新疆农业科学 ›› 2022, Vol. 59 ›› Issue (4): 855-862.DOI: 10.6048/j.issn.1001-4330.2022.04.009
周晓明(), 张付春, 钟海霞, 张雯, 韩守安, 伍新宇, 潘明启(
)
收稿日期:
2021-05-12
出版日期:
2022-04-20
发布日期:
2022-04-24
通信作者:
潘明启(1962-),男,北京人,研究员,硕士,研究方向为葡萄栽培与质量控制,E-mail: panmq3399@sohu.com作者简介:
周晓明(1983-),男,新疆哈密人,副研究员,硕士,研究方向为葡萄品质调控,(E-mail) zxm8393@sina.com
基金资助:
ZHOU Xiaoming(), ZHANG Fuchun, ZHONG Haixia, ZHANG Wen, HAN Shouan, WU Xinyu, PAN Mingqi(
)
Received:
2021-05-12
Published:
2022-04-20
Online:
2022-04-24
Supported by:
摘要:
【目的】研究厂形叶幕形赤霞珠葡萄果实苹果酸的积累代谢规律,为葡萄有机酸代谢调控的研究提供理论依据。【方法】在厂形树形的基础上,设置对照直立形叶幕及2种高度的厂形叶幕,检测赤霞珠果实成熟过程苹果酸等有机酸的变化及苹果酸代谢相关酶的活性变化。【结果】厂形叶幕与直立形叶幕相比,降低了果域环境温度0.8℃与1.5℃。厂形叶幕在一定程度上提高了苹果酸与酒石酸的含量,成熟果实苹果酸含量分别增高了0.338与0.365 mg/g,酒石酸增高了0.774与0.760 mg/g。叶幕高度较高的H1叶幕比较低的H2叶幕,可能更有利于苹果酸的积累。3种叶幕形果实的磷酸烯醇式丙酮酸羧化酶、苹果酸脱氢酶活性与果实苹果酸含量呈现不同程度的正相关,苹果酸酶活性与果实苹果酸含量呈现不同程度的负相关。【结论】简约化的厂形叶幕设置可以达到调控赤霞珠葡萄果实苹果酸积累代谢。
中图分类号:
周晓明, 张付春, 钟海霞, 张雯, 韩守安, 伍新宇, 潘明启. 厂形叶幕赤霞珠葡萄果实苹果酸的代谢规律[J]. 新疆农业科学, 2022, 59(4): 855-862.
ZHOU Xiaoming, ZHANG Fuchun, ZHONG Haixia, ZHANG Wen, HAN Shouan, WU Xinyu, PAN Mingqi. Study on the Malate Metabolism of Cabernet Sauvignon Grape under Inverted L Shape Canopy Type[J]. Xinjiang Agricultural Sciences, 2022, 59(4): 855-862.
不同叶幕形 Different canopy types | |||
---|---|---|---|
CK | H1 | H2 | |
PEPC | 0.97 | 0.781* | 0.736 |
NAD-MDH | 0.872* | 0.833* | 0.88 |
NADP-ME | -0.776* | -0.658 | -0.562 |
表1 苹果酸相关代谢酶活性与苹果酸含量相关性
Table 1 Correlation between malate-related metabolic enzyme activity and malate content
不同叶幕形 Different canopy types | |||
---|---|---|---|
CK | H1 | H2 | |
PEPC | 0.97 | 0.781* | 0.736 |
NAD-MDH | 0.872* | 0.833* | 0.88 |
NADP-ME | -0.776* | -0.658 | -0.562 |
不同叶幕形 Different canopy types | |||
---|---|---|---|
CK | H1 | H2 | |
PEPC | 0.566 | 0.306 | 0.209 |
NAD-MDH | 0.623 | 0.592 | 0.453 |
NADP-ME | -0.380 | -0.151 | -0.275 |
表2 苹果酸相关代谢酶活性与果域微环境温度相关性
Table 2 Correlation between the activity of malate-related metabolic enzymes and the temperature of the fruit-zone microenvironment
不同叶幕形 Different canopy types | |||
---|---|---|---|
CK | H1 | H2 | |
PEPC | 0.566 | 0.306 | 0.209 |
NAD-MDH | 0.623 | 0.592 | 0.453 |
NADP-ME | -0.380 | -0.151 | -0.275 |
[1] | 成冰, 张京芳, 徐洪宇, 等. 不同品种酿酒葡萄有机酸含量分析[J]. 食品科学, 2013, 34(12):223-228. |
CHENG Bing, ZHANG Jingfang, XU Hongyu, et al. Analysis of Organic Acid Contents in Wine Grape from Different Cultivars[J]. Food Science. 2013, 34(12):223-228. | |
[2] | Zheng J, Huang C, Yang B, et al. Regulation of phytochemicals in fruits and berries by environmental variation—Sugars and organic acids[J]. Journal of Food Biochemistry, 2018, 43(6):e12642. |
[3] |
Hale C R. Synjournal of organic acids in the fruit of the grape[J]. Nature, 1962, 195(4844):917-918.
DOI URL |
[4] |
Greer D H, Weedon M M. Temperature-dependent responses of the berry developmental processes of three grapevine (Vitis vinifera) cultivars[J]. New Zealand Journal of Crop and Horticultural Science, 2014, 42(4):233-246.
DOI URL |
[5] | Wu W, Chen F . Malate transportation and accumulation in fruit cell[J]. Endocytobiosis and Cell Research, 2016, 27(2):107-112. |
[6] | Martínez-Lüscher J, Chen C C L, Brillante L, et al. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(49):10693-10702. |
[7] | Ruffner H P. 1982. Metabolism of tartaric and malic acids in Vitis: a review -Part B[J]. Vitis, 21(3):346-358. |
[8] |
Famiani F, Farinelli D, Frioni T, et al. Malate as substrate for catabolism and gluconeogenesis during ripening in the pericarp of different grape cultivars[J]. Biologia Plantarum, 2016, 60(1):155-162.
DOI URL |
[9] |
Kuhn N, Guan L, Dai Z W, et al. Berry ripening: recently heard through the grapevine[J]. Journal of Experimental Botany, 2013, 65(16):4543-4559.
DOI URL |
[10] | Sweetman C, Deluc L G, Cramer G R, et al. Regulation of malate metabolism in grape berry and other developing fruits[J]. Phytochemistry, 2009, 40(52):1329-1344. |
[11] | 姚玉新, 李明, 由春香, 等. 苹果果实中苹果酸代谢关键酶与苹果酸和可溶性糖积累的关系[J]. 园艺学报, 2016, 37(1):1-8. |
YAO Yuxin, LI Ming, YOU Chunxiang, et al. Relationship between malic acid metabolism-related key enzymes and accumulationof malic acid as well as the soluble sugars in apple fruit[J]. ActaHorticulturaeSinica, 2016, 37(1):1-8. | |
[12] | 李甲明, 杨志军, 张绍铃, 等. 不同梨品种果实有机酸含量变化与相关酶活性的研究[J]. 西北植物学报, 2013, 33(10):2024-2030. |
LI Jiaming, YANG Zhijun, ZHANG Shaoling, et al. Change of Organic Acid Contents and Related Enzyme Activities in Different Pear Cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(10):2024-2030. | |
[13] | 李航, 陶海青, 陈益香, 等. 2种中国樱桃果实有机酸积累及代谢相关酶活性的研究[J]. 西北农业学报, 2019, 28(12):2019-2026. |
LI Hang, TAO Haiqing, CHEN Yixiang, et al. Evaluation of Organic Acid Accumulation and MetabolismRelated Enzymes Activities in Two Chinese Cherry Fruits[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(12):2019-2026. | |
[14] | 王鹏飞, 薛晓芳, 穆晓鹏, 等. 不同酸度欧李果实有机酸积累特性与相关代谢酶活性分析[J]. 中国农业科学, 2013, 46(19):4101-4109. |
WANG Pengfei, XUE Xiaofang, MU Xiaopeng, et al. Analysis of Organic Acid Accumulation Characteristics and Organic Acid-Metabolizing Enzyme Activities of Chinese Dwarf Cherry (Cerasus humilis Bunge) Fruit[J]. Scientia Agricultura Sinica, 2013, 46(19):4101-4109. | |
[15] | 吴志军, 田丽敏, 左俊伟, 等. 叶幕高度对“赤霞珠”葡萄叶幕微气候及其品质的影响[J]. 北方园艺, 2018,(1):57-61. |
WU Zhijun, TIAN Limin, ZUO Junwei, et al. Effects of Canopy Height on Canopy Microclimate and Quality of‘Cabernet Sauvignon’Grape[J]. Northern Horticulture, 2018, (1):57-61. | |
[16] | 王珍, 刘迪迪, 吴佳颖, 等. 叶幕厚度对赤霞珠果实品质及酚类物质的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(10):117-125. |
WANG Zhen, LIU Didi, WU Jiaying, et al. Effect of canopy thickness on berry quality and phenolic compounds of Cabernet Sauvignon[J]. Journal of Northwest A & F University(Nat.Sci.Ed.), 2018, 46(10):117-125. | |
[17] | 杨君, 陈黄曌, 李俊楠, 等. 不同叶幕类型对‘赤霞珠’葡萄产量与果实品质的影响[J]. 果树学报, 2020, 37(2):235-243. |
YANG Jun, CHEN Huangzhao, LI Junnan, et al. Effects of canopy types on yield and berry quality of ‘Cabernet Sauvignon’[J]. Journal of Fruit Science, 2020, 37(2):235-243. | |
[18] | 林耀盛, 刘学铭, 钟炜雄, 等. 青梅有机酸谱特性分析及其应用研究[J]. 现代食品科技, 2014, 30(9):280-285. |
LIN Yaosheng, LIU Xueming, ZHONG Weixiong, et al. Chromatographic Characterization of Organic Acids in Prunusmume and Its Application[J]. Modern Food Science and Technology, 2014, 30(9):280-285. | |
[19] | Hirai M, Ueno I. Development of citrus fruits: Fruit development and enzymatic changes in juice vesicle tissue[J]. Plant and Cell Physiology, 1977, 18(4):791-799. |
[20] | 史娟, 李方方, 马宏, 等. 不同中间砧对苹果果实苹果酸代谢关键酶活性及其相关基因表达的影响[J]. 园艺学报, 2016, 43(1):132-140. |
SHI Juan, LI Fangfang, MA Hong, et al. Effects of Different Interstocks on Key Enzymes Activities and the Expression of Genes Related to Malic Acid Metabolism in Apple Fruit[J]. Acta Horticulturae Sinica, 2016, 43(1):132-140. | |
[21] | 罗安才, 杨晓红, 邓英毅, 等. 柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化[J]. 中国农业科学, 2003, 36(8):941-944. |
LUO Ancai, YANG Xiaohong, DENG Yingyi, et al. Organic Acid Concentrations and the Relative Enzymatic ChangesDuring the Development of Citrus Fruits[J]. Scientia Agricultura Sinica, 2003, 36(8):941-944. | |
[22] |
Liu L, Nan L, Zhao X, et al. Effects of two training systems on sugar metabolism and related enzymes in cv. Beibinghong (Vitisamurensis Rupr.)[J]. Canadian Journal of Plant Science, 2015, 95(5):987-998.
DOI URL |
[23] | Hulands S, Greer D H, Harper J D I. The Interactive Effects of Temperature and Light Intensity on Vitis vinifera cv. 'Semillon' Grapevines. I. Berry Growth and Development[J]. European Journal of Horticultural Science, 2013, 78(6):249-257. |
[24] | Downey M O, Harvey J S, Robinson S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes[J]. Australian Journal of Grape & Wine Research, 2010, 10(1):55-73. |
[25] | Gutiérrez-Granda M, Morrison J C. Solute Distribution and Malic Enzyme Activity in Developing Grape Berries[J]. American Journal of Enology and Viticulture, 1992, 43(4):323. |
[26] |
Pastore C, Zenoni S, Tornielli G B, et al. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening[J]. BMC Genomics. 2011, 12(1):631.
DOI URL |
[27] |
Silva W B, Nascimento V L, Medeiros D B, et al. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation?[J]. Frontiers in Plant Science, 2018, 9:1689.
DOI URL |
[28] | 张绍铃, 贾璐婷, 王利斌, 等. 园艺作物果实液泡糖、酸转运与转化研究进展[J]. 南京农业大学学报, 2019, 42(4):583-593. |
ZHANG Shaoling, JIA Luting, WANG Libing, et al. Recent advance on vacuolar sugar and acid transportationand conversion in horticultural fruit[J]. Journal of Nanjing Agricultural University, 2019, 42(4):583-593. |
[1] | 王敏, 韩守安, 刘旭鹏, 张雯, 张付春, 钟海霞, 伍新宇, 潘明启. 新疆葡萄产业发展现状分析[J]. 新疆农业科学, 2024, 61(S1): 127-130. |
[2] | 沈晓贺, 朱占江, 杨莉玲, 刘佳, 阿布力孜·巴斯提. 新疆酿酒葡萄生产机械化现状与发展趋势[J]. 新疆农业科学, 2024, 61(S1): 147-152. |
[3] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[4] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[5] | 王浩中, 林青, 曾军, 高雁, 赵燕慧, 时红玲, 马贵军, 马正海, 娄恺, 霍向东. 产植酸酶益生乳酸菌的筛选[J]. 新疆农业科学, 2024, 61(9): 2290-2298. |
[6] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[7] | 阿热孜姑·吐逊, 贾凯, 高杰. 不同基质和播种密度对洋葱小鳞茎产出个数的影响[J]. 新疆农业科学, 2024, 61(8): 1993-2003. |
[8] | 王慧楠, 朱静, 谢文文, 何子璇, 柏晓玉, 朱艳蕾, 张志东. 一株海洋杆菌属新菌种XAAS-72T的植物促生功能分析及ACC脱氨酶蛋白结构预测[J]. 新疆农业科学, 2024, 61(7): 1778-1785. |
[9] | 巩隽铭, 熊显鹏, 张彩霞, 邵东南, 程帅帅, 孙杰. 陆地棉4-香豆酸辅酶A连接酶基因Gh4CL30的功能分析[J]. 新疆农业科学, 2024, 61(6): 1301-1309. |
[10] | 强立栋, 冯宽, 朱长安, 赵云, 李召锋, 李卫华. 花后高温胁迫对小麦籽粒萌发及相关酶活性影响[J]. 新疆农业科学, 2024, 61(6): 1345-1351. |
[11] | 张宏芝, 王立红, 时佳, 孔德鹏, 王重, 高新, 李剑峰, 王春生, 夏建强, 樊哲儒, 张跃强. 土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1041-1047. |
[12] | 户金鸽, 白世践, 陈光, 蔡军社. 不同地面覆盖方式对酿酒葡萄品种马瑟兰果实品质的影响及综合评价[J]. 新疆农业科学, 2024, 61(5): 1131-1139. |
[13] | 叶扬, 侯振安, 闵伟, 郭慧娟. 添加脲酶/硝化抑制剂对棉花养分吸收和产量的影响[J]. 新疆农业科学, 2024, 61(4): 814-822. |
[14] | 李肖, 陈永成, 黄嵘峥, 许平珠, 张凡凡, 马春晖. 向日葵副产物中优势乳酸菌和纤维素分解菌的生理生化特征分析[J]. 新疆农业科学, 2024, 61(3): 607-614. |
[15] | 马云龙, 谢辉, 张雯, 朱学慧, 王艳蒙, 麦斯乐, 张佳喜. 温度对绿色葡萄干色泽及干燥特性的影响[J]. 新疆农业科学, 2024, 61(2): 345-354. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||