新疆农业科学 ›› 2024, Vol. 61 ›› Issue (4): 945-953.DOI: 10.6048/j.issn.1001-4330.2024.04.019
• 植物保护·微生物·农业装备工程与机械化 • 上一篇 下一篇
马合木提·阿不来提1(), 木合塔尔·扎热1, 米热古力·外力2, 哈地尔·依沙克1(
)
收稿日期:
2023-07-27
出版日期:
2024-04-20
发布日期:
2024-05-31
通信作者:
哈地尔·依沙克(1975-),男,新疆哈密人,研究员,研究方向为果树栽培生理,(E-mail)908998115@qq.com作者简介:
马合木提·阿不来提(1981-),男,新疆吐鲁番人,副研究员,研究方向为果树营养生理,(E-mail)594129569@qq.com
基金资助:
Mahemuti Abulaiti1(), Muhetaer zhare1, Mireguli Waili2, Hadier Yishake1(
)
Received:
2023-07-27
Published:
2024-04-20
Online:
2024-05-31
Correspondence author:
Hadier Yishake (1975-), male, from Hami, Xinjiang, researcher, research direction fruit cultivation physiology, (E-mail)908998115@qq.comSupported by:
摘要:
【目的】研究与核桃叶缘焦枯病相关的主因子,为叶缘焦枯病机理研究及其防治措施提供理论参考。【方法】以新疆核桃主栽品种新丰和扎-343作为研究对象,以新疆野生核桃作为对照材料,测定不同程度焦叶的2个核桃品种叶片SPAD值、全氮(N)、全磷(P)、钾(K)、钙(Ca)、镁(Mg)、锰(Mn)、铁(Fe)、铜(Cu)和锌(Zn)等指标,分析各指标之间的相关性。【结果】随着2个核桃品种叶片焦枯程度的加重,其叶片SPAD值均缓慢下降趋势,新丰正常叶(X-CK)SPAD值与野生核桃正常叶(T-CK)间均无显著差异,扎-343正常叶(Z-CK)SPAD值显著低于T-CK,新丰不同处理的叶片SPAD值均明显大于 扎-343。2个核桃品种叶片不同养分含量随着焦叶程度的加重而呈现不同程度的变化趋势,其中新丰核桃叶片N和Ca均表现上升趋势,P、K、Mg、Mn、Fe和Cu均表现下降趋势,Zn呈现先上升后下降趋势,新丰核桃焦叶程度与其SPAD值、K、Mg和Cu含量成极显著负相关,与Ca含量间成极显著正相关性;扎-343核桃叶片N和Ca均表现上升趋势,其K、Mg、Mn、Fe和Cu均表现下降趋势,P和Zn呈现先上升后下降趋势,其中叶片SPAD值、Fe和Cu与其焦叶程度之间的负相关性均达极显著水平,叶片Ca含量与其焦叶程度之间的正相关性达极显著水平。影响新丰核桃叶片焦枯程度的相关指标因子大小的排序依次为Cu > Ca,回归方程为Y =10.968-2.193 X1 + 4.388 X2;影响扎-343核桃叶片焦枯程度的相关指标因子大小的排序依次为Cu > K > P,回归方程为Y' = 215.075-2.366 X'1 - 7.902 X'2 - 33.966 X'3。【结论】新丰和扎-343核桃叶缘开始焦枯后,叶片中Cu、Ca、K和P的吸收受到显著影响。
中图分类号:
马合木提·阿不来提, 木合塔尔·扎热, 米热古力·外力, 哈地尔·依沙克. 核桃叶缘焦枯病与其养分含量的相关性回归分析[J]. 新疆农业科学, 2024, 61(4): 945-953.
Mahemuti Abulaiti, Muhetaer zhare, Mireguli Waili, Hadier Yishake. Correlation and regression analysis between leaf margin scorch diseases and leaf nutrient content of walnut[J]. Xinjiang Agricultural Sciences, 2024, 61(4): 945-953.
图1 不同焦枯程度下核桃叶片绿色变化 注:同列柱状上不同英文小写字母表示在同一品种(或其与野生核桃间)各处理之间有显著性差异(P<0.05),其中下划线字母代表新丰的方差分析,无下划线的字母代表扎-343的方差分析
Fig.1 Green degree of walnut leaves with different scorch degrees Note: Different English small letters on the same column in the figure indicate that there is a significant difference (P < 0.05) between the treatments of the same cultivar (or between it and wild walnut). The underlined letter represents the ANOVA of Xinfeng, and the non-underlined letter represents the variance analysis of Zha-343
品种 Cultivars | 养分 Nutrients | 处理Treatments | 变异系数 CV (%) | 野生核桃 T-CK | ||||
---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | ||||
新丰 Xinfeng | N(g/kg) | 20.675 ± 2.645 a | 21.255 ± 0.405 a | 23.560 ± 0.160 a | 23.140 ± 0.500 a | 23.770 ± 4.020 a | 6.301 | 24.325 ± 0.925 a |
P(g/kg) | 1.610 ± 0.010 ab | 1.745 ± 0.245 a | 1.555 ± 0.145 abc | 1.645 ± 0.025 ab | 1.350 ± 0.260 bc | 9.267 | 1.290 ± 0.080 c | |
K(g/kg) | 9.035 ± 1.565 b | 8.200 ± 1.130 bc | 7.550 ± 0.020 bc | 7.030 ± 0.010 c | 7.075 ± 0.115 c | 10.879 | 23.050 ± 0.750 a | |
Ca(mg/kg) | 16.450 ± 0.050 cd | 18.500 ± 0.900 bcd | 19.000 ± 3.000 bc | 19.900 ± 2.000 b | 23.250 ± 0.050 a | 12.807 | 15.900 ± 0.300 d | |
Mg(mg/kg) | 8.835 ± 0.665 a | 8.740 ± 0.190 a | 8.455 ± 0.015 a | 8.300 ± 0.270 a | 8.310 ± 1.110 a | 2.896 | 7.010 ± 0.140 b | |
Mn(mg/kg) | 150.000 ± 12.000 a | 143.000 ± 0.000 a | 147.500 ± 1.500 a | 137.500 ± 10.500 a | 135.500 ± 10.500 a | 4.366 | 99.000 ± 2.000 b | |
Fe(mg/kg) | 0.991 ± 0.040 a | 0.971 ± 0.060 a | 0.889 ± 0.142 ab | 0.877 ± 0.082 ab | 0.776 ± 0.089 c | 9.498 | 0.590 ± 0.041 c | |
Cu(mg/kg) | 40.100 ± 1.000 a | 27.850 ± 2.350 c | 28.550 ± 0.950 c | 23.550 ± 2.250 d | 21.700 ± 2.200 d | 25.29 | 35.905 ± 1.695 b | |
Zn(mg/kg) | 18.500 ± 0.500 b | 24.100 ± 1.500 ab | 34.650 ± 15.550 a | 20.900 ± 0.600 b | 17.600 ± 5.900 b | 29.821 | 17.850 ± 0.950 b | |
扎-343 Zha-343 | N(g/kg) | 21.005 ± 0.745 b | 21.100 ± 0.040 b | 19.210 ± 0.280 b | 20.395 ± 0.695 b | 30.380 ± 9.380 a | 20.136 | 24.325 ± 0.925 ab |
P(g/kg) | 1.510 ± 0.280 abc | 1.755 ± 0.105 a | 1.700 ± 0.140 ab | 1.625 ± 0.045 ab | 1.485 ± 0.025 bc | 7.251 | 1.290 ± 0.080 c | |
K(g/kg) | 11.850 ± 0.950 b | 10.950 ± 0.450 b | 9.635 ± 0.965 c | 9.500 ± 0.600 c | 8.425 ± 0.355 c | 13.286 | 23.050 ± 0.750 a | |
Ca(g/kg) | 16.650 ± 0.750 b | 17.100 ± 1.800 b | 20.700 ± 0.700 a | 23.100 ± 1.400 a | 22.250 ± 2.650 a | 14.775 | 15.900 ± 0.300 b | |
Mg(mg/kg) | 8.680 ± 0.320 a | 8.655 ± 0.295 a | 8.455 ± 0.105 ab | 8.485 ± 0.115 ab | 7.950 ± 0.310 b | 3.483 | 7.010 ± 0.140 c | |
Mn(mg/kg) | 114.000 ± 0.000 a | 111.500 ± 2.500 ab | 111.500 ± 3.500 ab | 110.000 ± 8.000 ab | 105.500 ± 1.500 b | 2.844 | 99.000 ± 2.000 b | |
Fe(mg/kg) | 0.940 ± 0.016 a | 0.891 ± 0.035 ab | 0.913 ± 0.197 a | 0.780 ± 0.015 b | 0.787 ± 0.092 b | 8.574 | 0.590 ± 0.041 c | |
Cu(mg/kg) | 31.500 ± 2.600 a | 20.850 ± 0.250 b | 19.400 ± 2.400 b | 14.200 ± 3.800 c | 12.500 ± 0.800 c | 37.899 | 35.905 ± 1.695 a | |
Zn(mg/kg) | 21.600 ± 2.600 a | 23.550 ± 3.150 a | 24.200 ± 0.800 a | 23.150 ± 0.150 a | 22.400 ± 0.500 a | 4.397 | 17.850 ± 0.950 b |
表1 不同焦枯程度核桃叶片养分含量的比较
Tab.1 Changes of comparison on nutrient contents of walnut leaves with different scorch degrees
品种 Cultivars | 养分 Nutrients | 处理Treatments | 变异系数 CV (%) | 野生核桃 T-CK | ||||
---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | ||||
新丰 Xinfeng | N(g/kg) | 20.675 ± 2.645 a | 21.255 ± 0.405 a | 23.560 ± 0.160 a | 23.140 ± 0.500 a | 23.770 ± 4.020 a | 6.301 | 24.325 ± 0.925 a |
P(g/kg) | 1.610 ± 0.010 ab | 1.745 ± 0.245 a | 1.555 ± 0.145 abc | 1.645 ± 0.025 ab | 1.350 ± 0.260 bc | 9.267 | 1.290 ± 0.080 c | |
K(g/kg) | 9.035 ± 1.565 b | 8.200 ± 1.130 bc | 7.550 ± 0.020 bc | 7.030 ± 0.010 c | 7.075 ± 0.115 c | 10.879 | 23.050 ± 0.750 a | |
Ca(mg/kg) | 16.450 ± 0.050 cd | 18.500 ± 0.900 bcd | 19.000 ± 3.000 bc | 19.900 ± 2.000 b | 23.250 ± 0.050 a | 12.807 | 15.900 ± 0.300 d | |
Mg(mg/kg) | 8.835 ± 0.665 a | 8.740 ± 0.190 a | 8.455 ± 0.015 a | 8.300 ± 0.270 a | 8.310 ± 1.110 a | 2.896 | 7.010 ± 0.140 b | |
Mn(mg/kg) | 150.000 ± 12.000 a | 143.000 ± 0.000 a | 147.500 ± 1.500 a | 137.500 ± 10.500 a | 135.500 ± 10.500 a | 4.366 | 99.000 ± 2.000 b | |
Fe(mg/kg) | 0.991 ± 0.040 a | 0.971 ± 0.060 a | 0.889 ± 0.142 ab | 0.877 ± 0.082 ab | 0.776 ± 0.089 c | 9.498 | 0.590 ± 0.041 c | |
Cu(mg/kg) | 40.100 ± 1.000 a | 27.850 ± 2.350 c | 28.550 ± 0.950 c | 23.550 ± 2.250 d | 21.700 ± 2.200 d | 25.29 | 35.905 ± 1.695 b | |
Zn(mg/kg) | 18.500 ± 0.500 b | 24.100 ± 1.500 ab | 34.650 ± 15.550 a | 20.900 ± 0.600 b | 17.600 ± 5.900 b | 29.821 | 17.850 ± 0.950 b | |
扎-343 Zha-343 | N(g/kg) | 21.005 ± 0.745 b | 21.100 ± 0.040 b | 19.210 ± 0.280 b | 20.395 ± 0.695 b | 30.380 ± 9.380 a | 20.136 | 24.325 ± 0.925 ab |
P(g/kg) | 1.510 ± 0.280 abc | 1.755 ± 0.105 a | 1.700 ± 0.140 ab | 1.625 ± 0.045 ab | 1.485 ± 0.025 bc | 7.251 | 1.290 ± 0.080 c | |
K(g/kg) | 11.850 ± 0.950 b | 10.950 ± 0.450 b | 9.635 ± 0.965 c | 9.500 ± 0.600 c | 8.425 ± 0.355 c | 13.286 | 23.050 ± 0.750 a | |
Ca(g/kg) | 16.650 ± 0.750 b | 17.100 ± 1.800 b | 20.700 ± 0.700 a | 23.100 ± 1.400 a | 22.250 ± 2.650 a | 14.775 | 15.900 ± 0.300 b | |
Mg(mg/kg) | 8.680 ± 0.320 a | 8.655 ± 0.295 a | 8.455 ± 0.105 ab | 8.485 ± 0.115 ab | 7.950 ± 0.310 b | 3.483 | 7.010 ± 0.140 c | |
Mn(mg/kg) | 114.000 ± 0.000 a | 111.500 ± 2.500 ab | 111.500 ± 3.500 ab | 110.000 ± 8.000 ab | 105.500 ± 1.500 b | 2.844 | 99.000 ± 2.000 b | |
Fe(mg/kg) | 0.940 ± 0.016 a | 0.891 ± 0.035 ab | 0.913 ± 0.197 a | 0.780 ± 0.015 b | 0.787 ± 0.092 b | 8.574 | 0.590 ± 0.041 c | |
Cu(mg/kg) | 31.500 ± 2.600 a | 20.850 ± 0.250 b | 19.400 ± 2.400 b | 14.200 ± 3.800 c | 12.500 ± 0.800 c | 37.899 | 35.905 ± 1.695 a | |
Zn(mg/kg) | 21.600 ± 2.600 a | 23.550 ± 3.150 a | 24.200 ± 0.800 a | 23.150 ± 0.150 a | 22.400 ± 0.500 a | 4.397 | 17.850 ± 0.950 b |
焦叶程度 Scorch degree | SPAD | N | P | K | Ca | Mg | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
新丰 Xinfeng | -0.910** | 0.503 | -0.208 | -0.875** | 0.823** | -0.707** | -0.598* | -0.566* | -0.883** | 0.058 |
扎-343 Zha-343 | -0.831** | 0.517* | -0.482 | -0.680** | 0.812** | -0.391 | -0.541* | -0.707** | -0.848** | -0.118 |
表2 核桃焦叶程度与叶片SPAD值和养分含量的相关性
Tab.2 Correlation between scorch degree and SPAD value, nutrient content of walnut leaves
焦叶程度 Scorch degree | SPAD | N | P | K | Ca | Mg | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
新丰 Xinfeng | -0.910** | 0.503 | -0.208 | -0.875** | 0.823** | -0.707** | -0.598* | -0.566* | -0.883** | 0.058 |
扎-343 Zha-343 | -0.831** | 0.517* | -0.482 | -0.680** | 0.812** | -0.391 | -0.541* | -0.707** | -0.848** | -0.118 |
品种 Cultivars | 模型 Model | 平方和 Sum of squares | Df | 均方 Mean square | F | Sig. |
---|---|---|---|---|---|---|
新丰 Xinfeng | 回归 | 8 484.713 | 2 | 4 242.357 | 27.514 | 0.000 |
残差 | 1 850.287 | 12 | 154.191 | |||
总计 | 10 335.000 | 14 | ||||
扎-343 Zha-343 | 回归 | 9 775.576 | 3 | 3 258.525 | 64.073 | 0.000 |
残差 | 559.424 | 11 | 50.857 | |||
总计 | 10 335.000 | 14 |
表3 核桃焦叶程度与叶片SPAD值和养分含量的逐步回归模型检验
Tab.3 Stepwise regression model test on scorched degree, SPAD value and nutrient content of walnut leaves
品种 Cultivars | 模型 Model | 平方和 Sum of squares | Df | 均方 Mean square | F | Sig. |
---|---|---|---|---|---|---|
新丰 Xinfeng | 回归 | 8 484.713 | 2 | 4 242.357 | 27.514 | 0.000 |
残差 | 1 850.287 | 12 | 154.191 | |||
总计 | 10 335.000 | 14 | ||||
扎-343 Zha-343 | 回归 | 9 775.576 | 3 | 3 258.525 | 64.073 | 0.000 |
残差 | 559.424 | 11 | 50.857 | |||
总计 | 10 335.000 | 14 |
品种 Cultivars | 模型指标 Model indicators | 回归系数 Regression coefficient | 标准误差 Standard error | 标准系数 Standard coefficient | T | Sig. |
---|---|---|---|---|---|---|
新丰 Xinfeng | 常量 | 10.968 | 47.799 | — | 0.229 | 0.822 |
Cu | -2.193 | 0.667 | -0.551 | -3.291 | 0.006 | |
Ca | 4.388 | 1.686 | 0.436 | 2.603 | 0.023 | |
扎-343 Zha-343 | 常量 | 215.075 | 21.553 | — | 9.979 | 0.000 |
Cu | -2.366 | 0.393 | -0.626 | -6.012 | 0.000 | |
K | -7.902 | 2.074 | -0.400 | -3.811 | 0.003 | |
P | -33.996 | 12.338 | *0.208 | -2.755 | 0.019 |
表4 核桃焦叶程度与叶片SPAD值和养分含量的逐步回归分析
Tab.4 Stepwise regression analysis on scorched degree with SPAD value and nutrient content of walnut leaves
品种 Cultivars | 模型指标 Model indicators | 回归系数 Regression coefficient | 标准误差 Standard error | 标准系数 Standard coefficient | T | Sig. |
---|---|---|---|---|---|---|
新丰 Xinfeng | 常量 | 10.968 | 47.799 | — | 0.229 | 0.822 |
Cu | -2.193 | 0.667 | -0.551 | -3.291 | 0.006 | |
Ca | 4.388 | 1.686 | 0.436 | 2.603 | 0.023 | |
扎-343 Zha-343 | 常量 | 215.075 | 21.553 | — | 9.979 | 0.000 |
Cu | -2.366 | 0.393 | -0.626 | -6.012 | 0.000 | |
K | -7.902 | 2.074 | -0.400 | -3.811 | 0.003 | |
P | -33.996 | 12.338 | *0.208 | -2.755 | 0.019 |
[1] | 郗荣庭, 张毅萍. 中国果树志-核桃卷[M]. 北京: 中国林业出版社, 1996. |
XI Rongting, ZHANG Yiping. China fruit Zhi-Walnut Roll[M]. Beijing: China Forestry Publishing House, 1996. | |
[2] | 时羽杰, 邬晓勇, 糜加轩, 等. 核桃内种皮苦涩味品质代谢组学分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(6): 54-64. |
SHI Yujie, WU Xiaoyong, MI Jiaxuan, et al. Metabonomics of bitter taste quality of walnut kernel pellicle[J]. Journal of Northwest A & F University (Natural Science Ed), 2021, 49(6): 54-64. | |
[3] | 陈小飞, 张锐, 罗立新, 等. 核桃焦叶病发病因素分析与防控技术要点[J]. 农业科技与信息, 2021, 18(14): 67-68. |
CHEN Xiaofei, ZHANG Rui, LUO Lixin, et al. Analysis of pathogenic factors of walnut scorch leaf disease and key points of prevention and control technology[J]. Agricultural Science-Technology and Information, 2021, 18(14): 67-68. | |
[4] | 王冀川, 艾买尔江·吾斯曼, 阿依谢姆古丽·玉苏普, 等. 核(桃)麦间作系统内小气候特征的初步研究[J]. 干旱地区农业研究, 2016, 34(5): 138-145. |
WANG Jichuan, Aimaerijiang Wusiman, Ayixiemuguli Yusupu, et al. Preliminary study on micro-climatic characteristics of walnut and wheat intercropping systems[J]. Agricultural Research in the Arid Areas, 2016, 34(5): 138-145. | |
[5] | 高卫红, 韩嵘. 《新疆统计年鉴—2021》[M]. 中国统计出版社, 2021. |
GAO Weihong, HAN Rong. Xinjiang Statistical Yearbook-2021[M]. Beijing: China Statistics Press, 2021. | |
[6] |
李源, 蒲胜海, 马晓鹏, 等. 核桃叶片焦枯症特征与成因分析[J]. 新疆农业科学, 2022, 59(6): 1475-1481.
DOI |
LI Yuan, PU Shenghai, MA Xiaopeng, et al. Study on characteristics and causation of walnut withered leaf symptom[J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1475-1481.
DOI |
|
[7] | 唐书玉, 胡安鸿. 核桃焦叶病防治技术及防治效果[J]. 农村科技, 2019, (5): 26-28. |
TANG Shuyu, HU Anhong. Control technology and control effect of walnut scorch leaf disease[J]. Rural Science & Technology, 2019, (5): 26-28. | |
[8] | 赵景玲, 李志刚. 核桃焦叶发生原因及防治技术[J]. 农村科技, 2022, (1): 39-42. |
ZHAO Jingling, LI Zhigang. Causes and control techniques of walnut scorched leaves[J]. Rural Science & Technology, 2022, (1): 39-42. | |
[9] | 梁智, 张计峰, 井然, 等. 土壤及叶面调控对核桃“叶缘焦枯病” 的防控效果[J]. 新疆农业科学, 2014, 51(9): 1652-1657. |
LIANG Zhi, ZHANG Jifeng, JING Ran, et al. The prevention effect of soil and foliar regulation on“leaf margin scorch disease” of walnut[J]. Xinjiang Agricultural Sciences, 2014, 51(9): 1652-1657. | |
[10] | 梁智, 张计峰, 井然, 等. 核桃“叶缘焦枯” 生理病害调控技术[J]. 新疆农业科技, 2014, (1): 19-20. |
LIANG Zhi, ZHANG Jifeng, JING Ran, et al. Control techniques of physiological diseases of walnut “leaf edge scorching”[J]. Xinjiang Agricultural Science and Technology, 2014,(1): 19-20. | |
[11] | 张计峰, 梁智, 邹耀湘, 等. 新疆南疆核桃叶缘焦枯病成因分析研究[J]. 新疆农业科学, 2012, 49(7): 1261-1265. |
ZHANG Jifeng, LIANG Zhi, ZOU Yaoxiang, et al. Study on causation of walnut withered leaf symptom in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2012, 49(7): 1261-1265. | |
[12] | 李峻臣, 卢明艳, 宋锋惠, 等. 新疆12个平欧杂种榛品种(系)焦叶发生对坚果经济性状影响[J]. 林业科技通讯, 2022, (7): 43-47. |
LI Junchen, LU Mingyan, SONG Fenghui, et al. Effect of scorch leaf occurrence on economic characters of nut of 12 flat-European hybrid hazel varieties (lines) in Xinjiang[J]. Forest Science and Technology, 2022, (7): 43-47. | |
[13] | 李峻臣, 卢明艳, 史彦江, 等. 平欧杂种榛焦叶原因[J]. 东北林业大学学报, 2022, 50(3): 58-63. |
LI Junchen, LU Mingyan, SHI Yanjiang, et al. A preliminary study on the occurrence of Corylus heterophylla × C. avellana L. scorch leaf[J]. Journal of Northeast Forestry University, 2022, 50(3): 58-63. | |
[14] | 蒋日盛, 李云平, 黄一华, 等. 连城县李 “焦叶症”调查[J]. 东南园艺, 2021, 9(6): 72-74. |
JIANG Risheng, LI Yunping, HUANG Yihua, et al. Investigation on"leaf scorch"of plum and nane in Liancheng County[J]. Southeast Horticulture, 2021, 9(6): 72-74. | |
[15] | 张小雪, 巫伟峰, 傅振星, 等. ‘芙蓉李’焦叶症与矿质元素含量的关联性[J]. 福建农林大学学报(自然科学版), 2020, 49(6): 759-765. |
ZHANG Xiaoxue, WU Weifeng, FU Zhenxing, et al. Correlation analysis between leaf scorch and mineral element contents in plum fruit cv. 'Furongli '[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(6): 759-765. | |
[16] | 霍兆志. 枣焦叶病的发生及其防治[J]. 河北林业科技, 2009, (1): 68. |
HUO Zhaozhi. Occurrence and control of jujube scorched leaf disease[J]. The Journal of Hebei Forestry Science and Technology, 2009, (1): 68. | |
[17] | 晏桃英, 崔琪. 枣焦叶病的发生规律及综合防治措施[J]. 湖北植保, 2004,(6): 21-22. |
YAN Taoying, CUI Qi. Occurrence regularity and comprehensive control measures of jujube scorched leaf disease[J]. Hubei Plant Protection, 2004,(6): 21-22. | |
[18] | 郭全恩, 王益权, 郭天文, 等. 甘肃省秦安县苹果叶缘焦枯死亡原因调查[J]. 北方园艺, 2008,(8): 27-29. |
GUO Quan’en, WANG Yiquan, GUO Tianwen, et al. Investigation report on the death reason of apple leaf marginal withered in Qinan County of China[J]. Northern Horticulture, 2008,(8): 27-29. | |
[19] | 郭全恩, 郭天文, 南丽丽, 等. 甘肃省秦安县苹果叶缘焦枯死亡原因的初步研究[J]. 西北农业学报, 2006, 15(1): 68-70. |
GUO Quan'en, GUO Tianwen, NAN Lili, et al. Preliminary survey on the cause of withered and die off of apple leaf in qin`an county of Gansu[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2006, 15(1): 68-70. | |
[20] | Karimi M R, Paltrinieri S, Sajadinejad M, et al. Molecular detection of prokaryotes in apricot showing decline and leaf scorch symptoms in Iran[J]. Phytopathogenic Mollicutes, 2016, 6(1): 33. |
[21] | Mircetich S M. Etiology of almond leaf scorch disease and transmission of the causal agent[J]. Phytopathology, 1976, 66(1): 17. |
[22] | Sosnowski M R, Ayres M R, Wilcox W F. Cultivar susceptibility and control of angular leaf scorch in grapevine[J]. Australian Journal of Grape and Wine Research, 2022, 28(1): 160-165. |
[23] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
[24] | 阿卜杜许库尔·牙合甫, 张强, 王国安, 等. 新丰和新光两个核桃品种光合特性及产量比较[J]. 新疆农业科学, 2012, 49(11): 2008-2013. |
Abuduxukuer Yahefu, ZHANG Qiang, WANG Guoan, et al. Comparison of photosynthetic characteristics and yield of two walnut cultivars[J]. Xinjiang Agricultural Sciences, 2012, 49(11): 2008-2013. |
[1] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[2] | 帕孜丽耶·艾合麦提, 王新勇, 周燕, 宋彬, 玉苏甫·阿不力提甫. 微生物菌剂对核桃叶片生理及光合特性的影响[J]. 新疆农业科学, 2024, 61(9): 2299-2306. |
[3] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[4] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[5] | 胡华兵, 孙琳琳, 刘建雄, 贺碧微, 刘珣, 郇町, 李有芳. 滴灌甜菜糖分积累与温度的相关性分析[J]. 新疆农业科学, 2024, 61(8): 1916-1925. |
[6] | 赵晨, 王彦, 阿不夏合满·穆巴拉克, 秦荣艳, 陈翔宇, 梁见弟, 王乐乐, 张志军, 王承敏, 王文奇, 沙丽塔娜提. 复合添加剂对冷季绵羊瘤胃发酵及养分表观消化率的影响[J]. 新疆农业科学, 2024, 61(8): 2054-2062. |
[7] | 鲁伟丹, 周远航, 马小龙, 高江龙, 樊晓琴, 郭建富, 李健强, 林明. 不同比例有机肥替代化肥对甜菜植株养分及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1631-1639. |
[8] | 侯献飞, 李强, 苗昊翠, 贾东海, 顾元国, 买买提依明·斯马依, 崔福洋. 棉花-花生轮作模式对土壤养分及其产量的影响[J]. 新疆农业科学, 2024, 61(7): 1657-1665. |
[9] | 亚森·吐尔迪, 马天宇, 图尔迪麦麦提·努尔麦麦提, 阿地力·沙塔尔. 苹果蠹蛾和梨小食心虫迷向丝在核桃园中的使用模式[J]. 新疆农业科学, 2024, 61(7): 1757-1765. |
[10] | 叶萍毅, 龙遗磊, 谭彦平, 杜霄, 安梦洁, 陶志鑫, 梁发瑞, 艾先涛, 胡守林. 陆地棉果枝夹角与机采农艺性状鉴定评价[J]. 新疆农业科学, 2024, 61(6): 1318-1327. |
[11] | 阿不都卡地尔·库尔班, 潘竟海, 陈友强, 刘华君, 董心久, 白晓山, 李思忠, 高卫时, 沙红, 李小惠. 基于产量相关性状综合评价晚播甜菜品种的适应性[J]. 新疆农业科学, 2024, 61(6): 1368-1377. |
[12] | 张钊, 张贵龙, 汤秋香, 闫雪影, 张艳军. 有机无机肥配施对潮土麦田肥力和冬小麦产量的影响[J]. 新疆农业科学, 2024, 61(5): 1067-1076. |
[13] | 周光辉, 陈凤, 孙守霞, 吕威, 朴涵琪, 郝金莲, 张述斌, 陈虹. 水肥耦合对核桃光合特性及产量和品质的效应[J]. 新疆农业科学, 2024, 61(5): 1151-1159. |
[14] | 刘钧庆, 梁国成, 张欣, 王庆勇, 赵经华. 调亏灌溉对滴灌核桃树根系空间分布特征的影响[J]. 新疆农业科学, 2024, 61(5): 1160-1171. |
[15] | 叶扬, 侯振安, 闵伟, 郭慧娟. 添加脲酶/硝化抑制剂对棉花养分吸收和产量的影响[J]. 新疆农业科学, 2024, 61(4): 814-822. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||