zhengwei, MA Yong, HU Haifang, WANG Baoqing. Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 355-364. |
[5] | HU Jinge, BAI Shijian, ZHENG Ming. Difference analysis between thompson seedless and bud mutation long-berry thompson seedless grape [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2954-2965. |
[6] | ZHANG Jinrong, LU Shiling, LUO Ruifeng, MA Xiaoning, WANG Guodong. Effect of spraying foliar selenium on selenium content and quality of three cultivars of grape fruit [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2417-2426. |
[7] | LI Xinyu, Kainaisi Habijiang, LI Changcheng, ZHAO Lei, ZHANG Zhigang, ZHAO Shirong. Analyze on the quality change rule of different degree of ripeness apricot fruit under normal temperature storage conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2444-2457. |
[8] | HU Zhiwei, YANG Na, TANG Zhihui, ZHI Jinhu, CHI Chunming. Effects of water and fertilizer coupling application on the fruit quality of main trunk apple trees [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2458-2464. |
[9] | BAI Shijian, HU Jinge, LI Shuai, XUE Feng, ZHANG Wen, PAN Xubing, WEI Dengpan, ZHAO Ronghua, CAI Junshe. Effects of two cultivation modes on the cluster region micro-environment,berry development and quality of marselan grape in turpan-hami basin [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 79-91. |
[10] | LIU Yufang, ZHANG Zhigang, LI Changcheng, LI Hong, CHENG Ping, YANG Lu. Effects of different temperature and maturity on rot rate and quality of apricot during storage [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2189-2197. |
[11] | HAN Shouan, WANG Min, Maihemuti Turupu, XIE Hui, Aiermaike Caikasimu, LIU Jiale, ZHANG Wen, PAN Mingqi. Effects of different light quality treatments on leaf photosynthetic characteristics and fruit quality of Cabernet Sauvignon grapes [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1894-1903. |
[12] | Abulaike Niyazi, ZHANG Shikui, WANG Shaopeng, WANG Yatong, FAN Guoquan. Effects of Root-restricted Cultivation on Photosynthesis, Fluorescence Characteristics and Fruit Quality of Korla Fragrant Pear [J]. Xinjiang Agricultural Sciences, 2023, 60(2): 344-350. |
[13] | HU Jinge, BAI Shijian. Study on the fruit quality and raisins character of thompson seedless and Its lines [J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2751-2763. |
[14] | FENG Beibei, MEI Chuang, WANG Lei, GENG Wenjuan, Aziguli Yigaimu, YAN Peng, WANG Jixun. Study on the effect of chemical flower and fruit thinning on aksu fuji apple Yanfu 3 [J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2470-2478. |
[15] | XUE Feng, PAN Xubing, WEI Dengpan, LIU Xiuhai, FAN Guoyuan, HU Jinge, ZHAO Ronghua, CAI Junshe, XIE Hui, BAI Shijian. Analysis on Cultivation Characteristics and Raisin Characteristics of Five Seedless Grape Cultivars in Turpan Region [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 105-115. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 295
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||