新疆农业科学 ›› 2024, Vol. 61 ›› Issue (7): 1778-1785.DOI: 10.6048/j.issn.1001-4330.2024.07.026
王慧楠1,2(), 朱静2, 谢文文2,3, 何子璇2,3, 柏晓玉1, 朱艳蕾1(
), 张志东1,2,3(
)
收稿日期:
2023-10-11
出版日期:
2024-07-20
发布日期:
2024-09-04
通信作者:
朱艳蕾(1980-),女,江苏沛县人,副教授,博士,研究方向为微生物生态,(E-mail)zhuyanlei1226@163.com;作者简介:
王慧楠(1999-),女,吉林长春人,硕士研究生,研究方向为微生物生态,(E-mail)18946303350@163.com
基金资助:
WANG Huinan1,2(), ZHU Jing2, XIE Wenwen2,3, HE Zixuan2,3, BAI Xiaoyu1, ZHU Yanlei1(
), ZHANG Zhidong1,2,3(
)
Received:
2023-10-11
Published:
2024-07-20
Online:
2024-09-04
Supported by:
摘要:
【目的】研究海洋杆菌属新菌种XAAS-72的植物促生功能,挖掘其潜在功能基因。【方法】通过对菌株全基因组测序,分析相关功能基因组成,挖掘ACC脱氨酶合成相关的候选基因,并进行功能预测。【结果】海洋杆菌属新种Pontibacter kalidii XAAS-72菌悬液处理可显著提高盆栽小麦麦苗生长,其基因组长度为5 054 860 bp,含1个环形质粒,总GC含量为54.52%,注释的基因数目为4 391个,编码蛋白数4 261个,具有多种抗逆和促生相关基因。其与Pontibacter sp. BAB1700的ACC脱氨酶(1-aminoeyclopropane-1-earboxylate-deaminase)相似度最高为72.48%。该蛋白属于不稳定亲水性蛋白,不具备跨膜结构,且无信号肽结构。【结论】海洋杆菌属新种XAAS-72蕴藏着丰富的抗逆和植物促生相关基因。
中图分类号:
王慧楠, 朱静, 谢文文, 何子璇, 柏晓玉, 朱艳蕾, 张志东. 一株海洋杆菌属新菌种XAAS-72T的植物促生功能分析及ACC脱氨酶蛋白结构预测[J]. 新疆农业科学, 2024, 61(7): 1778-1785.
WANG Huinan, ZHU Jing, XIE Wenwen, HE Zixuan, BAI Xiaoyu, ZHU Yanlei, ZHANG Zhidong. Structure prediction of the ACC protein from Pontibacter kalidii XAAS-72T with the plant growth-promoting character[J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1778-1785.
基因ID Gene ID | 酶编号 Enzyme number | 基因 Gene | 基因注释 Gene notes | KEGG注释编号 KEGG Note No | 功能描述 Functional description |
---|---|---|---|---|---|
Chr1:3817900:3818805:- | EC:3.5.99.7 | 1-氨基环丙烷-1- 羧酸脱氨酶 | K01505 | ACC脱氨酶 编码基因 | |
Chr1:1392508:1394346:- | EC:3.2.1.141 | treZ,glgZ | 麦芽寡糖基海藻糖水解酶 | K01236 | 参与耐盐 渗透调节 |
Chr1:2091855:2093990:- | EC:3.2.1.68 | ISA, treX | 异淀粉酶 | K01214 | |
Chr1:4968277:4969896:- | 3.2.1.28 | TREH,treA,treF | 海藻糖酶 | K01194 | |
Chrw1:405272:406936:- | - | betT,betS | 胆碱/甘氨酸/脯氨酸 甜菜碱转运蛋白 | K02168 | |
Chr1:1485258:1486622:- | - | nhaA | Na+/H+逆向转运蛋白 | K03313 | 参与逆向转运系统 |
Chr1:2575687:2578005:- | EC: 2.4.1.15 | TPS | 海藻糖6-磷酸合酶/磷酸酶 | K16055 | 促进植物生长 |
Chr1:340156:341550:- | EC: 4.1.1.19 | speA | 精氨酸脱羧酶 | K01585 | |
Chr1:813781:815514:+ | E2.2.1.6L | ilvB, ilvG, ilvI | 乙酰乳酸合成酶 | K01652 | |
Chr1:4768702:4769751:- | - | RecA | 重组蛋白RecA | K03553 | 参与DNA修复 |
Chr1:2565780:2569433:- | - | sbcC, rad50 | DNA修复蛋白 | K03546 | |
Chr1:202874:203482:+ | - | recR | DNA修复蛋白 | K06187 | |
Chr1:4598147:4598860:+ | - | recO | DNA修复蛋白 | K03584 | |
Chr1:1791331:1792521:- | EC:4.2.1.20 | trpB | 色氨酸合酶亚基 | K01696 | IAA产生 |
Chr1:928485:932990:- | EC:1.4.1.13 | gltB | 谷氨酸合酶 | K00265 | 固氮及氮同化 |
Chr1:927028:928485:- | EC:1.4.1.13 | gltD | 谷氨酸合酶 | K00266 | |
Chr1:2561033:2561446:+ | - | -iscU, nifU | 固氮蛋白NifU及相关蛋白 | K04488 | |
Chr1:3771390:3772286:+ | - | pstS | 磷酸盐ABC转运体底物结合蛋白 | K02040 | 磷酸盐代谢 |
Chr1:4580607:4581371:- | EC:7.3.2.1 | pstB | 磷酸盐ABC转运体atp结合蛋白 | K02036 | |
Chr1:4582284:4583159:- | - | pstC | 磷酸盐转运体渗透酶亚基 | K02037 | |
Chr1:4579862:4580551:- | - | phoU | 磷酸盐特异性转运系统辅助蛋白 | K02039 | |
Chr1:4765770:4766798:- | EC:2.7.13.3 | phoR | 双组分系统,ompr家族,磷酸盐 调节传感器组氨酸激酶 | K07636 | |
Chr1:1334658:1335221:- | - | efp | 延伸系数P | K02356 | 生物膜形成 |
Chr1:1553626:1554504:- | - | motB | 鞭毛运动蛋白 | K02557 | |
Chr1:595364:596620:- | EC:2.7.7.4 | cysN | 硫酸腺苷酰转移酶 | K00956 | 硫同化及代谢 |
Chr1:597641:598360:- | EC:1.8.4.8 1.8.4.10 | cysH | 磷酸腺苷磷酸硫酸盐还原酶 | K00390 | |
Chr1:2069683:2070297:+ | EC:2.7.1.25 | cysC | 腺苷酸硫酸激酶 | K00860 | |
Chr1:2189706:2190593:- | EC:2.5.1.144 | cysM | 半胱氨酸合酶B | K12339 | |
Chr1:3367321:3368154:- | EC:2.3.1.30 | cysE | 丝氨酸O-乙酰转移酶 | K00640 | |
Chr1:2074:2508:- | - | osmC | 渗透诱导蛋白 | K04063 | 氧化还原酶 |
Chr1:639323:639814:+ | EC:1.11.1.15 | DOT5 | 过氧化物酶 | K03564 | |
Chr1:417073:417903:+ | EC:2.1.1.80 | cheR | 趋化蛋白甲基转移酶 | K00575 | 根定植趋化性 |
Chr1:417903:418475:+ | EC:3.1.1.61 3.5.1.44 | cheB | 双组分系统,趋化性家族, 蛋白质-谷氨酸甲基酯酶/ 谷氨酰胺酶 | K03412 |
表1 菌株相关功能基因(部分)
Tab.1 Functional genes related to strains (partial)
基因ID Gene ID | 酶编号 Enzyme number | 基因 Gene | 基因注释 Gene notes | KEGG注释编号 KEGG Note No | 功能描述 Functional description |
---|---|---|---|---|---|
Chr1:3817900:3818805:- | EC:3.5.99.7 | 1-氨基环丙烷-1- 羧酸脱氨酶 | K01505 | ACC脱氨酶 编码基因 | |
Chr1:1392508:1394346:- | EC:3.2.1.141 | treZ,glgZ | 麦芽寡糖基海藻糖水解酶 | K01236 | 参与耐盐 渗透调节 |
Chr1:2091855:2093990:- | EC:3.2.1.68 | ISA, treX | 异淀粉酶 | K01214 | |
Chr1:4968277:4969896:- | 3.2.1.28 | TREH,treA,treF | 海藻糖酶 | K01194 | |
Chrw1:405272:406936:- | - | betT,betS | 胆碱/甘氨酸/脯氨酸 甜菜碱转运蛋白 | K02168 | |
Chr1:1485258:1486622:- | - | nhaA | Na+/H+逆向转运蛋白 | K03313 | 参与逆向转运系统 |
Chr1:2575687:2578005:- | EC: 2.4.1.15 | TPS | 海藻糖6-磷酸合酶/磷酸酶 | K16055 | 促进植物生长 |
Chr1:340156:341550:- | EC: 4.1.1.19 | speA | 精氨酸脱羧酶 | K01585 | |
Chr1:813781:815514:+ | E2.2.1.6L | ilvB, ilvG, ilvI | 乙酰乳酸合成酶 | K01652 | |
Chr1:4768702:4769751:- | - | RecA | 重组蛋白RecA | K03553 | 参与DNA修复 |
Chr1:2565780:2569433:- | - | sbcC, rad50 | DNA修复蛋白 | K03546 | |
Chr1:202874:203482:+ | - | recR | DNA修复蛋白 | K06187 | |
Chr1:4598147:4598860:+ | - | recO | DNA修复蛋白 | K03584 | |
Chr1:1791331:1792521:- | EC:4.2.1.20 | trpB | 色氨酸合酶亚基 | K01696 | IAA产生 |
Chr1:928485:932990:- | EC:1.4.1.13 | gltB | 谷氨酸合酶 | K00265 | 固氮及氮同化 |
Chr1:927028:928485:- | EC:1.4.1.13 | gltD | 谷氨酸合酶 | K00266 | |
Chr1:2561033:2561446:+ | - | -iscU, nifU | 固氮蛋白NifU及相关蛋白 | K04488 | |
Chr1:3771390:3772286:+ | - | pstS | 磷酸盐ABC转运体底物结合蛋白 | K02040 | 磷酸盐代谢 |
Chr1:4580607:4581371:- | EC:7.3.2.1 | pstB | 磷酸盐ABC转运体atp结合蛋白 | K02036 | |
Chr1:4582284:4583159:- | - | pstC | 磷酸盐转运体渗透酶亚基 | K02037 | |
Chr1:4579862:4580551:- | - | phoU | 磷酸盐特异性转运系统辅助蛋白 | K02039 | |
Chr1:4765770:4766798:- | EC:2.7.13.3 | phoR | 双组分系统,ompr家族,磷酸盐 调节传感器组氨酸激酶 | K07636 | |
Chr1:1334658:1335221:- | - | efp | 延伸系数P | K02356 | 生物膜形成 |
Chr1:1553626:1554504:- | - | motB | 鞭毛运动蛋白 | K02557 | |
Chr1:595364:596620:- | EC:2.7.7.4 | cysN | 硫酸腺苷酰转移酶 | K00956 | 硫同化及代谢 |
Chr1:597641:598360:- | EC:1.8.4.8 1.8.4.10 | cysH | 磷酸腺苷磷酸硫酸盐还原酶 | K00390 | |
Chr1:2069683:2070297:+ | EC:2.7.1.25 | cysC | 腺苷酸硫酸激酶 | K00860 | |
Chr1:2189706:2190593:- | EC:2.5.1.144 | cysM | 半胱氨酸合酶B | K12339 | |
Chr1:3367321:3368154:- | EC:2.3.1.30 | cysE | 丝氨酸O-乙酰转移酶 | K00640 | |
Chr1:2074:2508:- | - | osmC | 渗透诱导蛋白 | K04063 | 氧化还原酶 |
Chr1:639323:639814:+ | EC:1.11.1.15 | DOT5 | 过氧化物酶 | K03564 | |
Chr1:417073:417903:+ | EC:2.1.1.80 | cheR | 趋化蛋白甲基转移酶 | K00575 | 根定植趋化性 |
Chr1:417903:418475:+ | EC:3.1.1.61 3.5.1.44 | cheB | 双组分系统,趋化性家族, 蛋白质-谷氨酸甲基酯酶/ 谷氨酰胺酶 | K03412 |
[1] |
Liang W J, Cui W N, Ma X L, et al. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice[J]. Biochemical and Biophysical Research Communications, 2014, 450(1): 794-801.
DOI PMID |
[2] |
Zhang C Y, Wang W W, Hu Y H, et al. A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum[J]. BMC Microbiology, 2022, 22(1):67-80.
DOI PMID |
[3] | Salma M, Samia A, Aftab B, et al. Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes - Science Direct[J]. Microbiological Research, 2019,228:126307-126307. |
[4] | Zhang M, Yang L, Hao R Q, et al. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance[J]. Plant and Soil, 2020,(1/2):452,423-440. |
[5] |
张志东, 顾美英, 唐琦勇, 等. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3):186-192.
DOI |
ZHANG Zhidong, GU Meiying, TANG Qiyong, et al. Screening and cavity planting of salt-tolerant probiotic bacteria in inter-rhizosphere of salt pawpaw[J]. Journal of Agricultural Science and Technology, 2021, 23(3):186-192. | |
[6] | Mohammad K H, John A M, Jarrod J, et al. Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains[J]. Plants, 2019, 8(5):120-134. |
[7] | Zhou Y Y, Hao L P, Ji C, et al. The Effect of Salt-Tolerant Antagonistic Bacteria CZ-6 on the Rhizosphere Microbial Community of Winter Jujube (Mill. “Dongzao”) in Saline-Alkali Land[J]. BioMed Research International, 2021. |
[8] | Zahra S T, Tariq M, Abdullah M, et al. Dominance of Bacillus species in the wheat (Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions[J]. PeerJ, 2023,11: e14621. |
[9] | Kumar A, Singh S, Gaurav A K, et al. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants[J]. Frontiers in microbiology, 2020,11:1216-1256. |
[10] | Farzad B A, Davoud F, Ali B, et al. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress[J]. BBA - Proteins and Proteomics, 2016, 1864(9):1222-1236. |
[11] | Swapmil S, Lti G M, Sharad T. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa)[J]. Microbiological Research, 2018,206:25-32. |
[12] | Glick B R, Nascimento F X. Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions[J]. Microorganisms, 2021, 9(12): 2467. |
[13] | 张典利, 孟臻, 亓文哲, 等. 植物根际促生菌的研究与应用现状[J]. 世界农药, 2018, 40(6):37-43,50. |
ZHANG Dianli, MENG Zhen, QI Wenzhe, et al. Research and application status of plant rhizosphere growth promoting bacteria[J]. World Pesticides, 2018, 40(6):37-43,50. | |
[14] | Muhammad S A, Amna, Sumaira, et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes[J]. Plant Physiology and Biochemistry, 2019,139:569-577. |
[15] | Rubén P R, Jessica LCA, José L B, et al. Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts[J]. Symbiosis, 2017, 73(3):179-189. |
[16] | Muhammad T, Lftikhar A, Muhammad S, et al. Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains[J]. Ecotoxicology and Environmental Safety, 2019,178:33-42. |
[17] | Liu C H, Siew W Y, Hung Y T, et al. 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene in Pseudomonas azotoformans Is Associated with the Amelioration of Salinity Stress in Tomato[J]. Journal of Agricultural and Food Chemistry, 2021, 69(3):913-921. |
[18] |
Tavares M J, Nascimento F X, Glick B R, et al. The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean[J]. Letters in Applied Microbiology, 2018, 66(3):252-259.
DOI PMID |
[19] | Chhetri G, Yang D, Choi J, et al. Edaphorhabdus rosea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea[J]. AntonieVan Leeuwenhoek, 2018a, 111(12):2385-2392. |
[20] | Chhetri G, Kim J, Kim H, et al. Pontibacter oryzae sp. nov., a carotenoid-producing species isolated from a rice paddy field[J]. Antonie van Leeuwenhoek, 2019, 112(11):1705-1713. |
[21] | Abirami P, Giji S, Mohan K, et al. Biomedical Potential of Astaxanthin from Novel Endophytic Pigment Producing Bacteria Pontibacter korlensis AG6[J]. Waste and Biomass Valorization, 2020,12.2119-2129. |
[22] | Philippon T, Tian JH, Bureau C, et al. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter[J]. Bioelectrochemistry, 2021,140:107819. |
[23] |
Zhou J P, Liu Y, Lu Q, et al. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity[J]. Journal of Agricultural and Food Chemistry, 2016, 64(11):2315-24.
DOI PMID |
[24] |
Holguin G, Glick B R. Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from enterobacter cloacae UW4 fused to the Tet r gene promoter improves its fitness and plant growth promoting ability[J]. Microbial Ecology, 2003, 46(1) 46(1):122-33.
DOI PMID |
[25] | Naing A H, Jeong H Y, Jung S K, et al. Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase (acdS) Gene in Petunia hybrida Improves Tolerance to Abiotic Stresses[J]. Frontiers in Plant Science, 2021,12:737490. |
[26] | Tsolakidou M D, Pantelides L S, Tzima A K, et al. Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense[J]. Molecular Plant Microbe Interactions Mpmi, 2019, 32(6):639-653. |
[27] | 李, 傅培龙, 贾颜, 等. 含ACC脱氨酶的螃蟹脚内生细菌筛选及其acdS基因克隆与分析[J]. 分子植物育种2021-12-27 17:19 |
LI Qian, FU Peilong, JIA Yan, et al. Screening of Endophytic Bacteria from Viscum liquidambaricolum Containing ACC Deaminase and Cloning and Analysis of acdS Gene[J]. Molecular Plant Breeding, 2021-12-27 17:19. | |
[28] | Glick B R, Nascimento F X. Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions[J]. Microorganisms, 2021, 9(12):2467. |
[29] | Krishnendu P, Tithi S, Soumik M, et al. In silico structural and functional analysis of Mesorhizobium ACC deaminase[J]. Computational Biology and Chemistry, 2017,68:12-21. |
[1] | 娜斯拜·阿卜杜瓦哈普, 高晓娟, 坤杜孜阿依·阿布都沙拉木, 李江伟. 新疆双峰驼C3d基因cDNA的克隆与序列分析[J]. 新疆农业科学, 2023, 60(2): 493-500. |
[2] | 张盼, 王伟楠, 樊永红. 盐穗木根际土壤产ACC脱氨酶细菌的筛选与鉴定[J]. 新疆农业科学, 2018, 55(11): 2112-2121. |
[3] | 花东来;欧秀玲;祝建波;王爱英. PGPR菌液处理对新疆加工番茄种子萌发的影响[J]. , 2013, 50(3): 484-489. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||