Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (11): 2618-2626.DOI: 10.6048/j.issn.1001-4330.2023.11.003
• Crop Genetics and Breeding · Germplasm Resources·Molecular Genetics·Soil Fertilizer • Previous Articles Next Articles
WANG Hui1(), DONG Yongmei2,3, GUO Weifeng1, CAO Xinchuan1, GUO Jincheng1, XIE Zongming2,3(
), HE Liangrong1(
)
Received:
2023-01-30
Online:
2023-11-20
Published:
2023-12-07
Correspondence author:
HE Liangrong (1970-), female, native place: Hubei, Doctor, professor, research field: research and innovation of crop germplasm resources, (E-mail)hlrzky@163.com;XIE Zongming(1971-),male, native place: Gansu, Doctor, research fellow, research field: cotton germplasm resources and molecular breeding,( E-mail) xiezmchy@163.com
Supported by:
王辉1(), 董永梅2,3, 郭伟锋1, 曹新川1, 郭金成1, 谢宗铭2,3(
), 何良荣1(
)
通讯作者:
何良荣(1970-),女,湖北人,博士,教授,研究方向为棉花种质资源的研究与利用,(E-mail)hlrzky@163.com;谢宗铭(1971-),男,甘肃人,博士,研究员,研究方向为棉花种质资源保存与分子育种,(E-mail)xiezmchy@163.com
作者简介:
王辉(1993-),男,河南荥阳人,硕士研究生,研究方向为作物种质资源研究与创新,(E-mail)347488940@qq.com
基金资助:
CLC Number:
WANG Hui, DONG Yongmei, GUO Weifeng, CAO Xinchuan, GUO Jincheng, XIE Zongming, HE Liangrong. Analysis of the difference of transcription groups of upland cotton under heat stress[J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2618-2626.
王辉, 董永梅, 郭伟锋, 曹新川, 郭金成, 谢宗铭, 何良荣. 高温胁迫下陆地棉转录组差异性分析[J]. 新疆农业科学, 2023, 60(11): 2618-2626.
碱基质量 值分值 Quality phred | 不正确的 碱基识别 Incorrect base identification | 碱基正确 识别率 Correct base recognition rate(%) |
---|---|---|
Q10 | 1/10 | 90 |
Q20 | 1/100 | 99 |
Q30 | 1/1000 | 99.90 |
Q40 | 1/10000 | 99.99 |
Tab.1 Concise correspondence between base recognition accuracy and Phred score
碱基质量 值分值 Quality phred | 不正确的 碱基识别 Incorrect base identification | 碱基正确 识别率 Correct base recognition rate(%) |
---|---|---|
Q10 | 1/10 | 90 |
Q20 | 1/100 | 99 |
Q30 | 1/1000 | 99.90 |
Q40 | 1/10000 | 99.99 |
基因序号Gene_id | 基因名称Gene name | 描述Description | 调控Regulation |
---|---|---|---|
Gohir.A11G135500 | HSP15.7 | 15.7 k Da heat shock protein, peroxisomal | down |
Gohir.A05G091600 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G092500 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G139900 | HSP17.4B | 17.4 k Da class ⅡI heat shock protein | down |
Gohir.D06G084500 | HSP17.6 | 17.6 k Da class Ⅱ heat shock protein | down |
Gohir.D07G106100 | HSP18.5-C | 18.5 k Da class I heat shock protein | down |
Gohir.A08G104100 | HSP22 | Small heat shock protein, chloro-plastic | down |
Gohir.D05G127000 | HSP26.5 | 26.5 k Da heat shock protein, mitochondrial | down |
Gohir.D05G096900 | HSP70 | Heat shock cognate 70 k Da protein | down |
Gohir.A13G234100 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D13G239700 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D09G208200 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.D09G212600 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.A12G254100 | HSP83A | Heat shock protein 83 | down |
Gohir.D08G135400 | HSP83A | Heat shock protein 83 | down |
Gohir.D03G148100 | HSP83A | Heat shock protein 83 | down |
Gohir.D12G256400 | HSP83A | Heat shock protein 83 | down |
Tab.2 17 DEGs heat shock protein(HSP)
基因序号Gene_id | 基因名称Gene name | 描述Description | 调控Regulation |
---|---|---|---|
Gohir.A11G135500 | HSP15.7 | 15.7 k Da heat shock protein, peroxisomal | down |
Gohir.A05G091600 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G092500 | HSP17.3-B | 17.3 k Da class I heat shock protein | down |
Gohir.D05G139900 | HSP17.4B | 17.4 k Da class ⅡI heat shock protein | down |
Gohir.D06G084500 | HSP17.6 | 17.6 k Da class Ⅱ heat shock protein | down |
Gohir.D07G106100 | HSP18.5-C | 18.5 k Da class I heat shock protein | down |
Gohir.A08G104100 | HSP22 | Small heat shock protein, chloro-plastic | down |
Gohir.D05G127000 | HSP26.5 | 26.5 k Da heat shock protein, mitochondrial | down |
Gohir.D05G096900 | HSP70 | Heat shock cognate 70 k Da protein | down |
Gohir.A13G234100 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D13G239700 | HSP70 | Heat shock 70 k Da protein | down |
Gohir.D09G208200 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.D09G212600 | HSP70-7 | Heat shock 70 k Da protein 7, chloro-plastic | down |
Gohir.A12G254100 | HSP83A | Heat shock protein 83 | down |
Gohir.D08G135400 | HSP83A | Heat shock protein 83 | down |
Gohir.D03G148100 | HSP83A | Heat shock protein 83 | down |
Gohir.D12G256400 | HSP83A | Heat shock protein 83 | down |
记录号 Accession | 项目 Term | 输入基因数目 Input Gene Number | 所有基因数目 All Gene Number | P值 P-value | Q值 Q-value |
---|---|---|---|---|---|
ko00941 | Flavonoid biosynthesis | 20 (14.60%) | 81 (0.57%) | 8.40E-25 | 2.90E-23 |
ko01110 | Biosynthesis of secondary metabolites | 62 (45.26%) | 2,573 (18.15%) | 5.40E-14 | 1.20E-12 |
ko00360 | Phenylalanine metabolism | 10 (7.30%) | 104 (0.73%) | 4.80E-09 | 5.50E-08 |
ko04915 | Estrogen signaling pathway | 9 (6.57%) | 89 (0.63%) | 1.40E-08 | 1.30E-07 |
ko01100 | Metabolic pathways | 76 (55.47%) | 4,904 (34.59%) | 1.70E-07 | 1.30E-06 |
ko04612 | Antigen processing and presentation | 10 (7.30%) | 175 (1.23%) | 1.00E-06 | 7.00E-06 |
ko04940 | Type I diabetes mellitus | 4 (2.92%) | 24 (0.17%) | 2.90E-06 | 1.80E-05 |
ko05134 | Legionellosis | 8 (5.84%) | 145 (1.02%) | 1.10E-05 | 6.00E-05 |
ko04621 | NOD-like receptor signaling pathway | 4 (2.92%) | 32 (0.23%) | 1.30E-05 | 6.30E-05 |
ko04141 | Protein processing in endoplasmic reticulum | 17 (12.41%) | 593 (4.18%) | 1.60E-05 | 7.30E-05 |
ko00072 | Synthesis and degradation of ketone bodies | 3 (2.19%) | 17 (0.12%) | 1.80E-05 | 7.30E-05 |
ko04712 | Circadian rhythm-plant | 7 (5.11%) | 120 (0.85%) | 2.10E-05 | 8.00E-05 |
Tab.3 KEGG enrichment of the differentially expressed genes
记录号 Accession | 项目 Term | 输入基因数目 Input Gene Number | 所有基因数目 All Gene Number | P值 P-value | Q值 Q-value |
---|---|---|---|---|---|
ko00941 | Flavonoid biosynthesis | 20 (14.60%) | 81 (0.57%) | 8.40E-25 | 2.90E-23 |
ko01110 | Biosynthesis of secondary metabolites | 62 (45.26%) | 2,573 (18.15%) | 5.40E-14 | 1.20E-12 |
ko00360 | Phenylalanine metabolism | 10 (7.30%) | 104 (0.73%) | 4.80E-09 | 5.50E-08 |
ko04915 | Estrogen signaling pathway | 9 (6.57%) | 89 (0.63%) | 1.40E-08 | 1.30E-07 |
ko01100 | Metabolic pathways | 76 (55.47%) | 4,904 (34.59%) | 1.70E-07 | 1.30E-06 |
ko04612 | Antigen processing and presentation | 10 (7.30%) | 175 (1.23%) | 1.00E-06 | 7.00E-06 |
ko04940 | Type I diabetes mellitus | 4 (2.92%) | 24 (0.17%) | 2.90E-06 | 1.80E-05 |
ko05134 | Legionellosis | 8 (5.84%) | 145 (1.02%) | 1.10E-05 | 6.00E-05 |
ko04621 | NOD-like receptor signaling pathway | 4 (2.92%) | 32 (0.23%) | 1.30E-05 | 6.30E-05 |
ko04141 | Protein processing in endoplasmic reticulum | 17 (12.41%) | 593 (4.18%) | 1.60E-05 | 7.30E-05 |
ko00072 | Synthesis and degradation of ketone bodies | 3 (2.19%) | 17 (0.12%) | 1.80E-05 | 7.30E-05 |
ko04712 | Circadian rhythm-plant | 7 (5.11%) | 120 (0.85%) | 2.10E-05 | 8.00E-05 |
转录因子 TF | 基因登录号 Gene_id | 调控 Regulation | 结构域 Domain | 描述 Description | e-值 e_value |
---|---|---|---|---|---|
MYB | Gohir.D09G170800 | up | PF00249 | Myb-like DNA- binding domain | 2.00E-30 |
Gohir.A07G020200 | up | 5.20E-30 | |||
Gohir.A13G099200 | up | 4.00E-30 | |||
Gohir.A08G111000 | up | 9.30E-34 | |||
Gohir.D12G116900 | up | 3.20E-33 | |||
Gohir.A01G153200 | up | 5.90E-28 | |||
Gohir.D01G146000 | up | 2.80E-30 | |||
Gohir.D12G267100 | down | 7.40E-33 | |||
Gohir.A06G082300 | up | 1.40E-36 | |||
WRKY | Gohir.D11G100800 | up | PF03106 | WRKY DNA- binding domain | 5.40E-25 |
Gohir.A12G119500 | up | 1.40E-26 | |||
Gohir.A05G379600 | up | 2.70E-26 | |||
Gohir.D07G143900 | up | 2.20E-24 | |||
Gohir.D08G131700 | up | 3.70E-27 | |||
Gohir.D10G011400 | up | 5.30E-27 | |||
Gohir.A04G096000 | up | 1.70E-51 | |||
Gohir.D06G103300 | up | 2.80E-25 | |||
Gohir.D04G135800 | up | 2.00E-51 | |||
Gohir.D12G236600 | up | 2.80E-26 | |||
Gohir.D07G020700 | up | 8.40E-25 | |||
Gohir.A07G138800 | up | 9.80E-25 | |||
Gohir.A08G100100 | up | 9.50E-27 | |||
Gohir.A12G235400 | up | 7.60E-27 | |||
ERF | Gohir.D08G130900 | down | PF00847 | AP2 domain | 7.50E-13 |
Gohir.D13G069800 | up | 9.90E-09 | |||
NAC | Gohir.A01G001700 | up | PF02365 | No apical meristem (NAM) protein | 7.90E-25 |
Gohir.A12G035000 | up | 6.20E-26 | |||
Gohir.D01G001300 | up | 3.10E-23 | |||
Gohir.D03G003700 | up | 4.40E-26 | |||
bZIP | Gohir.D11G259400 | down | PF00170 | bZIP transcription factor | 6.60E-13 |
Gohir.A11G248500 | down | 1.50E-13 | |||
MYB_related | Gohir.A01G075400 | up | PF00249 | Myb-like DNA- binding domain | 9.00E-10 |
Gohir.D02G216000 | up | 6.60E-06 | |||
Dof | Gohir.D12G068300 | down | PF02701 | Dof domain, zinc finger | 7.30E-33 |
Gohir.D06G130200 | up | 2.20E-31 | |||
HSF | Gohir.A07G012200 | down | PF00447 | HSF-type DNA-binding | 6.50E-31 |
DBB | Gohir.A06G006200 | up | PF00643 | B-box zinc finger | 1.70E-13 |
HB-other | Gohir.A08G236600 | down | PF00046 | Homeobox domain | 3.50E-07 |
bHLH | Gohir.D05G002300 | up | PF00010 | Helix-loop-helix DNA-binding domain | 1.40E-12 |
Tab.4 Transcription factors of differential genes
转录因子 TF | 基因登录号 Gene_id | 调控 Regulation | 结构域 Domain | 描述 Description | e-值 e_value |
---|---|---|---|---|---|
MYB | Gohir.D09G170800 | up | PF00249 | Myb-like DNA- binding domain | 2.00E-30 |
Gohir.A07G020200 | up | 5.20E-30 | |||
Gohir.A13G099200 | up | 4.00E-30 | |||
Gohir.A08G111000 | up | 9.30E-34 | |||
Gohir.D12G116900 | up | 3.20E-33 | |||
Gohir.A01G153200 | up | 5.90E-28 | |||
Gohir.D01G146000 | up | 2.80E-30 | |||
Gohir.D12G267100 | down | 7.40E-33 | |||
Gohir.A06G082300 | up | 1.40E-36 | |||
WRKY | Gohir.D11G100800 | up | PF03106 | WRKY DNA- binding domain | 5.40E-25 |
Gohir.A12G119500 | up | 1.40E-26 | |||
Gohir.A05G379600 | up | 2.70E-26 | |||
Gohir.D07G143900 | up | 2.20E-24 | |||
Gohir.D08G131700 | up | 3.70E-27 | |||
Gohir.D10G011400 | up | 5.30E-27 | |||
Gohir.A04G096000 | up | 1.70E-51 | |||
Gohir.D06G103300 | up | 2.80E-25 | |||
Gohir.D04G135800 | up | 2.00E-51 | |||
Gohir.D12G236600 | up | 2.80E-26 | |||
Gohir.D07G020700 | up | 8.40E-25 | |||
Gohir.A07G138800 | up | 9.80E-25 | |||
Gohir.A08G100100 | up | 9.50E-27 | |||
Gohir.A12G235400 | up | 7.60E-27 | |||
ERF | Gohir.D08G130900 | down | PF00847 | AP2 domain | 7.50E-13 |
Gohir.D13G069800 | up | 9.90E-09 | |||
NAC | Gohir.A01G001700 | up | PF02365 | No apical meristem (NAM) protein | 7.90E-25 |
Gohir.A12G035000 | up | 6.20E-26 | |||
Gohir.D01G001300 | up | 3.10E-23 | |||
Gohir.D03G003700 | up | 4.40E-26 | |||
bZIP | Gohir.D11G259400 | down | PF00170 | bZIP transcription factor | 6.60E-13 |
Gohir.A11G248500 | down | 1.50E-13 | |||
MYB_related | Gohir.A01G075400 | up | PF00249 | Myb-like DNA- binding domain | 9.00E-10 |
Gohir.D02G216000 | up | 6.60E-06 | |||
Dof | Gohir.D12G068300 | down | PF02701 | Dof domain, zinc finger | 7.30E-33 |
Gohir.D06G130200 | up | 2.20E-31 | |||
HSF | Gohir.A07G012200 | down | PF00447 | HSF-type DNA-binding | 6.50E-31 |
DBB | Gohir.A06G006200 | up | PF00643 | B-box zinc finger | 1.70E-13 |
HB-other | Gohir.A08G236600 | down | PF00046 | Homeobox domain | 3.50E-07 |
bHLH | Gohir.D05G002300 | up | PF00010 | Helix-loop-helix DNA-binding domain | 1.40E-12 |
[1] |
David B. Lobell, Wolfram Schlenker, Justin Costa-Roberts. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042):616-620.
DOI PMID |
[2] |
Peng S, Huang J, Sheehy J E. Rich yields decline with higher night temperature from global warming[J]. Pro Natl Acad Sci USA, 2004, 101(27):9971-9975.
DOI URL |
[3] |
王秀琴, 段维. 新疆莫索湾高温日数统计特征[J]. 干旱气象, 2014, 32(2):220-225.
DOI |
WANG Xiuqin, DUAN Wei. Statistical characteristics of high-temperature days in Mosuowan of Xinjiang[J]. Journal of Arid Meteorology, 2014, 32(2) : 220-225. | |
[4] | 黄帅, 江静. 中国持续性高温事件的时空分析[J]. 南京大学学报(自然科学版), 2012, 48(6):689-700. |
HUANG Shuai, JIANG Jing. The spatial-temporal analysis of persistent high-temperature events in China[J]. Journal of Nanjing University (Natural Sciences), 2012, 48(6) : 689-700. | |
[5] | 尹波. 高温胁迫下番茄Solexa转录组测序及LeCOR413-TM1基因克隆和功能分析[D]. 山东农业大学, 2014. |
Yin Bo. Transcriptional analysis of tomato under high temperature stress via Solexa sequencing and cloning and functional analysis of LeCOR413-TM1 gene[D]. Shandong Agricultural University, 2014. | |
[6] | 徐洪国. 葡萄耐热性评价及不同耐热性葡萄转录组研究[D]. 北京: 中国农业大学, 2014. |
Xu Hongguo. Evaluation of grape heat tolerance and transcriptome of different heat tolerance of grape[D]. Beijing: China Agricultural University, 2014. | |
[7] |
Elizabeth R. Waters, Garrett J. Lee,Elizabeth Vierling. Evolution, structure and function of the small heat shock proteins in plants[J]. Journal of Experimental Botany, 1996, 47(296): 325-338.
DOI URL |
[8] |
Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP)[J]. Journal of Proteomics, 2008, 71: 391-411.
DOI PMID |
[9] |
Kimpel J A, Key J L. Heat shock in plants[J]. Trends in Biochemical Sciences, 1985, 10: 353-357.
DOI URL |
[10] |
Van Montfort R L M, Basha E, Friedrich K L, et al. Crystal structure and assembly of a eukaryotic small heat shock protein[J]. Nature Structural Biology, 2001, 8: 1025-1030.
DOI PMID |
[11] |
Arasakesary S. J., Manonmani S, Pushpam R, et al. New temperature sensitive genic male sterile lines with better outcrossing ability for production of two-line hybrid in rice[J]. Rice Science, 2015, 22(1):49-52.
DOI |
[12] |
Raafat EN, Saber S, Yonnelle DM, et al. Microsatellite-aided screening for fertility restoration genes (Rf) facilitates hybrid improvement[J]. Rice Science, 2016, 23(3):160-164.
DOI |
[13] |
Frey FP, Urbany C, Hüttel B, et al. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress[J]. BMC Genomics, 2015, 16:123.
DOI PMID |
[14] |
Qin D, Wu H, Peng H, et al. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array[J]. BMC Genomics, 2008, 9:432.
DOI |
[15] |
Lee YH, Kim KS, Jang YS, et al. Global gene expression responses to waterlogging in leaves of rape seedlings[J]. Plant Cell Rep, 2014, 33(2):289-299.
DOI URL |
[16] |
Aulakh SS, Veilleux RE, Dickerman AW, et al. Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant[J]. Plant Mol Biol, 2014, 84(6):635-658.
DOI PMID |
[17] | Blanco-Ulate B, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea[J]. Front Plant Science, 2013, 4:142. |
[18] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12:357.
DOI PMID |
[19] |
Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general-purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30:923-930.
DOI URL |
[20] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15:550.
DOI URL |
[21] |
Goldstein L D, Cao Y, Pau G, et al. Prediction and Quantification of Splice Events from RNA-Seq Data.[J]. Plos One, 2016, 11(5):e0156132.
DOI URL |
[22] |
Schulze S K, Kanwar R, et al. SERE: Single-parameter quality control and sample comparison for RNA-Seq[J]. BMC genomics, 2012, 13(1): 524.
DOI |
[23] | Wahid A, Farooq M, Hussain I, et al. Responses and management of heat stress in plants[J]. In: Ahmad P, Prasad MNV, editors. Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer, 2012, p. 135-157. |
[24] |
李川, 乔江方, 朱卫红, 等. 玉米自交系响应花粒期高温胁迫差异表达基因的分析[J]. 华北农学报, 2019, 34(1):1-11.
DOI |
LI Chuan, QIAO Jiangfang, ZHU Weihong, et al. Differential expressed of high temperature stress in anthesis stage related genes of maize inbred lines[J]. Acta agriculture boreali-sinica, 2019, 34(1):1-11. | |
[25] | 翟秀明, 唐敏, 李解, 等. 基于RNA-Seq技术的茶树响应高温胁迫转录组差异性分析[J]. 分子植物育种, 2020, 18(17):5629-5637. |
ZHAI Xiuming, TANG Min, LI Jie, et al. Difference analysis of heat stress-responsive transcriptome of Camellia sinensis based on RNA-Seq technology[J]. Molecular plant breeding, 2020, 18(17):5629-5637. | |
[26] | 许小芳. 高温胁迫下玉米叶片的转录组和蛋白质组分析[D]. 郑州: 河南农业大学, 2019. |
Xu Xiaofang. Transcriptome and proteome analysis of maize leaf under high temperature stress[D]. Zhenzhou: Henan Agricultural University, 2019. | |
[27] | 赵贝贝, 叶蕴灵, 王莉, 等. 银杏类黄酮响应非生物胁迫研究进展[J]. 扬州大学学报(农业与生命科学版), 2018, 39(3):106-112. |
ZHAO Beibei, YE Yunling, WANG Li, et al. The research progress on response to abiotic stress by flavonoid in Ginkgo biloba[J]. Journal of Yangzhou university (Agriculture and life science edition), 2018, 39(3):106-112. | |
[28] | 李鑫雨, 何媛, 代娅, 等. 多年生黑麦草温度胁迫差异表达转录因子的比较转录组分析[J]. 西北植物学报, 2020, 40(5):773-784. |
LI Xinyu, HE Yuan, DAI Ya, et al. Comparative transcriptome analysis reveals differentially expressed transcription factors associated with temperature stresses in Lolium perenne[J]. Acta botanica boreali-occidentalia sinica, 2020, 40(5):773-784. | |
[29] | 姚娜, 刘秀明, 董园园, 等. 转录组的测序方法及应用研究概述[J]. 北方园艺, 2017(12):192-198. |
YAO Na, LIU Xiuming, DONG Yuanyuan, et al. Advances in application and seguencing methods of transcriptome[J]. Northern Horticulture, 2017(12):192-198. | |
[30] |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nature reviews genetics, 2009, 10(1):57.
DOI PMID |
[31] | 潘琪. 番茄SYTA的功能及其与Fd Ⅰ互作研究[D]. 重庆: 西南大学, 2018. |
Pan Qi. Function analysis of Solanum lycopersicum SYTA and analyzing the interaction between Solanum lycopersicum SYTA and Nicotiana benthamiana Ferredoxin I[D]. Changqing: Southwest University, 2018. |
[1] | GONG Junming, XIONG Xianpeng, ZHANG Caixia, SHAO Dongnan, CHENG Shuaishuai, SUN Jie. Functional analysis of 4-coumarate: CoA ligase gene Gh4CL30 in upland cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1301-1309. |
[2] | MA Shangjie, LI Shengmei, YANG Tao, WANG Honggang, ZHAO Kang, PANG Bo, GAO Wenwei. Cloning and subcellular localization of the GHWAT1-35 gene in Gossypium hirsutum [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1310-1317. |
[3] | WANG Kaidi, GAO Chenxu, PEI Wenfeng, YANG Shuxian, ZHANG Wenqing, SONG Jikun, MA Jianjiang, WANG Li, YU Jiwen, CHEN Quanjia. Identification of TRM gene family and fiber quality related excellent haplotype analysis in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 521-536. |
[4] | WANG Peng, ZHENG Kai, ZHAO Jieyin, GAO Wenju, LONG Yilei, CHEN Quanjia, QU Yanying. Evaluation and index screening of heat resistance of Gossypium hirsutum germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2081-2090. |
[5] | MA Qingshan, DU Xiao, TAO Zhixin, HAN Wanli, LONG Yilei, AI Xiantao, HU Shoulin. Identification and analysis of machine-picked agronomic characters of Gossypium hirsutum resource materials [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1830-1839. |
[6] | GENG Feifei, MENG Chaomin, QING Guixia, ZHOU Jiamin, ZHANG Fuhou, LIU Fengju. Cloning and expression analysis of phosphorus efficient gene GhMYB4 in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1406-1412. |
[7] | WEN Jia, HUANG Chenjue, JI Zihan, LI Libei, FENG Zhen, YU Shuxun. Association analysis of dynamic plant height trait using SSR marker in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2892-2901. |
[8] | SUN Fenglei, REN Jiaojiao, LEI Bin, GAO Wenwei, QU Yanying. QTL mapping and genomic selection of maize leaf width [J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2341-2351. |
[9] | LIU Zhigang, REN Hongsong, Huxidan Maimaiti, WANG Ruihua, LI Haifeng, HU Guozhi. Effects of Exogenous Calcium on Physiological Characteristics of Muskmelon Seedling Leaves during High Temperature Period [J]. Xinjiang Agricultural Sciences, 2022, 59(3): 588-596. |
[10] | YANG Yong, FAN Rong, ZHANG Xuejun, LI Meihua, LING Yueming, ZHANG Hong, YANG Wenli, JIANG Xue, ZHANG Yongbing, YI Hongping. QTL Mapping and Candidate Gene Analysis of Sucrose Content in the Center Flesh of Muskmelon [J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2446-2455. |
[11] | Omarjan Kurban, Nusrat Osiman, Arman Ablimet, LI Jie, ZHANG Pengzhong, Tursunjan Mamat. Comprehensive Evaluation and Analysis of Main Characters of Different Cotton Cultivars in Oasis Arid Area in Xinjiang [J]. Xinjiang Agricultural Sciences, 2021, 58(4): 643-652. |
[12] | WU Jiuyun, XU Guixiang, LI Haifeng, ZENG Xiaoyan, JIANG Jianfu, LIU Yongxiang, WEI Yinong, REN Hongsong. Effects of Heat Stress on Chlorophyll Fluorescence and Photosynthetic Characteristic Parameters in Grape(Vitisvinifera L.'Manicure finger') [J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2274-2281. |
[13] | JIN Yinan, DONG Helin, LI Pengcheng, SUN Miao, SHAO Jingjing, FENG Weina, XU Wenxiu, ZHENG Cangsong. Effects of soil potassium level on growth and photosynthetic characteristics of early cotton [J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2236-2243. |
[14] | LI Jianping, Zumuremu Tuerxun, HAO Xiaoyan, CHANG Xiaochun, GAO Shengqi, HU Wenran, CHEN Guo, HUANG Quansheng. Expression Analysis and Functional Identification of COR Gene in Gossypium hirsutum L under Low Temperature Stress [J]. Xinjiang Agricultural Sciences, 2020, 57(3): 401-407. |
[15] | ZHANG Yan, YAO Yinkun, HU We, GAO Yuan, TANG Mingyao. Effects of Phosphate Fertilizer Application on P Accumulation, Distribution,Utilization and Yield of Cotton [J]. Xinjiang Agricultural Sciences, 2020, 57(11): 2004-2011. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||