新疆农业科学 ›› 2024, Vol. 61 ›› Issue (11): 2787-2796.DOI: 10.6048/j.issn.1001-4330.2024.11.020
侯正清1(), 颜安2(
), 谢开云2, 袁以琳1, 夏雯秋3, 肖淑婷1, 张振飞1, 孙哲1
收稿日期:
2024-04-15
出版日期:
2024-11-20
发布日期:
2025-01-08
通信作者:
颜安(1983-),男,四川资阳人,教授,博士,硕士生/博士生导师,研究方向为数字农业与生态环境遥感监测,(E-mail)yanan@xjau.edu.cn作者简介:
侯正清(1999-),女,新疆昭苏人,硕士研究生,研究方向为农业信息化,(E-mail)287511284@qq.com
基金资助:
HOU Zhengqing1(), YAN An2(
), XIE Kaiyun2, YUAN Yilin1, XIA Wenqiu3, XIAO Shuting1, ZHANG Zhenfei1, SUN Zhe1
Received:
2024-04-15
Published:
2024-11-20
Online:
2025-01-08
Supported by:
摘要:
【目的】研究多源数据估算天山假狼毒地上生物量(AGB)的能力。【方法】采用搭载可见光和多光谱传感器的无人机平台采集盛花期与结实期信息,获取可见光植被指数、多光谱植被指数及两者相融合的植被指数,分别以多元线性回归(MLR)、逐步线性回归(SMLR)、随机森林回归(RF)建立单一植被指数与融合植被指数的AGB估测模型,采用决定系数(R2)、调整后决定系数(
中图分类号:
侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于植被指数融合天山假狼毒地上生物量的估测[J]. 新疆农业科学, 2024, 61(11): 2787-2796.
HOU Zhengqing, YAN An, XIE Kaiyun, YUAN Yilin, XIA Wenqiu, XIAO Shuting, ZHANG Zhenfei, SUN Zhe. Estimation of aboveground biomass of Diarthron tianschanicum based on vegetation index fusion[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2787-2796.
植被指数 Vegetation Indexes | 计算公式 Formula | 参考文献 References |
---|---|---|
红绿比值指数(RGRI) | r/g | [ |
红蓝比值指数RBRI | r/b | [ |
红绿植被指数(GRVI) | (g-r)/(g+r) | [ |
绿叶指数(GLA) | (2g-r-b)/(2*g+r+b) | [ |
改进型绿红植被指数(MGRVI) | (g2-r2)/(g2+r2) | [ |
地平面影像指数(GLI) | (2g-r-b)/(2g+r+b) | [ |
过绿指数减过红指数(EXGR) | 2*g-r-b-(1.4*r-g) | [ |
彩色植被指数(CIVE) | 0.441r-0.881g+0.385 6b+18.787 45 | [ |
过红指数(ExR) | 1.4r-g | [ |
大气阻抗植被指数VARI | (g-r)/(g+r-b) | [ |
重归一化植被指数(GRDVI) | (m5-m2)/(m5+m2)1/2 | [ |
改进的非线性植被指数(MNLI) | (1.5 | [ |
非线性植被指数(NLI) | ( | [ |
归一化植被指数(NDVI) | (m5-m1)/(m5+m1) | [ |
绿色归一化植被指数(GNDVI) | (m5-m2)/(m5+m2) | [ |
非线性植被指数1(2NLI) | ( | [ |
改进的非线性植被指数(GMNLI) | 1.5( | [ |
绿色叶绿素指数(GCI) | (m5/m2)-1 | [ |
红边叶绿素指数(RECI) | (m5/m4)-1 | [ |
改进简单比值植被指数(MSR) | (m5/m1-1)/[(m5/m1)1/2+1] | [ |
表1 可见光与多光谱植被指数及计算公式
Tab.1 Visible light and multispectral vegetation index and calculation formula
植被指数 Vegetation Indexes | 计算公式 Formula | 参考文献 References |
---|---|---|
红绿比值指数(RGRI) | r/g | [ |
红蓝比值指数RBRI | r/b | [ |
红绿植被指数(GRVI) | (g-r)/(g+r) | [ |
绿叶指数(GLA) | (2g-r-b)/(2*g+r+b) | [ |
改进型绿红植被指数(MGRVI) | (g2-r2)/(g2+r2) | [ |
地平面影像指数(GLI) | (2g-r-b)/(2g+r+b) | [ |
过绿指数减过红指数(EXGR) | 2*g-r-b-(1.4*r-g) | [ |
彩色植被指数(CIVE) | 0.441r-0.881g+0.385 6b+18.787 45 | [ |
过红指数(ExR) | 1.4r-g | [ |
大气阻抗植被指数VARI | (g-r)/(g+r-b) | [ |
重归一化植被指数(GRDVI) | (m5-m2)/(m5+m2)1/2 | [ |
改进的非线性植被指数(MNLI) | (1.5 | [ |
非线性植被指数(NLI) | ( | [ |
归一化植被指数(NDVI) | (m5-m1)/(m5+m1) | [ |
绿色归一化植被指数(GNDVI) | (m5-m2)/(m5+m2) | [ |
非线性植被指数1(2NLI) | ( | [ |
改进的非线性植被指数(GMNLI) | 1.5( | [ |
绿色叶绿素指数(GCI) | (m5/m2)-1 | [ |
红边叶绿素指数(RECI) | (m5/m4)-1 | [ |
改进简单比值植被指数(MSR) | (m5/m1-1)/[(m5/m1)1/2+1] | [ |
植被指数 Vegetation indexes | 盛花期 Blooming stage | 结实期 Fruiting stage |
---|---|---|
RGRI | 0.633** | -0.360** |
VARI | -0.599** | 0.345** |
EXR | 0.482** | -0.360* |
GRVI | 0.381** | 0.362** |
GLA | 0.374** | 0.333** |
MGRVI | -0.360* | 0.361** |
GLI | 0.318* | 0.371** |
EXGR | 0.384** | 0.368** |
CIVE | 0.313* | 0.371* |
RBRI | 0.321* | -0.086 |
表2 可见光植被指数与天山假狼毒AGB相关性
Tab.2 Correlation between visible light vegetation index and Diarthron tianschanicum AGB
植被指数 Vegetation indexes | 盛花期 Blooming stage | 结实期 Fruiting stage |
---|---|---|
RGRI | 0.633** | -0.360** |
VARI | -0.599** | 0.345** |
EXR | 0.482** | -0.360* |
GRVI | 0.381** | 0.362** |
GLA | 0.374** | 0.333** |
MGRVI | -0.360* | 0.361** |
GLI | 0.318* | 0.371** |
EXGR | 0.384** | 0.368** |
CIVE | 0.313* | 0.371* |
RBRI | 0.321* | -0.086 |
植被指数 Vegetation indexes | 盛花期 Blooming stage | 结实期 Fruiting stage |
---|---|---|
GRDVI | 0.660** | 0.483** |
MNLI | 0.550** | -0.352** |
NLI | 0.471** | -0.342** |
NDVI | 0.458** | 0.438** |
GNDVI | 0.457** | 0.463** |
2NLI | 0.453** | -0.431** |
GMNLI | 0.446** | -0.434** |
GCI | -0.439** | 0.560** |
MSR | -0.424** | 0.405** |
RECI | -0.407** | 0.473** |
表3 多光谱植被指数与天山假狼毒AGB相关性
Tab.3 Correlation between multispectral vegetationindex and Diarthron tianschanicum AGB
植被指数 Vegetation indexes | 盛花期 Blooming stage | 结实期 Fruiting stage |
---|---|---|
GRDVI | 0.660** | 0.483** |
MNLI | 0.550** | -0.352** |
NLI | 0.471** | -0.342** |
NDVI | 0.458** | 0.438** |
GNDVI | 0.457** | 0.463** |
2NLI | 0.453** | -0.431** |
GMNLI | 0.446** | -0.434** |
GCI | -0.439** | 0.560** |
MSR | -0.424** | 0.405** |
RECI | -0.407** | 0.473** |
植被指数 Vegetation index | 盛花期 Blooming stage | 结实期 Fruiting stage |
---|---|---|
RGRI×GRDVI | 0.768** | 0.415** |
RGRI×MNLI | 0.538** | -0.513** |
RGRI×NLI | 0.534** | -0.513** |
VARI×GRDVI | 0.517** | 0.582** |
VARI×MNLI | 0.535** | 0.370** |
VARI×NLI | 0.535** | 0.348** |
EXR×GRDVI | 0.520** | -0.454** |
EXR×MNLI | 0.537** | -0.452** |
EXR×NLI | 0.533** | -0.452** |
表4 融合植被指数与天山假狼毒AGB相关性
Tab.4 Correlation between integrated vegetation index and Diarthron tianschanicum AGB
植被指数 Vegetation index | 盛花期 Blooming stage | 结实期 Fruiting stage |
---|---|---|
RGRI×GRDVI | 0.768** | 0.415** |
RGRI×MNLI | 0.538** | -0.513** |
RGRI×NLI | 0.534** | -0.513** |
VARI×GRDVI | 0.517** | 0.582** |
VARI×MNLI | 0.535** | 0.370** |
VARI×NLI | 0.535** | 0.348** |
EXR×GRDVI | 0.520** | -0.454** |
EXR×MNLI | 0.537** | -0.452** |
EXR×NLI | 0.533** | -0.452** |
生育期 Growth stage | 方法 Method | 自变量 Independent variable | R2 | RMSE | |
---|---|---|---|---|---|
盛花期 Blooming stage | SMLR | VARI、EXR、MGRVI | 0.697 | 0.678 | 10.591 |
MLR | RBRI、VARI、EXR、GLI、RGRI、MGRVI、 GRVI、GLA、EXGR、CIVE | 0.711 | 0.645 | 10.587 | |
RF | 0.720 | 0.685 | 8.263 | ||
结实期 Fruiting stage | SMLR | GLI | 0.278 | 0.138 | 13.123 |
MLR | RBRI、VARI、EXR、GLI、RGRI、MGRVI、 GRVI、GLA、EXGR、CIVE | 0.344 | 0.3 | 12.852 | |
RF | 0.483 | 0.465 | 9.776 |
表5 基于可见光植被指数估测天山假狼毒AGB模型拟合精度
Tab.5 Estimating the fitting accuracy of Diarthron tianschanicum AGB model based on visible light vegetation index
生育期 Growth stage | 方法 Method | 自变量 Independent variable | R2 | RMSE | |
---|---|---|---|---|---|
盛花期 Blooming stage | SMLR | VARI、EXR、MGRVI | 0.697 | 0.678 | 10.591 |
MLR | RBRI、VARI、EXR、GLI、RGRI、MGRVI、 GRVI、GLA、EXGR、CIVE | 0.711 | 0.645 | 10.587 | |
RF | 0.720 | 0.685 | 8.263 | ||
结实期 Fruiting stage | SMLR | GLI | 0.278 | 0.138 | 13.123 |
MLR | RBRI、VARI、EXR、GLI、RGRI、MGRVI、 GRVI、GLA、EXGR、CIVE | 0.344 | 0.3 | 12.852 | |
RF | 0.483 | 0.465 | 9.776 |
生育期 Growth stage | 方法 Method | 自变量 Independent variable | R2 | RMSE | |
---|---|---|---|---|---|
盛花期 Blooming stage | SMLR | MNLI、GRDVI、NDVI | 0.763 | 0.747 | 8.988 |
MLR | GMNLI、GRDVI、NDVI、RECI、MNLI、MSR、 GCI、NLI、GNDVI、2NLI | 0.804 | 0.753 | 8.876 | |
RF | 0.794 | 0.779 | 7.318 | ||
结实期 Fruiting stage | SMLR | MSR | 0.349 | 0.355 | 10.877 |
MLR | GMNLI、GRDVI、NDVI、RECI、MNLI、MSR、 GCI、NLI、GNDVI、2NLI | 0.620 | 0.613 | 8.301 | |
RF | 0.681 | 0.562 | 9.693 |
表6 基于多光谱植被指数估测天山假狼毒AGB模型拟合精度
Tab.6 Estimating the fitting accuracy of Diarthron tianschanicum AGB model based on multispectral vegetation index
生育期 Growth stage | 方法 Method | 自变量 Independent variable | R2 | RMSE | |
---|---|---|---|---|---|
盛花期 Blooming stage | SMLR | MNLI、GRDVI、NDVI | 0.763 | 0.747 | 8.988 |
MLR | GMNLI、GRDVI、NDVI、RECI、MNLI、MSR、 GCI、NLI、GNDVI、2NLI | 0.804 | 0.753 | 8.876 | |
RF | 0.794 | 0.779 | 7.318 | ||
结实期 Fruiting stage | SMLR | MSR | 0.349 | 0.355 | 10.877 |
MLR | GMNLI、GRDVI、NDVI、RECI、MNLI、MSR、 GCI、NLI、GNDVI、2NLI | 0.620 | 0.613 | 8.301 | |
RF | 0.681 | 0.562 | 9.693 |
生育期 Growth stage | 方法 Method | 自变量 Independent variable | R2 | RMSE | |
---|---|---|---|---|---|
盛花期 Blooming stage | SMLR | RGRI×GRDVI、VARI×GRDVI | 0.837 | 0.831 | 7.357 |
MLR | VARI×GRDVI、VARI×MNLI、RGRI×MNLI、 RGRI×NLI、EXR×GRDVI、EXR×MNLI、EXR×NLI、 VARI×NLI、RGRI×GRDVI | 0.844 | 0.809 | 7.821 | |
RF | 0.831 | 0.820 | 8.054 | ||
结实期 Fruiting stage | SMLR | VARI×GRDVI、VARI×NLI | 0.603 | 0.586 | 9.057 |
0.627 | 0.573 | 9.194 | |||
MLR | VARI×GRDVI、VARI×MNLI、RGRI×MNLI、 RGRI×NLI、EXR×GRDVI、EXR×MNLI、EXR×NLI、 VARI×NLI、RGRI×GRDVI | ||||
0.719 | 0.627 | 7.249 | |||
RF |
表7 基于融合植被指数估测天山假狼毒AGB模型拟合精度
Tab.7 Estimating the fitting accuracy of Diarthron tianschanicum AGB model based on fusion vegetation index
生育期 Growth stage | 方法 Method | 自变量 Independent variable | R2 | RMSE | |
---|---|---|---|---|---|
盛花期 Blooming stage | SMLR | RGRI×GRDVI、VARI×GRDVI | 0.837 | 0.831 | 7.357 |
MLR | VARI×GRDVI、VARI×MNLI、RGRI×MNLI、 RGRI×NLI、EXR×GRDVI、EXR×MNLI、EXR×NLI、 VARI×NLI、RGRI×GRDVI | 0.844 | 0.809 | 7.821 | |
RF | 0.831 | 0.820 | 8.054 | ||
结实期 Fruiting stage | SMLR | VARI×GRDVI、VARI×NLI | 0.603 | 0.586 | 9.057 |
0.627 | 0.573 | 9.194 | |||
MLR | VARI×GRDVI、VARI×MNLI、RGRI×MNLI、 RGRI×NLI、EXR×GRDVI、EXR×MNLI、EXR×NLI、 VARI×NLI、RGRI×GRDVI | ||||
0.719 | 0.627 | 7.249 | |||
RF |
图1 基于可见光植被指数构建的天山假狼毒各生育期估测模型精度验证
Fig.1 Accuracy verification of estimating models for different growth stages of Diarthron tianschanicum based on visible light vegetation index
图2 基多光谱植被指数构建的天山假狼毒各生育期估测模型精度验证
Fig.2 Validation of the precision of the estimating model for different growth stages of Diarthron tianschanicum based on multispectral vegetation index construction
图3 基融合植被指数构建的天山假狼毒各生育期估测模型精度验证
Fig.3 Accuracy verification of estimating models for different growth stages of Diarthron tianschanicum based on fusion vegetation index construction
[1] | 李宏, 陈卫民, 陈翔, 等. 新疆伊犁草原毒害草种类及其发生与危害[J]. 草业科学, 2010, 27(11): 171-173. |
LI Hong, CHEN Weimin, CHEN Xiang, et al. Poisonous weed species and their harmfulness in the grassland of Yili regions, Xinjiang Uygur Autonomous Region of China[J]. Pratacultural Science, 2010, 27(11): 171-173. | |
[2] |
张鲜花, 安沙舟, 王显瑞, 等. 白喉乌头种群空间分布格局初步研究[J]. 草地学报, 2012, 20(3): 428-433.
DOI |
ZHANG Xianhua, AN Shazhou, WANG Xianrui, et al. Spatial distribution patterns of Aconitum leucostomum[J]. Acta Agrestia Sinica, 2012, 20(3): 428-433.
DOI |
|
[3] |
牛琼梅, 单贵莲, 罗钦, 等. 毒害草入侵扩散对滇西北亚高山草甸土壤微生物多样性的影响[J]. 草地学报, 2023, 31(7): 1996-2004.
DOI |
NIU Qiongmei, SHAN Guilian, LUO Qin, et al. Effect of invasion and diffusion of poisonous weeds on soil microbial diversity in subalpine meadow in northwest Yunnan[J]. Acta Agrestia Sinica, 2023, 31(7): 1996-2004.
DOI |
|
[4] | 王宏生, 宋梅玲, 王玉琴, 等. 不同恢复措施对黄帚橐吾及毒害草型退化草地群落的影响[J]. 中国草地学报, 2022, 44(4): 32-39. |
WANG Hongsheng, SONG Meiling, WANG Yuqin, et al. Effects of different restoration methods on Ligularia virgaurea and toxic weed dominated degraded grassland community[J]. Chinese Journal of Grassland, 2022, 44(4): 32-39. | |
[5] | 吕绍伦, 赵阳, 卢吉瑞, 等. 伊犁州毒草害空间分布特征及防治[J]. 农村经济与科技, 2022, 33(3): 24-27. |
LYU Shaolun, ZHAO Yang, LU Jirui, et al. Spatial distribution characteristics and control of poisonous weeds in Yili Prefecture[J]. Rural Economy and Science-Technology, 2022, 33(3): 24-27. | |
[6] |
杨晨, 沙日扣, 苏日拉格, 等. 中国天然草原毒害草种类分布、毒性及防控与利用研究进展[J]. 家畜生态学报, 2022, 43(11): 88-96.
DOI |
YANG Chen, SHA Rikou, SU Rilage, et al. Research progress on distribution, toxicity, control and utilization of poisonous grass species in natural grassland of China[J]. Journal of Domestic Animal Ecology, 2022, 43(11): 88-96. | |
[7] | 岳方正, 李璇, 杨鼎, 等. 我国主要草原有害生物防治指标制定与分析[J]. 草业科学, 2022, 39(9): 1773-1781. |
YUE Fangzheng, LI Xuan, YANG Ding, et al. Establishment and analysis of key pest control indicators in grasslands in China[J]. Pratacultural Science, 2022, 39(9): 1773-1781. | |
[8] | 范宏, 刘素红, 陈吉军, 等. 基于深度学习的白喉乌头与牧草高精度分类研究[J]. 江苏农业科学, 2021, 49(12): 173-180. |
FAN Hong, Liu Suhong, Chen Jijun, et al. Study on high-precision classification of Aconitum leucostomum Worosch and pasture based on deep learning[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 173-180. | |
[9] | 梁俊欢. 基于无人机影像和深度学习方法的白喉乌头识别研究[D]. 乌鲁木齐: 新疆农业大学, 2022. |
LIANG Junhuan. Recognition of Aconitum Leucostomum Based on UVA Image and Deep Learning Method[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[10] | 王晗, 向友珍, 李汪洋, 等. 基于无人机多光谱遥感的冬油菜地上部生物量估算[J]. 农业机械学报, 2023, 54(8): 218-229. |
WANG Han, XIANG Youzhen, LI Wangyang, et al. Estimation of winter rapeseed above-ground biomass based on uav multi-spectral remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 218-229. | |
[11] | 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24): 98-106. |
LIU Jiangang, ZHAO Chunjiang, YANG Guijun, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 98-106. | |
[12] |
Che Y P, Wang Q, Xie Z W, et al. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography[J]. Annals of Botany, 2020, 126(4): 765-773.
DOI PMID |
[13] | 孙永祺, 陈梦媛, 黄倩, 等. 低空无人机遥感在油料作物表型分析中的应用[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 472-483. |
SUN Yongqi, CHEN Mengyuan, HUANG Qian, et al. Application of low-altitude unmanned aerial vehicle remote sensing in the phenotypic analysis of oil crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 472-483. | |
[14] | 向友珍, 安嘉琪, 赵笑, 等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报, 2023, 54(8): 230-239. |
XIANG Youzhen, AN Jiaqi, ZHAO Xiao, et al. Soybean growth parameters and yield estimation based on UAV multispectral remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 230-239. | |
[15] | Osco L P, Junior J M, Ramos A P M, et al. Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques[J]. Remote Sensing, 2020, 12(19): 3237. |
[16] | Lu J S, Cheng D L, Geng C M, et al. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize[J]. Biosystems Engineering, 2021, 202: 42-54. |
[17] | Zhou X B, Kono Y, Win A, et al. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches[J]. Plant Production Science, 2021, 24(2): 137-151. |
[18] | 秦彩杰, 李勇. 作物病虫害自动识别技术研究——基于视频监控和无人机平台[J]. 农机化研究, 2021, 43(10): 42-45, 50. |
QIN Caijie, LI Yong. Research on automatic identification technology of crop diseases and insect pests—based on video monitoring and UAV platform[J]. Journal of Agricultural Mechanization Research, 2021, 43(10): 42-45, 50. | |
[19] | 杨国峰, 何勇, 冯旭萍, 等. 无人机遥感监测作物病虫害胁迫方法与最新研究进展[J]. 智慧农业, 2022, 4(1): 1-16. |
YANG Guofeng, HE Yong, FENG Xuping, et al. Methods and new research progress of remote sensing monitoring of crop disease and pest stress using unmanned aerial vehicle[J]. Smart Agriculture, 2022, 4(1): 1-16.
DOI |
|
[20] | Lan Y B, Huang K H, Yang C, et al. Real-time identification of rice weeds by UAV low-altitude remote sensing based on improved semantic segmentation model[J]. Remote Sensing, 2021, 13(21): 4370. |
[21] | Zhu H, Jiang Y, Zhang C, et al. Research on mosaic method of UAV low-altitude remote sensing image based on SIFT and SURF[J]. Journal of Physics: Conference Series, 2022, 2203(1): 012027. |
[22] | Tetila E C, Machado B B, Astolfi G, et al. Detection and classification of soybean pests using deep learning with UAV images[J]. Computers and Electronics in Agriculture, 2020, 179: 105836. |
[23] | 张正健, 李爱农, 边金虎, 等. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62. |
ZHANG Zhengjian, LI Ainong, BIAN Jinhu, et al. Estimating aboveground biomass of grassland in zoige by visible vegetation index derived from unmanned aerial vehicle image[J]. Remote Sensing Technology and Application, 2016, 31(1): 51-62. | |
[24] | 聂松伟. 基于无人机多光谱遥感的冬小麦长势指标监测[D]. 乌鲁木齐: 新疆农业大学, 2022. |
NIE Songwei. Monitoring of Winter Wheat Growth Index Based on UAV Multi-spectral Remote Sensing[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[25] | 吴培强, 任广波, 张程飞, 等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报, 2022, 26(6): 1169-1181. |
WU Peiqiang, REN Guangbo, ZHANG Chengfei, et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin, 2022, 26(6): 1169-1181. | |
[26] | 杭艳红, 苏欢, 于滋洋, 等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报, 2021, 37(9): 64-71. |
HANG Yanhong, SU Huan, YU Ziyang, et al. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71. | |
[27] | 牛庆林, 冯海宽, 周新国, 等. 冬小麦SPAD值无人机可见光和多光谱植被指数结合估算[J]. 农业机械学报, 2021, 52(8): 183-194. |
NIU Qinglin, FENG Haikuan, ZHOU Xinguo, et al. Combining UAV visible light and multispectral vegetation indices for estimating SPAD value of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 183-194. | |
[28] | 李长春, 牛庆林, 杨贵军, 等. 基于无人机数码影像的大豆育种材料叶面积指数估测[J]. 农业机械学报, 2017, 48(8): 147-158. |
LI Changchun, NIU Qinglin, YANG Guijun, et al. Estimation of leaf area index of soybean breeding materials based on UAV digital images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 147-158. | |
[29] |
孙奇, 关琳琳, 焦全军, 等. 基于植被指数融合的冬小麦生物量反演研究[J]. 遥感技术与应用, 2021, 36(2): 391-399.
DOI |
SUN Qi, GUAN Linlin, JIAO Quanjun, et al. Research on retrieving biomass of winter wheat based on fusing vegetation index[J]. Remote Sensing Technology and Application, 2021, 36(2): 391-399. | |
[30] |
刘玉杰, 封志明, 邓福英. 基于草地退化指示植物大狼毒的植被指数研究[J]. 草地学报, 2014, 22(3): 455-460.
DOI |
LIU Yujie, FENG Zhiming, DENG Fuying. Vegetation indices of Euphorbia jolkinii As an indicator plant of grassland degradation[J]. Acta Agrestia Sinica, 2014, 22(3): 455-460.
DOI |
|
[31] | 干珠扎布, 段敏杰, 高清竹, 等. 藏北高寒退化草地天山假狼毒群落地面光谱特征及其生物量估测[C]. 国际能源与环境会议(ICEE), 2011, 303-306. |
Ganzhuzhabu, DUAN Minjie, GAO Qingzhu, et al. Spectral reflectance and biomass estimation of Diarthron tianschanicum in northern Tibet[C]. International Conference on Energy and Environment (ICEE), 2011, 303-306. | |
[32] | 凯楠, 刘咏梅, 李京忠, 等. 青海瑞香狼毒叶绿素含量高光谱预测模型[J]. 生态学杂志, 2017, 36(4): 1150-1157. |
KAI Nan, LIU Yongmei, LI Jingzhong, et al. Hyperspectal predicting model of chlorophyll content of Stellera chamaejasme in Qinghai Province[J]. Chinese Journal of Ecology, 2017, 36(4): 1150-1157. |
[1] | 戴爱梅, 叶梦迪, 丁志梅, 王志慧, 乔晓燕, 王小武, 付开赟, 贾尊尊, 叶晓琴, 吐尔逊·阿合买提, 康健, 丁新华, 郭文超. 不同苯唑氟草酮施药方式防除玉米田杂草药效及安全性评价[J]. 新疆农业科学, 2024, 61(S1): 28-34. |
[2] | 张振飞, 郭靖, 颜安, 侯正清, 袁以琳, 肖淑婷, 孙哲. 多光谱无人机不同飞行高度下苹果树高的提取[J]. 新疆农业科学, 2024, 61(7): 1710-1716. |
[3] | 邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335. |
[4] | 张振飞, 郭靖, 颜安, 袁以琳, 肖淑婷, 侯正清, 孙哲. 基于多光谱无人机不同飞行高度下苹果树冠幅信息的提取[J]. 新疆农业科学, 2024, 61(6): 1468-1476. |
[5] | 李雪瑞, 翟梦华, 徐新龙, 孙明辉, 张巨松. 无人机喷施不同浓度缩节胺对棉花生长发育的影响[J]. 新疆农业科学, 2024, 61(5): 1085-1093. |
[6] | 张磊, 姚梦瑶, 刘志刚, 李娟, 杨洋, 蔡大润, 陈果, 李波, 李晓荣, 陈勋基, 翟云龙. 基于无人机多光谱NDVI值估测玉米产量[J]. 新疆农业科学, 2024, 61(4): 845-851. |
[7] | 刘太杰, 陈兵, 杨立, 王静, 赵静, 李翔, 唐广兰, 王刚, 韩焕勇, 王方永. 不同喷药机械与药剂组合对棉花脱叶催熟效果及产量和品质的影响[J]. 新疆农业科学, 2024, 61(4): 852-860. |
[8] | 党旭伟, 林馨园, 贺正, 陈燕, 慈宝霞, 马学花, 郭晨荔, 贺亚星, 刘扬, 马富裕. 基于无人机热红外遥感图像提取滴灌棉花冠层温度及精度评价[J]. 新疆农业科学, 2024, 61(3): 565-575. |
[9] | 陈荣, 赖宁, 耿庆龙, 李永福, 信会男, 吕彩霞, 李娜, 陈署晃. 基于遥感数据构建冬小麦孕穗期变量施氮模型[J]. 新疆农业科学, 2024, 61(11): 2705-2712. |
[10] | 李池, 陈刚, 杨继革, 杨庭瑞, 赵经华, 马明杰. 基于地基多光谱的不同水氮处理条件下春玉米叶片信息采集[J]. 新疆农业科学, 2024, 61(10): 2374-2387. |
[11] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于多特征融合的无人机天山假狼毒地上生物量估算[J]. 新疆农业科学, 2024, 61(10): 2527-2536. |
[12] | 秦叶康阳, 李嘉欣, 靳瑰丽, 刘文昊, 马建, 李文雄, 陈梦甜. 基于UAV和CNN ResNet 18参数调节的伊犁绢蒿荒漠草地植物识别性能分析[J]. 新疆农业科学, 2024, 61(10): 2547-2556. |
[13] | 刘亮, 彭建, 李刚勇, 韩万强, 刘玉佳, 关靖云, 刘程才, 郑江华. 2010~2021年新疆库鲁斯台草原动态遥感监测变化分析[J]. 新疆农业科学, 2024, 61(1): 230-240. |
[14] | 董德誉, 程宇坤, 王睿, 雷钧杰, 王伟, 陈传信, 张永强, 耿洪伟. 基于无人机多光谱影像反演不同生育期小麦光合参数分析[J]. 新疆农业科学, 2023, 60(6): 1308-1318. |
[15] | 张栋海, 魏俊梅, 陈兵, 吉光鹏, 王凡, 牛蛉磊. 无人机播前喷施除草剂防除棉田杂草效果评价[J]. 新疆农业科学, 2022, 59(12): 3022-3029. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||