

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (7): 1631-1638.DOI: 10.6048/j.issn.1001-4330.2025.07.008
杜孝敬(
), 侯天钰, 张燕红(
), 李冬, 袁杰, 李建睿, 申宇昕, 李晓荣, 王奉斌(
)
收稿日期:2024-12-11
出版日期:2025-07-20
发布日期:2025-09-05
通信作者:
王奉斌(1968-),男,江西人,研究员,硕士,研究方向为水稻遗传育种及栽培,(E-mail)xjnkywfb@163.com;作者简介:杜孝敬(1993-),男,助理研究员,硕士,研究方向为稻种资源及水稻栽培,(E-mail)dxjixj@163.com
基金资助:
DU Xiaojing(
), HOU Tianyu, ZHANG Yanhong(
), LI Dong, YUAN Jie, LI Jianrui, SHEN Yuxin, LI Xiaorong, WANG Fengbin(
)
Received:2024-12-11
Published:2025-07-20
Online:2025-09-05
Supported by:摘要:
【目的】筛选出适合新疆北疆稻区种植和推广的耐低温品种。【方法】以水稻品种新粳8号、新粳伊1号、新粳伊7号、秋田小町和新稻11号为材料,在水稻孕穗期设置7 d 16℃低温(T)处理和大田对照(CK)处理,研究不同品种水稻孕穗期低温对其叶片抗氧化酶活性、产量及产量构成因素的影响。【结果】孕穗期低温胁迫7 d后新粳8号和秋田小町的剑叶POD活性均显著提高,新粳伊7号的剑叶POD活性显著降低,三个水稻品种的剑叶CAT活性均显著降低;孕穗期低温会延长不同水稻品种的生育期天数,显著降低水稻株高、穗长和单穗重,同时显著降低每穗粒数和结实率,进而导致水稻理论产量下降;不同品种千粒重对低温胁迫的响应存在差异,其中新粳8号和新粳伊1号受低温胁迫影响较小且无差异,秋田小町和新稻11号受低温胁迫随之降低,而新粳伊7号受低温胁迫有所增加;低温胁迫后秋田小町的理论产量最高,为4 532.75 kg/hm2,较新粳8号、新粳伊1号、新粳伊7号和新稻11号分别高56.59%、98.76%、3.02%和1.84%;秋田小町和新稻11号的耐冷系数较其他品种表现较优。【结论】秋田小町和新稻11号可作为耐冷性强的育种资源材料。
中图分类号:
杜孝敬, 侯天钰, 张燕红, 李冬, 袁杰, 李建睿, 申宇昕, 李晓荣, 王奉斌. 水稻孕穗期低温对其剑叶抗氧化酶活性及产量的影响[J]. 新疆农业科学, 2025, 62(7): 1631-1638.
DU Xiaojing, HOU Tianyu, ZHANG Yanhong, LI Dong, YUAN Jie, LI Jianrui, SHEN Yuxin, LI Xiaorong, WANG Fengbin. Effects of low temperature at booting stage on antioxidant enzyme activity and yield of sword leaves of different varieties of rice[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1631-1638.
| 品种 Varieties | 处理 Treatments | 播种期 Sowing time (月/日) | 移栽期 Transplanting period (月/日) | 幼穗分化期 Panicle initiation stage (月/日) | 始穗期 Earing stage (月/日) | 齐穗期 Full heading stage (月/日) | 成熟期 Maturation stage (月/日) | 全生育期天数 Number of days in the entire reproductive period(d) |
|---|---|---|---|---|---|---|---|---|
| 新粳8号 Xinjing 8 | CK | 4/6 | 5/5 | 7/13 | 7/25 | 7/28 | 9/28 | 176 |
| T | 4/6 | 5/5 | 7/13 | 7/29 | 8/1 | 10/4 | 182 | |
| 新粳伊1号 Xinjiangyi 1 | CK | 4/6 | 5/5 | 7/7 | 7/20 | 7/23 | 9/23 | 171 |
| T | 4/6 | 5/5 | 7/7 | 7/23 | 7/26 | 9/29 | 177 | |
| 新粳伊7号 Xinjiangyi 7 | CK | 4/6 | 5/5 | 7/13 | 7/25 | 7/28 | 9/28 | 176 |
| T | 4/6 | 5/5 | 7/13 | 7/28 | 7/31 | 10/8 | 186 | |
| 秋田小町 Qiutianxiaoding | CK | 4/6 | 5/5 | 7/23 | 8/4 | 8/7 | 10/3 | 181 |
| T | 4/6 | 5/5 | 7/23 | 8/8 | 8/12 | 10/8 | 186 | |
| 新稻11号 Xindao 11 | CK | 4/6 | 5/5 | 7/26 | 8/5 | 8/8 | 10/3 | 181 |
| T | 4/6 | 5/5 | 7/26 | 8/8 | 8/13 | 10/9 | 187 |
表1 水稻孕穗期低温下不同品种生育进程的变化
Tab.1 Changes of low temperature at booting stage on the growth process of different varieties
| 品种 Varieties | 处理 Treatments | 播种期 Sowing time (月/日) | 移栽期 Transplanting period (月/日) | 幼穗分化期 Panicle initiation stage (月/日) | 始穗期 Earing stage (月/日) | 齐穗期 Full heading stage (月/日) | 成熟期 Maturation stage (月/日) | 全生育期天数 Number of days in the entire reproductive period(d) |
|---|---|---|---|---|---|---|---|---|
| 新粳8号 Xinjing 8 | CK | 4/6 | 5/5 | 7/13 | 7/25 | 7/28 | 9/28 | 176 |
| T | 4/6 | 5/5 | 7/13 | 7/29 | 8/1 | 10/4 | 182 | |
| 新粳伊1号 Xinjiangyi 1 | CK | 4/6 | 5/5 | 7/7 | 7/20 | 7/23 | 9/23 | 171 |
| T | 4/6 | 5/5 | 7/7 | 7/23 | 7/26 | 9/29 | 177 | |
| 新粳伊7号 Xinjiangyi 7 | CK | 4/6 | 5/5 | 7/13 | 7/25 | 7/28 | 9/28 | 176 |
| T | 4/6 | 5/5 | 7/13 | 7/28 | 7/31 | 10/8 | 186 | |
| 秋田小町 Qiutianxiaoding | CK | 4/6 | 5/5 | 7/23 | 8/4 | 8/7 | 10/3 | 181 |
| T | 4/6 | 5/5 | 7/23 | 8/8 | 8/12 | 10/8 | 186 | |
| 新稻11号 Xindao 11 | CK | 4/6 | 5/5 | 7/26 | 8/5 | 8/8 | 10/3 | 181 |
| T | 4/6 | 5/5 | 7/26 | 8/8 | 8/13 | 10/9 | 187 |
| 性状 Traits | 处理 Treatments | 新粳8号 Xinjing 8 | 新粳伊1号 Xinjingyi1 | 新粳伊7号 Xinjingyi7 | 秋田小町 Qiutianxiaoding | 新稻11号 Xindao 11 |
|---|---|---|---|---|---|---|
| 株高 Height(cm) | CK | 100.67a | 106.67a | 105.67a | 89.50a | 113.67a |
| T | 86.56b | 95.00b | 92.33b | 78.00b | 97.33b | |
| 穗长 Spike length(cm) | CK | 15.16a | 19.47a | 18.34a | 15.07a | 17.46a |
| T | 13.38b | 19.34a | 17.60a | 14.07b | 15.93b | |
| 单穗重 Single spike weight(g) | CK | 2.73a | 3.31a | 2.69a | 1.14a | 1.82a |
| T | 0.77b | 0.97b | 1.00b | 1.13a | 0.73b |
表2 低温处理下不同水稻品种主要农艺性状的变化
Tab.2 Changes of main agronomic traits of rice under low temperature treatment
| 性状 Traits | 处理 Treatments | 新粳8号 Xinjing 8 | 新粳伊1号 Xinjingyi1 | 新粳伊7号 Xinjingyi7 | 秋田小町 Qiutianxiaoding | 新稻11号 Xindao 11 |
|---|---|---|---|---|---|---|
| 株高 Height(cm) | CK | 100.67a | 106.67a | 105.67a | 89.50a | 113.67a |
| T | 86.56b | 95.00b | 92.33b | 78.00b | 97.33b | |
| 穗长 Spike length(cm) | CK | 15.16a | 19.47a | 18.34a | 15.07a | 17.46a |
| T | 13.38b | 19.34a | 17.60a | 14.07b | 15.93b | |
| 单穗重 Single spike weight(g) | CK | 2.73a | 3.31a | 2.69a | 1.14a | 1.82a |
| T | 0.77b | 0.97b | 1.00b | 1.13a | 0.73b |
| 性状 Traits | 处理 Treatments | 新粳8号 Xinjing 8 | 新粳伊1号 Xinjingyi1 | 新粳伊7号 Xinjingyi7 | 秋田小町 Qiutianxiaoding | 新稻11号 Xindao 11 |
|---|---|---|---|---|---|---|
| 有效穗数 Effective number (104个/hm2) | CK | 504.63a | 375.00a | 576.39a | 701.39a | 677.08a |
| T | 502.96a | 371.43a | 573.33a | 700.12a | 673.61a | |
| 穗粒数 Number of grains per spike (粒/穗) | CK | 128.04a | 135.45a | 139.28a | 70.38a | 88.67a |
| T | 46.61b | 78.40b | 90.92b | 48.65b | 61.00b | |
| 结实率 Seed setting rate (%) | CK | 92.27a | 93.09a | 86.80a | 92.26a | 81.70a |
| T | 66.21b | 38.37b | 46.06b | 75.49b | 60.31b | |
| 千粒重 1000-seed weight (g) | CK | 22.29a | 24.59a | 20.57b | 21.69a | 22.03a |
| T | 21.94a | 24.01a | 21.56a | 20.74b | 21.13b | |
| 理论产量 Theoretical yield (kg/hm2) | CK | 11 293.45a | 9 884.72a | 12 184.88a | 8 396.26a | 9 182.49a |
| T | 2 894.70b | 2 280.51b | 4 400.04b | 4 532.75b | 4 450.81b |
表3 低温处理下水稻产量、产量构成因素的变化
Tab.3 Changes of low temperature treatment on rice yield and yield components factors
| 性状 Traits | 处理 Treatments | 新粳8号 Xinjing 8 | 新粳伊1号 Xinjingyi1 | 新粳伊7号 Xinjingyi7 | 秋田小町 Qiutianxiaoding | 新稻11号 Xindao 11 |
|---|---|---|---|---|---|---|
| 有效穗数 Effective number (104个/hm2) | CK | 504.63a | 375.00a | 576.39a | 701.39a | 677.08a |
| T | 502.96a | 371.43a | 573.33a | 700.12a | 673.61a | |
| 穗粒数 Number of grains per spike (粒/穗) | CK | 128.04a | 135.45a | 139.28a | 70.38a | 88.67a |
| T | 46.61b | 78.40b | 90.92b | 48.65b | 61.00b | |
| 结实率 Seed setting rate (%) | CK | 92.27a | 93.09a | 86.80a | 92.26a | 81.70a |
| T | 66.21b | 38.37b | 46.06b | 75.49b | 60.31b | |
| 千粒重 1000-seed weight (g) | CK | 22.29a | 24.59a | 20.57b | 21.69a | 22.03a |
| T | 21.94a | 24.01a | 21.56a | 20.74b | 21.13b | |
| 理论产量 Theoretical yield (kg/hm2) | CK | 11 293.45a | 9 884.72a | 12 184.88a | 8 396.26a | 9 182.49a |
| T | 2 894.70b | 2 280.51b | 4 400.04b | 4 532.75b | 4 450.81b |
| [1] | 国家统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2022 |
| National Statistical Office. China Statistical Yearbook2023[M]. Beijing: China Statistics Press, 2022 | |
| [2] |
潘俊峰, 钟旭华, 黄农荣, 等. 近20年新疆水稻生产发展及影响因素分析[J]. 中国稻米, 2017, 23(3): 22-27.
DOI |
|
PAN Junfeng, ZHONG Xuhua, HUANG Nongrong, et al. Development of rice production in recent twenty years and its influencing factors in Xinjiang uygur autonomous region[J]. China Rice, 2017, 23(3): 22-27.
DOI |
|
| [3] |
Yang L M, Lei L, Wang J G, et al. qCTB7 positively regulates cold tolerance at booting stage in rice[J]. Theoretical and Applied Genetics, 2023, 136(6): 135.
DOI PMID |
| [4] |
Almeida D M, Almadanim M C, Louren o T, et al. Screening for abiotic stress tolerance in rice: salt, cold, and drought[J]. Methods in Molecular Biology, 2016, 1398: 155-182.
DOI PMID |
| [5] | 张坤, 王海媛, 段里成, 等. 持续低温对水稻芽期出苗状况的影响[J]. 江苏农业科学, 2018, 46(4): 56-60. |
| ZHANG Kun, WANG Haiyuan, DUAN Licheng, et al. Effect of continuous low temperature on emergence of rice at bud stage[J]. Jiangsu Agricultural Sciences, 2018, 46(4): 56-60. | |
| [6] | Ji L, Zhou P, Zhu Y, et al. Proteomic analysis of rice seedlings under cold stress[J]. The Protein Journal, 2017, 36(4): 299-307. |
| [7] | 刘琳帅, 卞景阳, 孙兴荣, 等. 水稻低温冷害的研究进展[J]. 江苏农业科学, 2022, 50(24): 9-15. |
| LIU Linshuai, BIAN Jingyang, SUN Xingrong, et al. Research progress on chilling injury of rice under low temperature[J]. Jiangsu Agricultural Sciences, 2022, 50(24): 9-15. | |
| [8] | 朱海霞, 吕佳佳, 闫平, 等. 基于当量积温对寒地水稻生长季低温冷害年的判定[J]. 中国农业气象, 2019, 40(6): 380-390. |
| ZHU Haixia, LYU Jiajia, YAN Ping, et al. Identification on cold damage year based on accumulated equivalent temperature during rice growth season in cold region[J]. Chinese Journal of Agrometeorology, 2019, 40(6): 380-390. | |
| [9] | Guo Z H, Cai L J, Liu C X, et al. Global analysis of differentially expressed genes between two Japonica rice varieties induced by low temperature during the booting stage by RNA-Seq[J]. Royal Society Open Science, 2020, 7(6): 192243. |
| [10] | 杨善伟, 梁仁敏, 赵海红, 等. 孕穗期低温胁迫对优质香稻产量及其构成因素的影响[J]. 作物杂志, 2023,(6): 143-149. |
| YANG Shanwei, LIANG Renmin, ZHAO Haihong, et al. Effects of low temperature stress at booting stage on yield and its components of high quality fragrant rice[J]. Crops, 2023,(6): 143-149. | |
| [11] |
罗秋红, 吴俊, 柏斌, 等. 孕穗期低温灌溉对水稻剑叶和颖花生理特征的影响[J]. 华北农学报, 2020, 35(3): 111-118.
DOI |
| LUO Qiuhong, WU Jun, BAI Bin, et al. Effects of low temperature irrigation at booting stage on physiological characteristics of sword leaves and spikelets in rice[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(3): 111-118. | |
| [12] | 朱海霞, 王秋京, 闫平, 等. 孕穗抽穗期低温处理对黑龙江省主栽水稻品种结实率的影响[J]. 中国农业气象, 2012, 33(2): 304-309. |
| ZHU Haixia, WANG Qiujing, YAN Ping, et al. Effect of low temperature at heading stage on seed setting rate of major rice varieties in Heilongjiang Province[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 304-309. | |
| [13] | Yamamori K, Ogasawara K, Ishiguro S, et al. Revision of the relationship between anther morphology and pollen sterility by cold stress at the booting stage in rice[J]. Annals of Botany, 2021, 128(5): 559-575. |
| [14] |
项洪涛, 王彤彤, 郑殿峰, 等. 孕穗期低温条件下ABA对水稻结实率及叶片生理特性的影响[J]. 中国农学通报, 2016, 32(36): 16-23.
DOI |
|
XIANG Hongtao, WANG Tongtong, ZHENG Dianfeng, et al. Effect of ABA on seed-setting rate and physiological characteristics of rice leaves under low temperature stress at booting stage[J]. Chinese Agricultural Science Bulletin, 2016, 32(36): 16-23.
DOI |
|
| [15] | Ali I, Tang L, Dai J J, et al. Responses of grain yield and yield related parameters to post-heading low-temperature stress in Japonica rice[J]. Plants, 2021, 10(7): 1425. |
| [16] | 熊振民. 中国水稻[M]. 北京: 中国农业科学技术出版社, 1992. |
| XIONG Zhenmin. Rice in China[M]. China Agricultural Science and Technology Press, 1992. | |
| [17] | 杨青红, 曹伟, 刘玉. 乌鲁木齐市米东区水稻生产现状及发展对策[J]. 新疆农业科技, 2009,(6): 19-20. |
| YANG Qinghong, CAO Wei, LIU Yu. Current situation and development countermeasures of rice production in Midong District of Urumqi City[J]. Xinjiang Agricultural Science and Technology, 2009,(6): 19-20. | |
| [18] | 刘佳, 石凤梅, 马立功, 等. 低温胁迫对水稻生长与产量品质的影响及应对措施[J]. 东北农业科学, 2022, 47(2): 4-10. |
| LIU Jia, SHI Fengmei, MA Ligong, et al. Effects of low temperature stress on growth, yield and quality of rice and countermeasures[J]. Journal of Northeast Agricultural Sciences, 2022, 47(2): 4-10. | |
| [19] |
Hussain S, Khan F, Hussain H A, et al. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars[J]. Frontiers in Plant Science, 2016, 7: 116.
DOI PMID |
| [20] |
张献国, 陈书强, 薛菁芳, 等. 孕穗期低温对寒地水稻叶片保护酶活性的影响[J]. 中国稻米, 2015, 21(4): 77-80.
DOI |
|
ZHANG Xianguo, CHEN Shuqiang, XUE Jingfang, et al. Effects of low temperature on protective enzyme activities of rice leaf during booting stage in cold area[J]. China Rice, 2015, 21(4): 77-80.
DOI |
|
| [21] | 薛爽, 饶丽莎, 左丹丹, 等. 植物低温胁迫响应机理的研究进展[J]. 安徽农业科学, 2016, 44(33): 17-19, 48. |
| XUE Shuang, RAO Lisha, ZUO Dandan, et al. Research progress on the response mechanism of plants to low temperature stress[J]. Journal of Anhui Agricultural Sciences, 2016, 44(33): 17-19, 48. | |
| [22] | 许英, 陈建华, 朱爱国, 等. 低温胁迫下植物响应机理的研究进展[J]. 中国麻业科学, 2015, 37(1): 40-49. |
| XU Ying, CHEN Jianhua, ZHU Aiguo, et al. Research progress on response mechanism of plant under low temperature stress[J]. Plant Fiber Sciences in China, 2015, 37(1): 40-49. | |
| [23] | 刘晓航, 马树庆, 赵晶, 等. 东北粳稻产量对孕穗期不同时段低温的反应[J]. 中国农学通报, 2022, 38(7): 91-98. |
|
LIU Xiaohang, MA Shuqing, ZHAO Jing, et al. Yield response of Japonica rice of NorthEast China to low temperature in different time periods of booting stage[J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98.
DOI |
|
| [24] |
李亚非, 王连敏, 曹桂兰, 等. 不同低温胁迫下粳稻耐冷种质的孕穗期耐冷性比较[J]. 植物遗传资源学报, 2010, 11(6): 691-697.
DOI |
|
LI Yafei, WANG Lianmin, CAO Guilan, et al. Comparison of cold tolerance at the booting stage for cold tolerant Japonica rice germplasm under different cold stress[J]. Journal of Plant Genetic Resources, 2010, 11(6): 691-697.
DOI |
|
| [25] | 李健陵, 霍治国, 吴丽姬, 等. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学, 2014, 28(3): 277-288. |
|
LI Jianling, HUO Zhiguo, WU Liji, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage[J]. Chinese Journal of Rice Science, 2014, 28(3): 277-288.
DOI |
|
| [26] |
杨洛淼, 孙健, 赵宏伟, 等. 不同年份冷水胁迫下水稻抽穗期和产量性状的QTL分析[J]. 中国农业科学, 2016, 49(18): 3489-3503.
DOI |
|
YANG Luomiao, SUN Jian, ZHAO Hongwei, et al. QTL analysis of heading date and yield traits in Japonica rice under cold water stress in different years[J]. Scientia Agricultura Sinica, 2016, 49(18): 3489-3503.
DOI |
|
| [27] | 赵宏伟, 李晓, 贾琰, 等. 水杨酸对孕穗期低温胁迫寒地粳稻颖花形成的影响[J]. 东北农业大学学报, 2019, 50(6): 1-9. |
| ZHAO Hongwei, LI Xiao, JIA Yan, et al. Effect of salicylic acid on formation of spikelet in Japonica rice under low-temperature stress at booting stage[J]. Journal of Northeast Agricultural University, 2019, 50(6): 1-9. | |
| [28] | 张盛楠. 孕穗期冷水胁迫对寒地粳稻抗逆生理及产量形成的影响[D]. 哈尔滨: 东北农业大学, 2020. |
| ZHANG Shengnan. Effects of Cold Water Stress at Booting Stage on Physiology and Yield Formation of Japonica Rice[D]. Harbin:Northeast Agricultural University, 2020. | |
| [29] |
任红茹, 荆培培, 胡宇翔, 等. 孕穗期低温对水稻生长及产量形成的影响[J]. 中国稻米, 2017, 23(4): 56-62.
DOI |
| REN Hongru, JING Peipei, HU Yuxiang, et al. Effects of low temperature at booting stage on growth and yield formation of rice[J]. China Rice, 2017, 23(4): 56-62. |
| [1] | 田立文, 孔杰, 郑子漂, 张娜, 刘军, 汪天礼, 崔建平. 新疆长绒棉新品种关键性状特点解析[J]. 新疆农业科学, 2025, 62(7): 1561-1568. |
| [2] | 吴莉莉, 郭世俭, 李磊, 王小飞, 刘月, 李广阔, 丁瑞丰. 土壤封闭除草剂对棉田一年生杂草的防效及安全性[J]. 新疆农业科学, 2025, 62(7): 1595-1604. |
| [3] | 林敏, 沈煜洋, 邓菲菲, 李广阔, 高海峰. 荒漠绿洲区小麦田雀麦对小麦产量性状的影响[J]. 新疆农业科学, 2025, 62(7): 1605-1611. |
| [4] | 王子轩, 蔡大润, 刘志刚, 李娟, 陈果, 李波, 李晓荣, 杨洋, 唐天宇, 聂腾坤, 胡霞, 陈勋基. 高温环境下喷施不同配比的锌、硼、钙叶面肥对玉米农艺性状与制种产量的影响[J]. 新疆农业科学, 2025, 62(7): 1624-1630. |
| [5] | 丁银灯, 范贵强, 高永红, 黄天荣, 周安定, 吴新元, 方辉. 花前干旱和矮壮素浓度对冬小麦光合特性及产量形成的影响[J]. 新疆农业科学, 2025, 62(6): 1328-1336. |
| [6] | 景彦强, 洪明, 于秋月, 衡通, 肖键, 张新乐. 新疆北疆膜下滴灌春油葵适宜土壤水分的下限分析[J]. 新疆农业科学, 2025, 62(6): 1344-1353. |
| [7] | 任世恒, 王爱凡, 毛李平, 朱麒任, 苏秀娟. 不同繁殖方式对薰衣草农艺性状、精油产量及品质的影响[J]. 新疆农业科学, 2025, 62(6): 1371-1379. |
| [8] | 孔都斯·帕尔哈提, 司艳娥, 吐尔逊·吐尔洪, 艾克拜尔·伊拉洪. 化肥配施复合微生物肥料对土壤养分及酶活性的影响[J]. 新疆农业科学, 2025, 62(6): 1488-1495. |
| [9] | 廖兴洋, 王方永, 傅积海, 陈伟明, 韩焕勇. 不同用量滴灌水与缩节胺协同打顶对新疆机采棉群体结构产量品质的影响[J]. 新疆农业科学, 2025, 62(5): 1051-1063. |
| [10] | 张梦珂, 林丽, 林豪, 惠瑞晗, 杨可攀. 不同灌溉频次对陆地棉生长指标和产量的影响[J]. 新疆农业科学, 2025, 62(5): 1064-1074. |
| [11] | 穆光荣, 李杰, 古丽娜孜·居来提, 娄善伟, 帕尔哈提·买买提, 马腾飞, 张鹏忠, 吴湘林, 张立祯, 巴特尔·巴克. 钾肥配施及用量对膜下滴灌棉花生长发育及产量的影响[J]. 新疆农业科学, 2025, 62(5): 1075-1083. |
| [12] | 陈创洲, 张炎, 哈丽哈什·依巴提, 佘玲艺, 樊林鑫, 张优. 施氮对棉花生长发育、产量及棉田土壤养分的影响[J]. 新疆农业科学, 2025, 62(5): 1092-1101. |
| [13] | 吴斌, 吴海波, 刘翔宇, 赵龙. 苦豆子生物碱对西瓜品质的影响[J]. 新疆农业科学, 2025, 62(5): 1151-1158. |
| [14] | 乔迪, 林涛, 崔建平, 张鹏忠, 张昊, 鲍龙龙, 汤秋香. 基于RZWQM2的氮肥运筹方式对棉花生长及产量的影响[J]. 新疆农业科学, 2025, 62(4): 807-819. |
| [15] | 郝曦煜, 张仲鹃, 郑成栋, 张斯文, 张瑾, 郑春秀, 吴世凯, 王雪. 不同鲜食玉米品种(系)农艺性状与产量的比较分析[J]. 新疆农业科学, 2025, 62(4): 837-849. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||