

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (7): 1624-1630.DOI: 10.6048/j.issn.1001-4330.2025.07.007
王子轩1,2(
), 蔡大润2(
), 刘志刚2, 李娟2, 陈果2, 李波2, 李晓荣2, 杨洋2, 唐天宇1, 聂腾坤2, 胡霞2, 陈勋基2(
)
收稿日期:2024-12-15
出版日期:2025-07-20
发布日期:2025-09-05
通信作者:
陈勋基(1980-),男,研究员,博士,研究方向为作物分子育种,(E-mail)chenxj713@163.com;作者简介:王子轩(2000-),男,本科,研究方向为玉米遗传育种,(E-mail)1145530327@qq.com
基金资助:
WANG Zixuan1,2(
), CAI Darun2(
), LIU Zigang2, LI Juan2, CHEN Guo2, LI Bo2, LI Xiaorong2, YANG Yang2, TANG Tianyu1, NIE Tengkun2, HU Xia2, CHEN Xunji2(
)
Received:2024-12-15
Published:2025-07-20
Online:2025-09-05
Supported by:摘要:
【目的】研究新疆高温环境下喷施锌、硼、钙叶面肥对玉米主要农艺性状与制种产量的影响,为新疆玉米高效、优质和高产制种生产提供参考。【方法】以玉米自交系CXJ75(母本)和CXJ380(父本)为材料,采用硫酸锌、硼酸钠、葡萄糖酸钙作为叶肥,设置12个不同的叶肥配比处理和1个CK处理,采用随机区组设计。测量与分析不同叶肥配比处理下玉米的农艺性状和制种产量。【结果】(1) 不同配比的叶肥均可一定程度延缓开花期,缩短开花吐丝间隔期。(2) 1%浓度的硫酸锌、硼酸钠与葡萄糖酸钙叶肥混合喷施效果最佳。(3) 玉米产量与多项农艺性状均呈线性关系,并与穗行数、穗粗、百粒重、结实率、单穗粒重和单穗籽粒数的相关性较高。【结论】新疆玉米杂交制种遭受花期高温胁迫时,喷施1%浓度的硫酸锌、硼酸钠与葡萄糖酸钙混合叶肥(5 000 L/hm2),可以有效的提高制种产量。
中图分类号:
王子轩, 蔡大润, 刘志刚, 李娟, 陈果, 李波, 李晓荣, 杨洋, 唐天宇, 聂腾坤, 胡霞, 陈勋基. 高温环境下喷施不同配比的锌、硼、钙叶面肥对玉米农艺性状与制种产量的影响[J]. 新疆农业科学, 2025, 62(7): 1624-1630.
WANG Zixuan, CAI Darun, LIU Zigang, LI Juan, CHEN Guo, LI Bo, LI Xiaorong, YANG Yang, TANG Tianyu, NIE Tengkun, HU Xia, CHEN Xunji. Effects of different proportions of zinc, boron and calcium leaf fertilizer on agronomic traits and seed yield of maize under high temperature environment[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1624-1630.
| 处理 Treat- ments | 株高 Plant height (cm) | 父本 开花期 Flowering stage (M/D) | 母本 吐丝期 Silking stage (M/D) | 父本开花 和母本吐 丝间隔 interval (Day) |
|---|---|---|---|---|
| T1 | 187.6±4.6a | 7/6 | 7/9 | 3 |
| T2 | 178.9±8.5a | 7/5 | 7/8 | 3 |
| T3 | 178.2±2.4a | 7/6 | 7/10 | 4 |
| T4 | 184.8±3.0a | 7/3 | 7/8 | 5 |
| T5 | 184.7±14.6a | 7/5 | 7/9 | 4 |
| T6 | 183.2±19.4a | 7/4 | 7/9 | 5 |
| T7 | 180.8±11.1a | 7/4 | 7/8 | 3 |
| T8 | 184.4±15.9a | 7/4 | 7/9 | 5 |
| T9 | 183.5±13.0a | 7/4 | 7/9 | 5 |
| T10 | 187.1±6.9a | 7/2 | 7/8 | 6 |
| T11 | 182.8±11.9a | 7/3 | 7/9 | 6 |
| T12 | 174.8±16.1a | 7/2 | 7/8 | 7 |
| CK | 168.9±7.5a | 7/1 | 7/8 | 7 |
表1 不同叶肥处理下玉米株高的变化
Tab.1 Changes of different leaf fertilizer treatments on maize plant height
| 处理 Treat- ments | 株高 Plant height (cm) | 父本 开花期 Flowering stage (M/D) | 母本 吐丝期 Silking stage (M/D) | 父本开花 和母本吐 丝间隔 interval (Day) |
|---|---|---|---|---|
| T1 | 187.6±4.6a | 7/6 | 7/9 | 3 |
| T2 | 178.9±8.5a | 7/5 | 7/8 | 3 |
| T3 | 178.2±2.4a | 7/6 | 7/10 | 4 |
| T4 | 184.8±3.0a | 7/3 | 7/8 | 5 |
| T5 | 184.7±14.6a | 7/5 | 7/9 | 4 |
| T6 | 183.2±19.4a | 7/4 | 7/9 | 5 |
| T7 | 180.8±11.1a | 7/4 | 7/8 | 3 |
| T8 | 184.4±15.9a | 7/4 | 7/9 | 5 |
| T9 | 183.5±13.0a | 7/4 | 7/9 | 5 |
| T10 | 187.1±6.9a | 7/2 | 7/8 | 6 |
| T11 | 182.8±11.9a | 7/3 | 7/9 | 6 |
| T12 | 174.8±16.1a | 7/2 | 7/8 | 7 |
| CK | 168.9±7.5a | 7/1 | 7/8 | 7 |
| 处理 Treatments | 穗长 Spike length (cm) | 穗粗 Ear diameter (cm) | 秃尖长 Spike tip length (cm) | 穗行数 Ear rows | 行粒数 Kernels per row |
|---|---|---|---|---|---|
| T1 | 13.9±1.35a | 4.07±0.2a | 0.77±0.62a | 15.3±1.0a | 24.2±4.4a |
| T2 | 13.21±1.06ab | 4.03±0.24ab | 1.11±0.78ab | 15.3±1.7a | 21.2±4.6ab |
| T3 | 12.36±1.33ab | 3.70±0.24bc | 1.27±0.50ab | 13.1±1.8ab | 17.2±2.6bc |
| T4 | 11.6±1.88ab | 3.70±0.21bc | 1.59±0.54ab | 13.8±1.6a | 15.4±2.6cd |
| T5 | 11.57±1.34ab | 3.8±0.17abc | 1.10±0.65ab | 14.0±1.4a | 17.9±2.7bc |
| T6 | 11.69±2.06ab | 3.61±0.21c | 1.11±0.58ab | 13.8±1.6a | 15.6±3.0cd |
| T7 | 12.04±0.96ab | 3.8±0.16abc | 1.03±0.28ab | 14.4±1.3a | 18.9±3.3bc |
| T8 | 13.32±1.29ab | 3.76±0.21abc | 1.62±0.33ab | 14.4±1.3a | 18.0±2.0bc |
| T9 | 11.71±2.16ab | 3.73±0.30abc | 1.12±0.53ab | 12.9±2.0ab | 16.9±2.0bc |
| T10 | 12.94±1.31ab | 3.73±0.21abc | 1.63±0.94ab | 13.1±1.1ab | 16.3±3.2cd |
| T11 | 11.62±1.62ab | 3.80±0.29abc | 0.83±0.47a | 14.2±1.9a | 15.8±3.0cd |
| T12 | 11.19±1.58b | 3.68±0.22bc | 1.49±0.95ab | 13.3±1.0a | 14.8±2.4cd |
| CK | 11.16±2.79b | 3.50±0.24c | 2.08±1.49b | 10.7±2.0b | 11.9±1.4d |
表2 不同叶肥处理下玉米果穗性状的变化
Tab.2 Changes of different leaf fertilizer treatments on ear characteristics of maize
| 处理 Treatments | 穗长 Spike length (cm) | 穗粗 Ear diameter (cm) | 秃尖长 Spike tip length (cm) | 穗行数 Ear rows | 行粒数 Kernels per row |
|---|---|---|---|---|---|
| T1 | 13.9±1.35a | 4.07±0.2a | 0.77±0.62a | 15.3±1.0a | 24.2±4.4a |
| T2 | 13.21±1.06ab | 4.03±0.24ab | 1.11±0.78ab | 15.3±1.7a | 21.2±4.6ab |
| T3 | 12.36±1.33ab | 3.70±0.24bc | 1.27±0.50ab | 13.1±1.8ab | 17.2±2.6bc |
| T4 | 11.6±1.88ab | 3.70±0.21bc | 1.59±0.54ab | 13.8±1.6a | 15.4±2.6cd |
| T5 | 11.57±1.34ab | 3.8±0.17abc | 1.10±0.65ab | 14.0±1.4a | 17.9±2.7bc |
| T6 | 11.69±2.06ab | 3.61±0.21c | 1.11±0.58ab | 13.8±1.6a | 15.6±3.0cd |
| T7 | 12.04±0.96ab | 3.8±0.16abc | 1.03±0.28ab | 14.4±1.3a | 18.9±3.3bc |
| T8 | 13.32±1.29ab | 3.76±0.21abc | 1.62±0.33ab | 14.4±1.3a | 18.0±2.0bc |
| T9 | 11.71±2.16ab | 3.73±0.30abc | 1.12±0.53ab | 12.9±2.0ab | 16.9±2.0bc |
| T10 | 12.94±1.31ab | 3.73±0.21abc | 1.63±0.94ab | 13.1±1.1ab | 16.3±3.2cd |
| T11 | 11.62±1.62ab | 3.80±0.29abc | 0.83±0.47a | 14.2±1.9a | 15.8±3.0cd |
| T12 | 11.19±1.58b | 3.68±0.22bc | 1.49±0.95ab | 13.3±1.0a | 14.8±2.4cd |
| CK | 11.16±2.79b | 3.50±0.24c | 2.08±1.49b | 10.7±2.0b | 11.9±1.4d |
| 处理 Treatments | 单穗籽粒数 Grains per ear | 单穗粒重 Grains weight (g) | 结实率 Kernel setting rate (%) | 百粒重 100-grain weight (g) | 产量 Yield (kg/hm2) |
|---|---|---|---|---|---|
| T1 | 303.1±50.0a | 68.8±4.9a | 78.4±9.7a | 25.1±5.0 | 8 008.4±402.6a |
| T2 | 262.2±75.0ab | 63.9±6.5ab | 72.6±3.3ab | 27.9±9.3 | 7 771.5±365.6a |
| T3 | 219.3±76.8b | 57.7±5.0abc | 65.6±2.1bcd | 29.6±10.7 | 6 917.9±527.1abc |
| T4 | 199.4±68.1bc | 52.4±8.2abc | 60.9±1.7def | 29.0±9.2 | 6 515.7±151.8abc |
| T5 | 218.8±59.9b | 57.6±16.1abc | 69.9±1.9bc | 28.2±7.4 | 6 755.4±645.9abc |
| T6 | 210.1±74.9bc | 48.1±8.3abc | 62.8±2.0cde | 26.1±10.1 | 6 479.0±906.9abc |
| T7 | 244.3±61.6ab | 59.1±12.9abc | 65.2±2.2bcd | 25.8±7.0 | 7 315.4±652.7ab |
| T8 | 223.4±48.4b | 45.8±8.0bc | 62.3±2.0cdef | 21.3±4.1 | 6 620.4±428.6abc |
| T9 | 204.2±85.3bc | 50.2±12.6abc | 63.1±3.5cde | 30.5±17.7 | 6 287.7±341.7abc |
| T10 | 185.8±39.3bc | 46.0±20.0bc | 54.9±11.1f | 26.1±7.0 | 6 253.1±474.2abc |
| T11 | 194.5±64.2bc | 55.3±2.5abc | 61.8±2.7def | 32.0±12.3 | 5 790.5±196.7bc |
| T12 | 192.7±61.5bc | 51.2±15.1abc | 57.2±2.3ef | 29.8±12.1 | 5 574.6±293.1bc |
| CK | 152.2±31.1c | 42.1±7.0c | 46.9±2.1g | 32.7±7.1 | 5 376.5±492.2c |
表3 不同叶肥处理下玉米产量性状的变化
Tab.3 Changes of different leaf fertilizer treatments on yield traits of maize
| 处理 Treatments | 单穗籽粒数 Grains per ear | 单穗粒重 Grains weight (g) | 结实率 Kernel setting rate (%) | 百粒重 100-grain weight (g) | 产量 Yield (kg/hm2) |
|---|---|---|---|---|---|
| T1 | 303.1±50.0a | 68.8±4.9a | 78.4±9.7a | 25.1±5.0 | 8 008.4±402.6a |
| T2 | 262.2±75.0ab | 63.9±6.5ab | 72.6±3.3ab | 27.9±9.3 | 7 771.5±365.6a |
| T3 | 219.3±76.8b | 57.7±5.0abc | 65.6±2.1bcd | 29.6±10.7 | 6 917.9±527.1abc |
| T4 | 199.4±68.1bc | 52.4±8.2abc | 60.9±1.7def | 29.0±9.2 | 6 515.7±151.8abc |
| T5 | 218.8±59.9b | 57.6±16.1abc | 69.9±1.9bc | 28.2±7.4 | 6 755.4±645.9abc |
| T6 | 210.1±74.9bc | 48.1±8.3abc | 62.8±2.0cde | 26.1±10.1 | 6 479.0±906.9abc |
| T7 | 244.3±61.6ab | 59.1±12.9abc | 65.2±2.2bcd | 25.8±7.0 | 7 315.4±652.7ab |
| T8 | 223.4±48.4b | 45.8±8.0bc | 62.3±2.0cdef | 21.3±4.1 | 6 620.4±428.6abc |
| T9 | 204.2±85.3bc | 50.2±12.6abc | 63.1±3.5cde | 30.5±17.7 | 6 287.7±341.7abc |
| T10 | 185.8±39.3bc | 46.0±20.0bc | 54.9±11.1f | 26.1±7.0 | 6 253.1±474.2abc |
| T11 | 194.5±64.2bc | 55.3±2.5abc | 61.8±2.7def | 32.0±12.3 | 5 790.5±196.7bc |
| T12 | 192.7±61.5bc | 51.2±15.1abc | 57.2±2.3ef | 29.8±12.1 | 5 574.6±293.1bc |
| CK | 152.2±31.1c | 42.1±7.0c | 46.9±2.1g | 32.7±7.1 | 5 376.5±492.2c |
| 穗行数 Ear rows | 行粒数 Kernels per row | 穗长 Spike length | 秃尖长 Spike tip length | 穗粗 Ear diameter | 百粒重 100-grain weight | 结实率 Kernel setting rate | 单穗粒重 Grains weight | 单穗籽粒数 Grains per ear | 产量 Yield | |
|---|---|---|---|---|---|---|---|---|---|---|
| 穗行数 Ear rows | 1 | |||||||||
| 行粒 Kernels per row | 0.554** | 1 | ||||||||
| 穗长 Spike length | 0.372* | 0.171 | 1 | |||||||
| 秃尖长 Spike tip length | -0.444** | -0.012 | -0.537** | 1 | ||||||
| 穗粗 Ear diameter | 0.518** | 0.580** | 0.367* | -0.411** | 1 | |||||
| 百粒重 100-grain weight | -0.712** | -0.424** | 0.067 | 0.103 | -0.115 | 1 | ||||
| 结实率 Kernel setting rate | 0.821** | 0.419** | 0.436** | -0.630** | 0.597** | -0.420** | 1 | |||
| 单穗粒重 Grains weight | 0.740** | 0.713** | 0.589** | -0.558** | 0.768** | -0.339* | 0.778** | 1 | ||
| 单穗籽粒数 Grains per ear | 0.558** | 0.530** | 0.261 | -0.477** | 0.788** | -0.189 | 0.636** | 0.703** | 1 | |
| 产量 Yield | 0.502** | 0.514** | 0.363* | -0.304 | 0.583** | -0.230 | 0.454** | 0.561** | 0.592** | 1 |
表4 玉米各项农艺性状与产量的相关性
Tab.4 Correlation analysis between agronomic characters and yield of maize
| 穗行数 Ear rows | 行粒数 Kernels per row | 穗长 Spike length | 秃尖长 Spike tip length | 穗粗 Ear diameter | 百粒重 100-grain weight | 结实率 Kernel setting rate | 单穗粒重 Grains weight | 单穗籽粒数 Grains per ear | 产量 Yield | |
|---|---|---|---|---|---|---|---|---|---|---|
| 穗行数 Ear rows | 1 | |||||||||
| 行粒 Kernels per row | 0.554** | 1 | ||||||||
| 穗长 Spike length | 0.372* | 0.171 | 1 | |||||||
| 秃尖长 Spike tip length | -0.444** | -0.012 | -0.537** | 1 | ||||||
| 穗粗 Ear diameter | 0.518** | 0.580** | 0.367* | -0.411** | 1 | |||||
| 百粒重 100-grain weight | -0.712** | -0.424** | 0.067 | 0.103 | -0.115 | 1 | ||||
| 结实率 Kernel setting rate | 0.821** | 0.419** | 0.436** | -0.630** | 0.597** | -0.420** | 1 | |||
| 单穗粒重 Grains weight | 0.740** | 0.713** | 0.589** | -0.558** | 0.768** | -0.339* | 0.778** | 1 | ||
| 单穗籽粒数 Grains per ear | 0.558** | 0.530** | 0.261 | -0.477** | 0.788** | -0.189 | 0.636** | 0.703** | 1 | |
| 产量 Yield | 0.502** | 0.514** | 0.363* | -0.304 | 0.583** | -0.230 | 0.454** | 0.561** | 0.592** | 1 |
| [1] | 杨杰, 韩登旭, 阿布来提·阿布拉, 等. 新疆自然高温环境下玉米自交系开花期耐热性鉴定与评价[J]. 西北植物学报, 2021, 41(8): 1380-1390. |
| YANG Jie, HAN Dengxu, Abulaiti Abula, et al. Identification and evaluation of heat tolerance of maize inbred lines during flowering under natural high temperature in Xinjiang[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1380-1390. | |
| [2] |
颜鹏程, 李忆平, 曾鼎文, 等. 2024年4-6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 2024, 42(4): 507-518.
DOI |
| YAN Pengcheng, LI Yiping, ZENG Dingwen, et al. Characteristics of regional high temperature and drought in China from April to June 2024 and their influence factors[J]. Journal of Arid Meteorology, 2024, 42(4): 507-518. | |
| [3] | 刘雨佳, 张艺琼, 方一如, 等. 高温干旱复合胁迫对夏玉米生长发育及产量形成的影响[J]. 气象与减灾研究, 2024, 47(1): 42-49. |
| LIU Yujia, ZHANG Yiqiong, FANG Yiru, et al. Effects of combined high temperature and drought stress on the growth and yield formation of summer maize[J]. Meteorology and Disaster Reduction Research, 2024, 47(1): 42-49. | |
| [4] | Humtsoe B M, Dawson J, Rajana P. Effect of nitrogen, boron and zinc as basal and foliar application on growth and yield of maize (Zea mays L.)[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(6): 01-04. |
| [5] | Shahab Q, Afzal M, Hussain B, et al. Effect of different methods of zinc application on maize (Zea mays L.)[J]. International Journal of Agronomy and Agricultural Research, 2016, 9(3): 66-75. |
| [6] | Kanshouwa C M, Mehera B. Effect of boron and panchagavya on growth and yield of baby corn (Zea mays L.)[J]. International Journal of Plant & Soil Science, 2023, 35(13): 102-108. |
| [7] | Nirmala Nautiyal N N, Ruby Srivastava R S. Abscisic acid modifies boron stress in cultured maize kernels[J]. Indian Journal of Plant Physiology, 2005, 10(2): 103-107. |
| [8] | Kumar T B, Mehera B, Kumar P, et al. Effect of boron on growth and yield of sweet corn (Zea mays L. Saccharata) varieties[J]. International Journal of Environment and Climate Change, 2023, 13(6): 1-6. |
| [9] | 尹雪巍, 张翼飞, 杨克军, 等. 不同施钙水平对松嫩平原西部玉米干物质积累、产量及品质的影响[J]. 玉米科学, 2020, 28(3): 155-162. |
| YIN Xuewei, ZHANG Yifei, YANG Kejun, et al. Effects of different calcium fertilizer application levels on dry matter accumulation, grain yield and quality of maize in the western Songnen Plain[J]. Journal of Maize Sciences, 2020, 28(3): 155-162. | |
| [10] | 徐荣琼, 张翼飞, 杜嘉瑞, 等. 叶面喷施钙肥对春玉米茎秆抗倒伏特性与产量形成的影响[J]. 作物杂志, 2024(3): 223-230. |
| XU Rongqiong, ZHANG Yifei, DU Jiarui, et al. Effects of foliar spraying calcium fertilizer on lodging resistance and yield formation of spring maize[J]. Crops, 2024(3): 223-230. | |
| [11] | Xin J, Ren N, Hu X L, et al. Variations in grain yield and nutrient status of different maize cultivars by application of zinc sulfate[J]. PLoS One, 2024, 19(3): e0295391. |
| [12] | Calderón-Páez S E, Cueto-Ni?o Y A, Sánchez-Reinoso A D, et al. Foliar boron compounds applications mitigate heat stress caused by high daytime temperatures in rice (Oryza sativa L.) Boron mitigates heat stress in rice[J]. Journal of Plant Nutrition, 2021, 44(17): 2514-2527. |
| [13] | Naeem M, Naeem M S, Ahmad R, et al. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity[J]. Archives of Agronomy and Soil Science, 2018, 64(1): 116-131. |
| [14] | Liu D Y, Zhang W, Liu Y M, et al. Soil application of zinc fertilizer increases maize yield by enhancing the kernel number and kernel weight of inferior grains[J]. Frontiers in Plant Science, 2020, 11: 188. |
| [15] | Haque M A. Boron Impact on Maize Growth and Yield: A Review[J]. International Journal of Plant & Soil Science, 2024, 36(6): 353-363. |
| [16] | Wang Y Y, Tao H B, Tian B J, et al. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering[J]. Environmental and Experimental Botany, 2019, 158: 80-88. |
| [17] | Ngoune Tandzi L, Mutengwa C S. Estimation of maize (Zea mays L.) yield per harvest area: appropriate methods[J]. Agronomy, 2020, 10(1): 29. |
| [18] | 盛得昌, 王媛媛, 黄收兵, 等. 高温对玉米植株形态与功能、产量构成及子粒养分的影响[J]. 玉米科学, 2020, 28(5): 86-92. |
| SHENG Dechang, WANG Yuanyuan, HUANG Shoubing, et al. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants[J]. Journal of Maize Sciences, 2020, 28(5): 86-92. | |
| [19] | Potarzycki J, Grzebisz W. Effect of zinc foliar application on grain yield of maize and its yielding compone[J]. Plant, Soil and Environment, 2009, 55(12): 519-527. |
| [20] | Tahir M, Ali A, Khalid F, et al. Effect of foliar applied boron application on growth, yield and quality of maize (Zea mays L.)[J]. Biological Sciences - PJSIR, 2012, 55(3): 117-121. |
| [21] | Abbas M, Abdel-Lattif H, Shahba M. Ameliorative effects of calcium sprays on yield and grain nutritional composition of maize (Zea mays L.) cultivars under drought stress[J]. Agriculture, 2021, 11(4): 285. |
| [22] | 蒋曦龙, 王澜, 乔月彤, 等. 叶面喷锌对两种类型玉米产量、籽粒锌等矿质营养元素含量的影响[J]. 山东农业科学, 2021, 53(3): 72-78. |
| JIANG Xilong, WANG Lan, QIAO Yuetong, et al. Effects of foliar spraying zinc on yield and contents of zinc and other mineral elements of two maize cultivars[J]. Shandong Agricultural Sciences, 2021, 53(3): 72-78. | |
| [23] | 隋文成, 纪伟波. 硼肥不同施用量对玉米产量的影响[J]. 现代化农业, 2019, (5): 18-19. |
| SUI Wencheng, JI Weibo. Effects of different application rates of boron fertilizer on maize yield[J]. Modernizing Agriculture, 2019, (5): 18-19. | |
| [24] |
张勇强, 宋航, 薛志伟, 等. 施用锌肥和硼肥对玉米穗粒性状和品质的影响[J]. 核农学报, 2017, 31(2): 371-378.
DOI |
|
ZHANG Yongqiang, SONG Hang, XUE Zhiwei, et al. Effects of zinc and boron rate on ear-kernel traits and grain quality in maize[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 371-378.
DOI |
|
| [25] | Singh H, Singh V, Singh S, et al. Response of maize (Zea mays) to foliar application of Zinc and Boron[J]. Indian Journal of Agronomy, 2020, 65(4): 489-492. |
| [1] | 田立文, 孔杰, 郑子漂, 张娜, 刘军, 汪天礼, 崔建平. 新疆长绒棉新品种关键性状特点解析[J]. 新疆农业科学, 2025, 62(7): 1561-1568. |
| [2] | 王昊博, 夏建强, 张鹏鹏, 金永伟, 张跃强, 耿洪伟. 春小麦种质资源耐热性筛选及鉴定[J]. 新疆农业科学, 2025, 62(7): 1586-1594. |
| [3] | 吴莉莉, 郭世俭, 李磊, 王小飞, 刘月, 李广阔, 丁瑞丰. 土壤封闭除草剂对棉田一年生杂草的防效及安全性[J]. 新疆农业科学, 2025, 62(7): 1595-1604. |
| [4] | 林敏, 沈煜洋, 邓菲菲, 李广阔, 高海峰. 荒漠绿洲区小麦田雀麦对小麦产量性状的影响[J]. 新疆农业科学, 2025, 62(7): 1605-1611. |
| [5] | 杜孝敬, 侯天钰, 张燕红, 李冬, 袁杰, 李建睿, 申宇昕, 李晓荣, 王奉斌. 水稻孕穗期低温对其剑叶抗氧化酶活性及产量的影响[J]. 新疆农业科学, 2025, 62(7): 1631-1638. |
| [6] | 丁银灯, 范贵强, 高永红, 黄天荣, 周安定, 吴新元, 方辉. 花前干旱和矮壮素浓度对冬小麦光合特性及产量形成的影响[J]. 新疆农业科学, 2025, 62(6): 1328-1336. |
| [7] | 景彦强, 洪明, 于秋月, 衡通, 肖键, 张新乐. 新疆北疆膜下滴灌春油葵适宜土壤水分的下限分析[J]. 新疆农业科学, 2025, 62(6): 1344-1353. |
| [8] | 任世恒, 王爱凡, 毛李平, 朱麒任, 苏秀娟. 不同繁殖方式对薰衣草农艺性状、精油产量及品质的影响[J]. 新疆农业科学, 2025, 62(6): 1371-1379. |
| [9] | 廖兴洋, 王方永, 傅积海, 陈伟明, 韩焕勇. 不同用量滴灌水与缩节胺协同打顶对新疆机采棉群体结构产量品质的影响[J]. 新疆农业科学, 2025, 62(5): 1051-1063. |
| [10] | 张梦珂, 林丽, 林豪, 惠瑞晗, 杨可攀. 不同灌溉频次对陆地棉生长指标和产量的影响[J]. 新疆农业科学, 2025, 62(5): 1064-1074. |
| [11] | 穆光荣, 李杰, 古丽娜孜·居来提, 娄善伟, 帕尔哈提·买买提, 马腾飞, 张鹏忠, 吴湘林, 张立祯, 巴特尔·巴克. 钾肥配施及用量对膜下滴灌棉花生长发育及产量的影响[J]. 新疆农业科学, 2025, 62(5): 1075-1083. |
| [12] | 陈创洲, 张炎, 哈丽哈什·依巴提, 佘玲艺, 樊林鑫, 张优. 施氮对棉花生长发育、产量及棉田土壤养分的影响[J]. 新疆农业科学, 2025, 62(5): 1092-1101. |
| [13] | 吴斌, 吴海波, 刘翔宇, 赵龙. 苦豆子生物碱对西瓜品质的影响[J]. 新疆农业科学, 2025, 62(5): 1151-1158. |
| [14] | 乔迪, 林涛, 崔建平, 张鹏忠, 张昊, 鲍龙龙, 汤秋香. 基于RZWQM2的氮肥运筹方式对棉花生长及产量的影响[J]. 新疆农业科学, 2025, 62(4): 807-819. |
| [15] | 郝曦煜, 张仲鹃, 郑成栋, 张斯文, 张瑾, 郑春秀, 吴世凯, 王雪. 不同鲜食玉米品种(系)农艺性状与产量的比较分析[J]. 新疆农业科学, 2025, 62(4): 837-849. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||