新疆农业科学 ›› 2024, Vol. 61 ›› Issue (2): 355-364.DOI: 10.6048/j.issn.1001-4330.2024.02.011
王季姣1,2(), 潘越2(
), 王世伟1(
), 韩政伟2, 马勇1,2, 虎海防3, 王宝庆4
收稿日期:
2023-06-21
出版日期:
2024-02-20
发布日期:
2024-03-19
通信作者:
潘越(1990-),男,新疆乌鲁木齐人,助理研究员,硕士,研究方向为林木遗传育种和果树栽培学,(E-mail)18690187637@163.com;作者简介:
王季姣(2001-),女,河南驻马店人,硕士研究生,研究方向为森林培育,(E-mail)2419371483@qq.com
基金资助:
WANG Jijiao1,2(), PAN Yue2(
), WANG Shiwei1(
), HAN Zhengwei2, MA Yong1,2, HU Haifang3, WANG Baoqing4
Received:
2023-06-21
Published:
2024-02-20
Online:
2024-03-19
Supported by:
摘要:
【目的】分析北冰红葡萄果实营养品质与土壤养分间的关系,为选择北冰红葡萄适宜栽培区提供参考依据。【方法】选取新疆4个不同生境的8个果园样点,测定果实品质和土壤养分因子,采用典型相关分析和冗余分析其相关性。【结果】8个样地的土壤养分与果实品质指标变异系数分别为6.147%~40.476%、3.674%~11.895%,其中pH与总糖的变异系数最小。土壤养分中速效磷、速效钾、阳离子交换量与可溶性固形物、单宁、总糖、总酚、果穗重、单果重和单株产量间呈正相关;土壤中速效氮和阳离子交换量与花色苷、果穗重和单果产量间呈正相关;土壤中有机质与总酚呈负相关;果品中总酸与土壤中全氮呈正相关,与速效钾呈负相关。4对典型变量分别解释了土壤养分和果实品质组内的75.500%和94.900%的信息,组间72.100%和92.100%的信息;焉耆县、温宿县与乌鲁木齐市的葡萄果实品质综合典型变量较高。【结论】不同生境下,北冰红葡萄园中土壤养分各指标间含量存在较大的差异,而果实品质各指标间差异较小,土壤pH与果实总糖差异不显著。新疆酿酒葡萄产区中焉耆县、温宿县与乌鲁木齐市的土壤环境更有利于北冰红营养物质的积累,对提高北冰红果实品质作用明显。
中图分类号:
王季姣, 潘越, 王世伟, 韩政伟, 马勇, 虎海防, 王宝庆. 土壤养分与北冰红山葡萄果实品质间的典型相关性分析[J]. 新疆农业科学, 2024, 61(2): 355-364.
WANG Jijiao, PAN Yue, WANG Shiwei, HAN Zhengwei, MA Yong, HU Haifang, WANG Baoqing. Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice[J]. Xinjiang Agricultural Sciences, 2024, 61(2): 355-364.
样点编号 Sample number | 具体位置 Location | 土壤类型 Soil type | 取样时间 Sampling time | 产区划分 Production regionalization |
---|---|---|---|---|
1 | 乌鲁木齐市 | 砂壤土 | 9月30日 | 天山北麓生态区域 |
2 | 昌吉回族自治州玛纳斯县 | 砂壤土 | ||
3 | 第八师石河子148团 | 黏土 | ||
4 | 伊犁哈萨克自治州察布查尔县 | 壤土 | 9月20日 | 伊犁河谷生态区域 |
5 | 伊犁哈萨克自治州察布查尔县种羊场 | 壤土 | ||
6 | 巴音郭楞蒙古自治州和硕县 | 砂壤土 | 9月10日 | 焉耆盆地生态区域 |
7 | 巴音郭楞蒙古自治州焉耆县 | 砂壤土 | ||
8 | 阿克苏地区温宿县 | 砂壤土 | 9月1日 | 环塔盆地生态区域 |
表1 采样地点基本信息
Tab.1 Basic information of sampled orchards
样点编号 Sample number | 具体位置 Location | 土壤类型 Soil type | 取样时间 Sampling time | 产区划分 Production regionalization |
---|---|---|---|---|
1 | 乌鲁木齐市 | 砂壤土 | 9月30日 | 天山北麓生态区域 |
2 | 昌吉回族自治州玛纳斯县 | 砂壤土 | ||
3 | 第八师石河子148团 | 黏土 | ||
4 | 伊犁哈萨克自治州察布查尔县 | 壤土 | 9月20日 | 伊犁河谷生态区域 |
5 | 伊犁哈萨克自治州察布查尔县种羊场 | 壤土 | ||
6 | 巴音郭楞蒙古自治州和硕县 | 砂壤土 | 9月10日 | 焉耆盆地生态区域 |
7 | 巴音郭楞蒙古自治州焉耆县 | 砂壤土 | ||
8 | 阿克苏地区温宿县 | 砂壤土 | 9月1日 | 环塔盆地生态区域 |
土壤养分指标 Soil nutrient index | 最小值 Minimum value | 最大值 Maximum value | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation | S-W正态性检验 P值 P value of S-W test |
---|---|---|---|---|---|---|
有机质Organic matter(%) | 0.791 | 1.720 | 1.178 | 0.303 | 25.721 | 0.049 |
pH | 6.793 | 8.506 | 7.816 | 0.464 | 5.937 | 0.123 |
全氮Total nitrogen(mg/kg) | 610.00 | 930.00 | 760.00 | 90.00 | 11.842 | 0.041 |
速效氮Alkali-hydrolyzable N(mg/kg) | 30.088 | 121.451 | 69.726 | 24.172 | 34.667 | 0.631 |
速效磷Available P(mg/kg) | 7.369 | 29.408 | 19.016 | 7.187 | 37.794 | 0.039 |
速效钾Available K(mg/kg) | 131.760 | 470.320 | 236.178 | 92.080 | 38.988 | 0.003 |
阳离子交换量CEC(cmol/kg) | 3.450 | 8.890 | 6.324 | 1.695 | 26.803 | 0.023 |
表2 北冰红葡萄园的土壤养分状况
Tab.2 Overview of soil nutrients in Vitis amurensis Rupr.Beibinghong orchards in the area
土壤养分指标 Soil nutrient index | 最小值 Minimum value | 最大值 Maximum value | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation | S-W正态性检验 P值 P value of S-W test |
---|---|---|---|---|---|---|
有机质Organic matter(%) | 0.791 | 1.720 | 1.178 | 0.303 | 25.721 | 0.049 |
pH | 6.793 | 8.506 | 7.816 | 0.464 | 5.937 | 0.123 |
全氮Total nitrogen(mg/kg) | 610.00 | 930.00 | 760.00 | 90.00 | 11.842 | 0.041 |
速效氮Alkali-hydrolyzable N(mg/kg) | 30.088 | 121.451 | 69.726 | 24.172 | 34.667 | 0.631 |
速效磷Available P(mg/kg) | 7.369 | 29.408 | 19.016 | 7.187 | 37.794 | 0.039 |
速效钾Available K(mg/kg) | 131.760 | 470.320 | 236.178 | 92.080 | 38.988 | 0.003 |
阳离子交换量CEC(cmol/kg) | 3.450 | 8.890 | 6.324 | 1.695 | 26.803 | 0.023 |
北冰红品质指标 Beibinghong quality index | 最小值 Minimum value | 最大值 Maximum value | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation | S-W正态性检验 P值 P value of S-W test |
---|---|---|---|---|---|---|
可溶性固形物Total soluble solids(%) | 21.080 | 26.730 | 23.565 | 1.306 | 5.542 | 0.532 |
花色苷Anthocyanin(mg/g) | 0.456 | 0.786 | 0.658 | 0.078 | 11.895 | 0.358 |
单宁Tannin(mg/g) | 5.790 | 9.310 | 7.154 | 1.057 | 14.775 | 0.128 |
总酸Total acids(mg/g) | 5.140 | 8.410 | 6.919 | 0.931 | 13.456 | 0.572 |
总糖Total candies(mg/g) | 158.700 | 182.100 | 168.490 | 6.190 | 3.674 | 0.565 |
总酚Total phenols(mg/g) | 3.036 | 3.930 | 3.429 | 0.294 | 8.575 | 0.049 |
果穗重Panicle weight(g) | 222.058 | 276.166 | 256.279 | 17.060 | 6.657 | 0.003 |
单果重Single fruit weight(g) | 1.222 | 1.836 | 1.605 | 0.148 | 9.221 | 0.021 |
单株产量Individual yield(kg) | 2.223 | 2.777 | 2.602 | 0.170 | 6.533 | 0.004 |
表3 供试北冰红果实品质
Tab.3 Overview of Vitis amurensis Rupr.Beibinghong fruit quality tested
北冰红品质指标 Beibinghong quality index | 最小值 Minimum value | 最大值 Maximum value | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation | S-W正态性检验 P值 P value of S-W test |
---|---|---|---|---|---|---|
可溶性固形物Total soluble solids(%) | 21.080 | 26.730 | 23.565 | 1.306 | 5.542 | 0.532 |
花色苷Anthocyanin(mg/g) | 0.456 | 0.786 | 0.658 | 0.078 | 11.895 | 0.358 |
单宁Tannin(mg/g) | 5.790 | 9.310 | 7.154 | 1.057 | 14.775 | 0.128 |
总酸Total acids(mg/g) | 5.140 | 8.410 | 6.919 | 0.931 | 13.456 | 0.572 |
总糖Total candies(mg/g) | 158.700 | 182.100 | 168.490 | 6.190 | 3.674 | 0.565 |
总酚Total phenols(mg/g) | 3.036 | 3.930 | 3.429 | 0.294 | 8.575 | 0.049 |
果穗重Panicle weight(g) | 222.058 | 276.166 | 256.279 | 17.060 | 6.657 | 0.003 |
单果重Single fruit weight(g) | 1.222 | 1.836 | 1.605 | 0.148 | 9.221 | 0.021 |
单株产量Individual yield(kg) | 2.223 | 2.777 | 2.602 | 0.170 | 6.533 | 0.004 |
地区Area | 天山北麓生态区域 Ecological area at the Northern of Tianshan Mountains | 伊犁河谷生态区域 Ecological area at Yili River Valley | 焉耆盆地生态区域 Ecological region of Yanqi Basin | 环塔盆地生态区域 Ecological region around Tarim Basin |
---|---|---|---|---|
有机质Organic matter(%) | 1.214b | 0.906c | 1.504a | 0.960bc |
pH | 7.411b | 8.040a | 8.200a | 7.812ab |
全氮Total nitrogen(mg/kg) | 830.000a | 730.000b | 710.000b | 670.000b |
速效氮Alkali-hydrolyzable N(mg/kg) | 66.654b | 43.553c | 96.337a | 78.062ab |
速效磷Available P(mg/kg) | 13.642b | 28.162a | 17.755b | 19.370b |
速效钾Available K(mg/kg) | 271.754a | 194.065a | 238.905a | 208.220a |
阳离子交换量CEC(cmol/kg) | 7.714a | 3.851c | 6.993a | 5.757b |
表4 不同生境下北冰红采样地土壤各养分含量变化
Tab.4 The determination results of soil nutrient content of the sampling site in Vitis amurensis Rupr.Beibinghong planting area in different habitats
地区Area | 天山北麓生态区域 Ecological area at the Northern of Tianshan Mountains | 伊犁河谷生态区域 Ecological area at Yili River Valley | 焉耆盆地生态区域 Ecological region of Yanqi Basin | 环塔盆地生态区域 Ecological region around Tarim Basin |
---|---|---|---|---|
有机质Organic matter(%) | 1.214b | 0.906c | 1.504a | 0.960bc |
pH | 7.411b | 8.040a | 8.200a | 7.812ab |
全氮Total nitrogen(mg/kg) | 830.000a | 730.000b | 710.000b | 670.000b |
速效氮Alkali-hydrolyzable N(mg/kg) | 66.654b | 43.553c | 96.337a | 78.062ab |
速效磷Available P(mg/kg) | 13.642b | 28.162a | 17.755b | 19.370b |
速效钾Available K(mg/kg) | 271.754a | 194.065a | 238.905a | 208.220a |
阳离子交换量CEC(cmol/kg) | 7.714a | 3.851c | 6.993a | 5.757b |
4对典型变量的编号 Four pairs of typical variable numbers | 典型相关系数(λ) Correlations(λ) | Wilks统计量 Wilk’s | 特征值 Value of characteristic | 自由度 Degree of freedom | P值 P value |
---|---|---|---|---|---|
Ⅰ | 0.99 | 0.000 | 55.644 | 63.000 | 0.000 |
Ⅱ | 0.98 | 0.000 | 33.903 | 48.000 | 0.000 |
Ⅲ | 0.96 | 0.005 | 13.397 | 35.000 | 0.00 |
Ⅳ | 0.888* | 0.069 | 3.734 | 24.000 | 0.018 |
表5 土壤养分与北冰红果实品质指标间典型相关系数的显著性检验
Tab.5 Significance test of typical correlation coefficient between soil nutrient index and Vitis amurensis Rupr.Beibinghong fruit quality index
4对典型变量的编号 Four pairs of typical variable numbers | 典型相关系数(λ) Correlations(λ) | Wilks统计量 Wilk’s | 特征值 Value of characteristic | 自由度 Degree of freedom | P值 P value |
---|---|---|---|---|---|
Ⅰ | 0.99 | 0.000 | 55.644 | 63.000 | 0.000 |
Ⅱ | 0.98 | 0.000 | 33.903 | 48.000 | 0.000 |
Ⅲ | 0.96 | 0.005 | 13.397 | 35.000 | 0.00 |
Ⅳ | 0.888* | 0.069 | 3.734 | 24.000 | 0.018 |
4对典型变 量的编号 Four pairs of typical variable numbers | 典型相 关模型 Canonical correlation model | 有机质 Organic matter (x1) | pH (x2) | 全氮 Total nitrogen (x3) | 速效氮 Alkali- hydrolyzable N (x4) | 速效磷 Available P (x5) | 速效钾 Available K (x6) | 阳离子 交换量 CEC (x7) |
---|---|---|---|---|---|---|---|---|
Ⅰ (λ1=0.972**) | qi rui | 0.285 0.365 | 0.192 0.514 | 0.165 0.362 | 0.246 0.554 | 0.546 0.739 | 0.577 0.784 | -0.392 0.621 |
Ⅱ (λ2=0.958**) | qi rui | -0.255 0.421 | -0.166 -0.186 | 0.029 0.490 | 0.395 0.651 | -0.593 -0.338 | -0.309 0.231 | 0.967 0.699 |
Ⅲ (λ3=0.857**) | qi rui | 0.392 0.631 | 0.299 0.224 | -0.128 -0.203 | 0.894 0.311 | -0.511 -0.409 | 0.666 -0.240 | -1.367 -0.243 |
Ⅳ (λ4=0.789*) | qi rui | -0.117 0.173 | 0.268 -0.193 | -1.026 -0.408 | -0.484 -0.188 | -0.813 -0.115 | 0.960 0.390 | 0.602 0.156 |
表6 北冰红葡萄园土壤各养分指标与4对典型变量间的相关系数
Tab.6 Correlation coefficient between various nutrient indexes of Vitis amurensis Rupr.Beibinghong orchards soil and four pairs of typical variables
4对典型变 量的编号 Four pairs of typical variable numbers | 典型相 关模型 Canonical correlation model | 有机质 Organic matter (x1) | pH (x2) | 全氮 Total nitrogen (x3) | 速效氮 Alkali- hydrolyzable N (x4) | 速效磷 Available P (x5) | 速效钾 Available K (x6) | 阳离子 交换量 CEC (x7) |
---|---|---|---|---|---|---|---|---|
Ⅰ (λ1=0.972**) | qi rui | 0.285 0.365 | 0.192 0.514 | 0.165 0.362 | 0.246 0.554 | 0.546 0.739 | 0.577 0.784 | -0.392 0.621 |
Ⅱ (λ2=0.958**) | qi rui | -0.255 0.421 | -0.166 -0.186 | 0.029 0.490 | 0.395 0.651 | -0.593 -0.338 | -0.309 0.231 | 0.967 0.699 |
Ⅲ (λ3=0.857**) | qi rui | 0.392 0.631 | 0.299 0.224 | -0.128 -0.203 | 0.894 0.311 | -0.511 -0.409 | 0.666 -0.240 | -1.367 -0.243 |
Ⅳ (λ4=0.789*) | qi rui | -0.117 0.173 | 0.268 -0.193 | -1.026 -0.408 | -0.484 -0.188 | -0.813 -0.115 | 0.960 0.390 | 0.602 0.156 |
4对典型变 量的编号 Four pairs of typical variable numbers | 典型相 关模型 Canonical correlation model | 可溶性 固形物 Total soluble solids(y1) | 花色苷 Anthocyanin (y2) | 单宁 Tannin (y3) | 总酸 Total acids (y4) | 总糖 Total candies (y5) | 总酚 Total phenols (y6) | 果穗重 Panicle weight (y7) | 单果重 Single fruit weight (y8) | 单株产量 Individual yield (y9) |
---|---|---|---|---|---|---|---|---|---|---|
Ⅰ (λ1=0.972**) | si rvi | 0.733 0.930 | -0.399 0.718 | 0.102 0.874 | -0.281 0.716 | 0.175 0.858 | 0.530 0.868 | 0.920 0.832 | -0.506 0.810 | -0.273 0.805 |
Ⅱ (λ2=0.958**) | si rvi | -0.635 0.225 | 0.989 0.596 | 0.240 -0.001 | 0.166 0.317 | 0.088 0.364 | -1.573 0.026 | -0.172 0.513 | 0.470 0.496 | 0.731 0.501 |
Ⅲ (λ3=0.857**) | si rvi | 1.168 0.196 | -0.491 -0.216 | 0.424 -0.322 | 0.788 -0.127 | -0.352 -0.158 | -1.564 -0.449 | 1.555 -0.158 | -1.092 -0.219 | -0.615 -0.245 |
Ⅳ (λ4=0.789*) | si rvi | 0.300 -0.103 | 0.720 -0.091 | 1.268 -0.055 | -2.004 -0.406 | -0.549 -0.244 | -0.394 -0.139 | 2.329 -0.029 | -2.461 -0.112 | 0.748 -0.061 |
表7 北冰红各果实品质指标与4对典型变量间的相关系数
Tab.7 Correlation coefficient between various quality indicators of Vitis amurensis Rupr.Beibinghong fruit and four pairs of typical variables
4对典型变 量的编号 Four pairs of typical variable numbers | 典型相 关模型 Canonical correlation model | 可溶性 固形物 Total soluble solids(y1) | 花色苷 Anthocyanin (y2) | 单宁 Tannin (y3) | 总酸 Total acids (y4) | 总糖 Total candies (y5) | 总酚 Total phenols (y6) | 果穗重 Panicle weight (y7) | 单果重 Single fruit weight (y8) | 单株产量 Individual yield (y9) |
---|---|---|---|---|---|---|---|---|---|---|
Ⅰ (λ1=0.972**) | si rvi | 0.733 0.930 | -0.399 0.718 | 0.102 0.874 | -0.281 0.716 | 0.175 0.858 | 0.530 0.868 | 0.920 0.832 | -0.506 0.810 | -0.273 0.805 |
Ⅱ (λ2=0.958**) | si rvi | -0.635 0.225 | 0.989 0.596 | 0.240 -0.001 | 0.166 0.317 | 0.088 0.364 | -1.573 0.026 | -0.172 0.513 | 0.470 0.496 | 0.731 0.501 |
Ⅲ (λ3=0.857**) | si rvi | 1.168 0.196 | -0.491 -0.216 | 0.424 -0.322 | 0.788 -0.127 | -0.352 -0.158 | -1.564 -0.449 | 1.555 -0.158 | -1.092 -0.219 | -0.615 -0.245 |
Ⅳ (λ4=0.789*) | si rvi | 0.300 -0.103 | 0.720 -0.091 | 1.268 -0.055 | -2.004 -0.406 | -0.549 -0.244 | -0.394 -0.139 | 2.329 -0.029 | -2.461 -0.112 | 0.748 -0.061 |
4对典型变量的编号 Four pairs of typical variable numbers | 土壤养分指标的典型冗余指数 Typical redundant index of soil nutrient indicator | 4对典型变量的编号 Four pairs of typical variable numbers | 果实品质指标的典型冗余指数 Typical redundant index of Beibinghong fruit quality indicator | ||
---|---|---|---|---|---|
组内 Within groups | 组间 Between groups | 组内 Within groups | 组间 Between groups | ||
Ⅰ | 0.346 | 0.340 | Ⅰ | 0.700 | 0.687 |
Ⅱ | 0.219 | 0.213 | Ⅱ | 0.155 | 0.151 |
Ⅲ | 0.124 | 0.116 | Ⅲ | 0.063 | 0.058 |
Ⅳ | 0.066 | 0.052 | Ⅳ | 0.031 | 0.025 |
表8 土壤养分指标和北冰红果实品质指标的典型冗余
Tab.8 Typical redundancy analysis of soil nutrient indicator and Vitis amurensis Rupr.Beibinghong fruit quality indicator
4对典型变量的编号 Four pairs of typical variable numbers | 土壤养分指标的典型冗余指数 Typical redundant index of soil nutrient indicator | 4对典型变量的编号 Four pairs of typical variable numbers | 果实品质指标的典型冗余指数 Typical redundant index of Beibinghong fruit quality indicator | ||
---|---|---|---|---|---|
组内 Within groups | 组间 Between groups | 组内 Within groups | 组间 Between groups | ||
Ⅰ | 0.346 | 0.340 | Ⅰ | 0.700 | 0.687 |
Ⅱ | 0.219 | 0.213 | Ⅱ | 0.155 | 0.151 |
Ⅲ | 0.124 | 0.116 | Ⅲ | 0.063 | 0.058 |
Ⅳ | 0.066 | 0.052 | Ⅳ | 0.031 | 0.025 |
图1 各样点在4对典型变量坐标图中的分布 注:1、2、3均为天山北麓生态区域的样点编号;4、5均为伊犁河谷生态区域的样点编号;6、7均为焉耆盆地生态区域的样点编号;8为环塔盆地生态区域的样点编号
Fig.1 The distribution of each sample point in the four pairs of typical variable coordinate graphs Note:Sample point in Ecological area at the Northern of Tianshan Mountains(1、2、3); Sample points in Ecological area at Yili River Valley(4、5); Sample points in Ecological region of Yanqi Basin(6、7); Sample point in Ecological region around Tarim Basin(8)
[1] | Dong C, Zhang Z, Ren J P, et al. Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco[J]. Plant Phgsiology and Biochemistry, 2013, 71:212-217. |
[2] | 周晓梅, 张彪. 山葡萄栽培与选育研究进展[J]. 吉林师范大学学报(自然科学版), 2019, 40(3):84-91. |
ZHOU Xiaomei, ZHANG Biao. Research progress in viticulture and breeding of Vitis amurensis[J]. Jilin Normal University Journal(Natural Science Edition), 2019, 40(3):84-91. | |
[3] | 李昌禹, 刘迎雪, 范书田, 等. 北冰红葡萄栽培研究现状与展望[J]. 特产研究, 2019, 41(2):125-128. |
LI Changyu, LIU Yingxue, FAN Shutian, et al. Current situation and preview of ‘beibinghong's cultivation[J]. Special Wild Economic Animal and Plant Research, 2019, 41(2):125-128. | |
[4] | 赵书成, 孙军利, 赵宝龙, 等. 不同砧木对赤霞珠葡萄种子内源激素和多胺含量的影响[J]. 果树学报, 2022, 39(8):1422-1431. |
ZHAO Shucheng, SUN Junli, ZHAO Baolong, et al. Effects of different rootstocks on contents of endogenous hormones and polyamines in Cabernet Sauvignon grape seeds[J]. Journal of Fruit Science, 2022, 39(8):1422-1431. | |
[5] | 佚名. 国产葡萄酒产区"知多少"[J]. 中国商界, 2019:62-63. |
Unknown author. Domestic wine regions "Know how much"[J]. Business China, 2019:62-63. | |
[6] | 刘阳阳. 阿克苏地区4个山葡萄引进品种生长适应性及抗寒性比较[D]. 乌鲁木齐: 新疆农业大学, 2022. |
LIU Yang. Growth adaptability and cold resistance comparison of four introduced Vitis amurensis Rupr varieties in Aksu Region[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[7] | 武运, 田歌, 陈新军, 等. 新疆葡萄酒产业发展趋势新视角探析[J]. 中国酿造, 2018, 37(10):195-199. |
WU Yun, TIAN Ge, CHEN Xinjun, et al. A new perspective on the development trend of Xinjiang wine industry[J]. China Brewing, 2018, 37(10):195-199. | |
[8] | 张欢, 高小峰, 雷梦瑶, 等. 软籽石榴果园土壤养分与果实品质关系的多元分析及其优化方案[J]. 河南农业科学, 2022, 51(4):111-119. |
ZHANG Huan, GAO Xiaofeng, LEI Mengyao, et al. Multivariate analysis of the relationship between soil nutrients and fruit quality and optimization of soil nutrients in soft-seed pomegranate orchards[J]. Journal of Henan Agricultural Sciences, 2022, 51(4):111-119. | |
[9] | 万胜, 刘伟锋, 于婷, 等. 土壤养分与新疆灰枣果实品质的多元分析及优化方案[J]. 经济林研究, 2021, 39(4):168-176. |
WAN Sheng, LIU Weifeng, YU Ting, et al. Multivariate analysis and optimization scheme of soil nutrients and nutritional quality of Xinjiang grey jujube[J]. Non-wood Forest Research, 2021, 39(4):168-176. | |
[10] | 李泽涵, 李函伦, 彭昕, 等. 新疆葡萄酒产区土壤、葡萄叶、葡萄果实和葡萄酒中矿物质元素含量及其相关性分析[J]. 中国酿造, 2022, 41(10):30-35. |
LI Zehan, LI Hanlun, PENG Xin, et al. Mineral contents in soil, grape leaves, grape and wine in Xinjiang wine producing area and their correlation analysis[J]. China Brewing, 2022, 41(10):30-35. | |
[11] | 张静文, 岳朝阳, 刘爱华, 等. 新疆玛纳斯葡萄土壤养分与果实品质关系多元分析[J]. 西南农业学报, 2017, 30(7):1606-1611. |
ZHANG Jingwen, YUE Chaoyang, LIU Aihua, et al. Multivariate analysis of relationship between soil nutrients and grape qualities for grapery in Xinjiang Manasi[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7):1606-1611. | |
[12] | 潘越, 杨璐, 杜林峰, 等. 简易覆盖对新疆阿克苏北冰红葡萄果实品质的影响[J]. 中国果树, 2022,(11):6-11. |
PAN Yue, YANG Lu, DU Linfeng, et al. Effects of simple mulch on fruit quality of Beibinghong' grape in Aksu, Xinjiang[J]. China Fruits, 2022,(11):6-11. | |
[13] | 杨颖琼. ‘北国蓝’山葡萄延迟采收果实品质及酿酒特性研究[D]. 长春: 吉林农业大学, 2016. |
YANG Yingqiong. The study on impacts of delaying harvest time on ‘Beiguo lan’ fruit quality and oenological characteristics[D]. Changchun: Jilin Agricultural University, 2016. | |
[14] | 李晓红, 曲炳章, 刘雅坤, 等. 山葡萄新品种“雪兰红”不同株行距和架式对果实品质及产量的影响[J]. 特产研究, 2013. 35(3):31-34. |
LI Xiaohong, QU Bingzhang, LIU Yakun, et al. Effect of different plantrow spacing and posture on fruit quality and yield of Vitis Amurensis Rupr.Xuelanhong[J]. Special Wild Economic Animal and Plant Research, 2013, 35(3):31-34. | |
[15] |
崔长伟, 刘丽媛, 王华, 等. 山葡萄综合开发利用研究进展[J]. 食品科学, 2015, 36(13):276-282.
DOI |
CUI Changwei, LIU Liyuan, WANG Hua, et al. Progress in comprehensive utilization of Vitis amurensis rupr.[J]. Food Science, 2015, 36(13):276-282. | |
[16] | 庞春燕, 蔡伊莎, 夏亮, 等. 分光光度法测定石灰性土壤阳离子交换量的相关探讨[J]. 绿色科技, 2022, 24(18):206-210. |
PANG Chunyan, CAI Yisha, XIA Liang, et al. Related Discussion of Determination of Cation Exchange Capacity(CEC)in Calcareous Soil by Spectrophotometry[J]. Journal of Green Science and Technology, 2022, 24(18):206-210. | |
[17] |
Guo K B, Guo Z, Guo Y, et al. The effects of soil nutrient on fruit quality of 'Hayward' kiwifruit(Actinidia chinensis)in Northwest China[J]. European Journal of Horticultural Science, 2020, 85(6):471-476.
DOI URL |
[18] |
Vos C A N. Soil and plant nutrient management and fruit production of papaya(Carica papaya)in Keaau, Hawaii[J]. Journal of Plant Nutrition, 2020, 43(3):384-395.
DOI URL |
[19] | 郑立阳. 新疆不同小产区酿酒葡萄品质特性的研究[D]. 杨凌: 西北农林科技大学, 2015. |
ZHENG Liyang. Research on the quality of the wine grape in subregions of Xinjiang[D]. Yangling: Northwest A & F University, 2015. | |
[20] |
Cargnin A. Canonical correlations among grapevine agronomic and processing characteristics[J]. Acta Scientiarum Agronomy, 2019, 41(1)42619.
DOI URL |
[21] | Gulsoy E, Simsek M, Kara M K, et al. Assessment of Relationship Between Fruit Characteristics of Almond Selections from Aydin Region Using Canonical Correlation Analysis Method[J]. Fresenius Environmental Bulletin, 2018, 27(7). |
[22] |
逯晓萍, 张先炼, 李元清, 等. 典型相关分析在高粱遗传育种中的应用研究[J]. 华北农学报, 2002,(3):46-51.
DOI |
LU Xiaoping, ZHANG Xianlian, LI Yuanqing, et al. Application Research of Canonical Correlation Analysis in Sorghum Breeding[J]. Acta Agriculturae Boreali-Sinica, 2002,(3):46-51. | |
[23] | Szcs E, T Kállay. Interaction of nutrient supply and crop load of apple trees(Malus domestica Borkh.)[J]. International Journal of Horticultural Science, 2008, 14(112). |
[24] |
Yan M, Zeng X, Zhang B, et al. Prediction of Apple Fruit Quality by Soil Nutrient Content and Artificial Neural Network[J]. Phyton-International Journal of Experimental Botany, 2023, 92(1):193-208.
DOI URL |
[25] | 孔婷婷, 刘爱华, 张静文, 等. 石榴园土壤养分与果实品质的多元分析[J]. 河南农业大学学报, 2017, 51(3):318-323. |
KONG Tingting, LIU Aihua, ZHANG Jingwen, et al. Multivariate analysis between boil nutrients and fruit qualities in pomegranate orchard[J]. Journal of Henan Agricultural University, 2017, 51(3):318-323. | |
[26] | 曹胜, 周卫军, 刘沛, 等. 冰糖橙果园土壤养分与果实品质关系的多元分析及优化方案[J]. 土壤, 2021, 53(1):97-104. |
CAO Sheng, ZHOU Weijun, LIU Pei, et al. Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis(L.) Osbeck Orchard[J]. Soils, 2021, 53(1):97-104. | |
[27] | 徐丽, 张海燕, 辛国, 等. 核桃土壤养分水平与果实品质相关性分析[J]. 经济林研究, 2022, 40(1):74-81. |
XU Li, ZHANG Haiyan, XIN Guo, et al. Correlation analysis between soil nutrient and fruit quality of walnut[J]. Non-wood Forest Research, 2022, 40(1):74-81. | |
[28] | 刘海峰. 山葡萄花色苷生物合成相关结构基因克隆与表达[D]. 哈尔滨: 东北林业大学, 2010. |
LIU Haifeng. Cloning and Expression of Anthocyanin Biosynthesis Related Structure Genes in Vitis amurensis[D]. Harbin:Northeast Forestry University, 2010. | |
[29] |
He Y, Wen L K, Yu H S, et al. Isolation and structural identification of the main anthocyanin monomer in Vitis amurensis Rupr[J]. Natural Product Research, 2018, 32(7):867-870.
DOI PMID |
[30] | 张丽琼. 长期轮作与施肥对土壤肥力的影响及其综合评价[D]. 杨凌: 西北农林科技大学, 2016. |
ZHANG Liqiong. Effect of Long-Term Rotation and Fertilization to Soil Fertility and Its Comprehensive evaluation[D]. Yangling: Northwest A&F University, 2016. | |
[31] | 汪慧. 新疆酿酒葡萄气候区划与品种区域化研究[D]. 杨凌: 西北农林科技大学, 2010. |
WANG Hui. Study on the climatic zoning of viticulture and grapevine variety zoning of Xinjiang[D]. Yangling: Northwest A&F University, 2020. |
[1] | 靳娟, 李丽莉, 杨磊, 樊丁宇, 郝庆. 新疆红枣产业发展现状分析[J]. 新疆农业科学, 2024, 61(S1): 106-110. |
[2] | 王敏, 韩守安, 刘旭鹏, 张雯, 张付春, 钟海霞, 伍新宇, 潘明启. 新疆葡萄产业发展现状分析[J]. 新疆农业科学, 2024, 61(S1): 127-130. |
[3] | 沈晓贺, 朱占江, 杨莉玲, 刘佳, 阿布力孜·巴斯提. 新疆酿酒葡萄生产机械化现状与发展趋势[J]. 新疆农业科学, 2024, 61(S1): 147-152. |
[4] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[5] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[6] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[7] | 鲁伟丹, 周远航, 马小龙, 高江龙, 樊晓琴, 郭建富, 李健强, 林明. 不同比例有机肥替代化肥对甜菜植株养分及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1631-1639. |
[8] | 侯献飞, 李强, 苗昊翠, 贾东海, 顾元国, 买买提依明·斯马依, 崔福洋. 棉花-花生轮作模式对土壤养分及其产量的影响[J]. 新疆农业科学, 2024, 61(7): 1657-1665. |
[9] | 张福林, 李宁, 刘宇翔, 陈怡佳, 余庆辉, 闫会转. 外源2,4-表油菜素内酯及褪黑素对樱桃番茄果实品质和果皮形态结构的影响[J]. 新疆农业科学, 2024, 61(7): 1738-1747. |
[10] | 张钊, 张贵龙, 汤秋香, 闫雪影, 张艳军. 有机无机肥配施对潮土麦田肥力和冬小麦产量的影响[J]. 新疆农业科学, 2024, 61(5): 1067-1076. |
[11] | 户金鸽, 白世践, 陈光, 蔡军社. 不同地面覆盖方式对酿酒葡萄品种马瑟兰果实品质的影响及综合评价[J]. 新疆农业科学, 2024, 61(5): 1131-1139. |
[12] | 马云龙, 谢辉, 张雯, 朱学慧, 王艳蒙, 麦斯乐, 张佳喜. 温度对绿色葡萄干色泽及干燥特性的影响[J]. 新疆农业科学, 2024, 61(2): 345-354. |
[13] | 孙晨, 槐国龙, 王斌, 孙九胜, 杨志莹, 单娜娜. 化肥减量配施黄腐酸对盐渍化土壤养分及花生生长的影响[J]. 新疆农业科学, 2024, 61(12): 2934-2942. |
[14] | 户金鸽, 白世践, 郑明. 无核白及芽变长粒无核白葡萄的差异性分析[J]. 新疆农业科学, 2024, 61(12): 2954-2965. |
[15] | 徐安东, 张广杰, 付娆, 孟卓, 颜宇, 李保国, 马德英. 白星花金龟取食葡萄枝条的高效腐解条件和转化参数优化[J]. 新疆农业科学, 2024, 61(12): 3067-3077. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||