新疆农业科学 ›› 2022, Vol. 59 ›› Issue (1): 79-85.DOI: 10.6048/j.issn.1001-4330.2022.01.010
• 作物遗传育种·分子遗传学·耕作栽培·种质资源 • 上一篇 下一篇
收稿日期:
2021-01-17
出版日期:
2022-01-20
发布日期:
2022-02-18
通信作者:
齐军仓(1971-),男,陕西宝鸡人,教授,硕/博士生导师,研究方向为大麦遗传育种与栽培,(E-mail) shzqjc@qq.com作者简介:
宋瑞娇(1997-),女,新疆伊犁人,硕士研究生,研究方向为种子生物学,(E-mail) 435991524@qq.com
基金资助:
SONG Ruijiao(), FENG Caijun, QI Juncang(
)
Received:
2021-01-17
Published:
2022-01-20
Online:
2022-02-18
Supported by:
摘要:
【目的】研究富氢水对干旱胁迫下大麦种子萌发的影响,分析富氢水在干旱应答中的作用。【方法】以大麦品种新啤6号为试材,采用不同浓度(0、25%、50%、75%、100%)富氢水浸种处理,测定半致死聚乙二醇-6000浓度下大麦种子发芽特性、渗透调节物质含量、抗氧化酶活性及丙二醛含量变化。【结果】25%及50%富氢水浸种能明显改善干旱胁迫下大麦种子萌发质量。富氢水处理下,种子发芽率、发芽势、发芽指数显著增加;可溶性糖、可溶性蛋白及游离脯氨酸含量均有不同程度提升;丙二醛积累量显著下降;超氧化物歧化酶、过氧化物酶、过氧化氢酶活性明显增强。【结论】适宜浓度的富氢水能够通过提升渗透调节能力和抗氧化能力的途径增强大麦种子对干旱胁迫的耐受性。
中图分类号:
宋瑞娇, 冯彩军, 齐军仓. 富氢水对干旱胁迫下大麦种子萌发的影响[J]. 新疆农业科学, 2022, 59(1): 79-85.
SONG Ruijiao, FENG Caijun, QI Juncang. Effects of Hydrogen-Rich Water on Barley Seed Germination under Drought Stress[J]. Xinjiang Agricultural Sciences, 2022, 59(1): 79-85.
图1 不同浓度聚乙二醇-6000下大麦种子发芽率变化 注:图柱上不同小写字母表示处理间差异显著(P<0.05)
Fig.1 Effects of different PEG-6000 concentrations on barley seed germination rate Note: Different lowercase letters on the figure bar indicate significant differences between treatments (P<0.05)
富氢水浓度 HRW level (%) | 发芽率 Germination rate(%) | 发芽势 Germination potential(%) | 发芽指数 Germination index |
---|---|---|---|
0(CK) | 60.0±2.0c | 34.0±1.2b | 52.51±0.16c |
25 | 73.3±0.7a | 49.3±4.1a | 75.72±4.08a |
50 | 69.3±0.7b | 47.3±4.4a | 70.48±3.81a |
75 | 67.3±0.7b | 34.0±1.2b | 60.23±0.26b |
100 | 62.7±1.3c | 28.0±2.3b | 51.92±0.69c |
表1 不同浓度富氢水浸种干旱胁迫下大麦种子萌发变化
Table 1 Effects of different HRW concentrations on barley seed germination under drought stress
富氢水浓度 HRW level (%) | 发芽率 Germination rate(%) | 发芽势 Germination potential(%) | 发芽指数 Germination index |
---|---|---|---|
0(CK) | 60.0±2.0c | 34.0±1.2b | 52.51±0.16c |
25 | 73.3±0.7a | 49.3±4.1a | 75.72±4.08a |
50 | 69.3±0.7b | 47.3±4.4a | 70.48±3.81a |
75 | 67.3±0.7b | 34.0±1.2b | 60.23±0.26b |
100 | 62.7±1.3c | 28.0±2.3b | 51.92±0.69c |
富氢水浓度 HRW level (%) | 可溶性糖含量 Soluble sugar content (mg/g FW) | 可溶性蛋白 含量 Soluble protein content (mg/g FW) | 游离脯氨酸 含量 Free proline content (μg/g FW) |
---|---|---|---|
0(CK) | 206.12±1.069c | 39.03±1.78c | 486.90±44.59b |
25 | 280.67±2.972a | 45.51±1.12ab | 565.19±19.69ab |
50 | 271.04±1.281a | 46.85±2.03a | 645.39±23.72a |
75 | 224.46±5.351b | 40.85±2.45bc | 632.69±21.24a |
100 | 226.64±8.753b | 40.34±0.84bc | 511.51±39.86b |
表2 不同浓度富氢水浸种干旱胁迫下大麦种子渗透调节物质变化
Table 2 Effects of different HRW concentrations on the content of osmotic regulation substances on barley seed under drought stress
富氢水浓度 HRW level (%) | 可溶性糖含量 Soluble sugar content (mg/g FW) | 可溶性蛋白 含量 Soluble protein content (mg/g FW) | 游离脯氨酸 含量 Free proline content (μg/g FW) |
---|---|---|---|
0(CK) | 206.12±1.069c | 39.03±1.78c | 486.90±44.59b |
25 | 280.67±2.972a | 45.51±1.12ab | 565.19±19.69ab |
50 | 271.04±1.281a | 46.85±2.03a | 645.39±23.72a |
75 | 224.46±5.351b | 40.85±2.45bc | 632.69±21.24a |
100 | 226.64±8.753b | 40.34±0.84bc | 511.51±39.86b |
富氢水浓度 HRW level (%) | 丙二醛含量 MDA content [μmol/(g FW)] | 超氧化物歧化酶活性 SOD activity [U/(gFW·min)] | 过氧化物酶活性 POD activity [U/(gFW·min)] | 过氧化氢酶活性 CAT activity [U/(gFW·min)] |
---|---|---|---|---|
0(CK) | 4.77±0.04a | 229.33±10.00b | 36.36±1.69c | 212.95±12.63d |
25 | 4.08±0.07b | 343.23±18.28a | 46.45±2.66ab | 337.26±52.20bc |
50 | 4.37±0.21b | 290.17±3.04ab | 50.76±4.43a | 467.44±8.20a |
75 | 4.36±0.06b | 318.97±13.98a | 41.72±0.69bc | 404.35±44.21ab |
100 | 4.46±0.09a | 259.20±11.86ab | 40.58±0.91bc | 285.14±17.13cd |
表3 不同浓度富氢水浸种干旱胁迫下大麦种子丙二醛含量和抗氧化酶活性
Table 3 Effects of different HRW concentrations on the content of malondialdehyde and antioxidant enzyme activities of barley seed under drought stress
富氢水浓度 HRW level (%) | 丙二醛含量 MDA content [μmol/(g FW)] | 超氧化物歧化酶活性 SOD activity [U/(gFW·min)] | 过氧化物酶活性 POD activity [U/(gFW·min)] | 过氧化氢酶活性 CAT activity [U/(gFW·min)] |
---|---|---|---|---|
0(CK) | 4.77±0.04a | 229.33±10.00b | 36.36±1.69c | 212.95±12.63d |
25 | 4.08±0.07b | 343.23±18.28a | 46.45±2.66ab | 337.26±52.20bc |
50 | 4.37±0.21b | 290.17±3.04ab | 50.76±4.43a | 467.44±8.20a |
75 | 4.36±0.06b | 318.97±13.98a | 41.72±0.69bc | 404.35±44.21ab |
100 | 4.46±0.09a | 259.20±11.86ab | 40.58±0.91bc | 285.14±17.13cd |
[1] | 刘慧, 薛凤蕊. 中国大麦贸易现状及发展趋势[J]. 农业展望, 2015, 11(8):66-69. |
LIU Hui, XUE Fengrui. Trade status and development trend of China’s barley[J]. Agricultural Outlook, 2015, 11(8):66-69. | |
[2] |
Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2):139-158.
PMID |
[3] |
Renwick G M, Sieĝel S M, Giumarro C. Hydrogen metabolism in higher plants[J]. Plant Physiology, 1964, 39:303-306.
DOI PMID |
[4] |
Xu S, Zhu S S, Jiang Y L, et al. Hydrogen-rich water alleviates salt stress in rice during seed germination[J]. Plant and Soil, 2013, 370:47-57.
DOI URL |
[5] |
Wang Y, Duan X L, Xu S, et al. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation, water status and reactive oxygen species balance: A case study for rice[J]. Annals of Botany, 2016, 118:1279-1291.
PMID |
[6] |
Xu D K, Cao H, Fang W, et al. Linking hydrogen-enhanced rice aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated gene expression: A case study on germination[J]. Ecotoxicology and Environmental Safety, 2017, 145:303-312.
DOI URL |
[7] | 田婧芸, 张慧洁, 陕嘉楠, 等. 富氢水处理对铜胁迫下小麦幼苗生长及其细胞结构的影响[J]. 河南农业大学学报, 2018, 52(2):193-198. |
TIAN Jingyun, ZHANG Huijie, SHAN Jianan, et al. Effects of hydrogen-enriched water on growth and cell structure of wheat seedlings under[J]. Journal of Henan Agricultural University, 2018, 52(2):193-198. | |
[8] | 李合生, 孙群, 赵世杰. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
LI Hesheng, SUN Qun, ZHAO Shijie. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press, 2000. | |
[9] | Bradford M M. A rapid and sensitive method for the of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976 |
[10] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 210-211. |
GAO Junfeng. Experimental guidance of plant physiology [M]. Beijing: Higher Education Press, 2006: 210-211. | |
[11] | Maehly A C, Chance B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 1954, 1:357-424. |
[12] | 代小冬, 杨育峰, 朱灿灿, 等. 谷子萌芽期对干旱胁迫的响应及抗旱性评价[J]. 华北农学报, 2015, 30(4):139-144. |
Dai X D, Yang Y F, Zhu C C, et al. Seed germination response to drought resistance evaluation of foxtail millet[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(4):139-144. | |
[13] | 张瑜, 严琳玲, 虞道耿, 等. PEG胁迫下85份引进柱花草种子的萌发特性[J]. 热带作物学报, 2020, 41(4):676-684. |
ZHANG Yu, YAN Linling, YU Daogeng, et al. Germination characteristics of 85 introduced stylosanthesseed under PEG stress[J]. Chinese Journal of Tropical Crops, 2020, 41(4):676-684. | |
[14] |
Heydecker W, Higgins J, Gulliver RL. Accelerated germination by osmotic seed treatment[J]. Nature, 1973, 246:42-44
DOI URL |
[15] | 贾祥, 陈盼盼, 王艳琳, 等. 三种西藏野生草木樨种子萌发期对PEG胁迫的响应及耐旱性评价[J]. 分子植物育种, 1-17. |
JIA Xiang, CHEN Panpan. WANG Yanlin, et al. Response of three wild melilotus in tibet to PEG stress in seed germination period and drought tolerant evaluation[J]. Molecular Plant Breeding, 1-17. | |
[16] | 程波, 胡生荣, 高永, 等. PEG模拟干旱胁迫下5种紫花苜蓿萌发期抗旱性的评估[J]. 西北农林科技大学学报(自然科学版), 2019, 47(1):53-59. |
CHENG Bo, HU Shengrong, GAO Yong, et al. Drought resistance of 5 alfalfa species at germination period under PEG simulated drought stress[J]. Journal of Northwest A & F University(Natural Science ), 47(1):53-59. | |
[17] | 王海宁, 张建利, 冯林, 等. 温度和干旱胁迫对3种牧草种子萌发的影响[J]. 草业科学, 2009, 26(8):87-92. |
WANG Haining, ZHANG Jianli, FENG Lin, et al. Effect of temperature and drought stress on seed germination of three forage species[J]. Pratacultural Science, 2009, 26(8):87-92. | |
[18] |
Zhao X Q, Chen Q H, Wang Y M, et al. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis[J]. Ecotoxicology and Environmental Safety, 2017, 144:369-379.
DOI URL |
[19] |
Chen Q H, Zhao X Q, Lei D K, et al. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves[J]. Plant Growth Regulation, 2017, 83:69-82.
DOI URL |
[20] | 路之娟, 张永清, 张楚. 干旱胁迫对不同苦荞品种苗期生长和根系生理特征的影响[J]. 西北植物学报, 2018, 38(1):112-120. |
LU Zhijuan, ZHANG Yongqing, ZHANG Chu. The seedling growth and root physiological traits of Fagopyrum tataricumcultivars under drought stress[J]. Acta Botanica Boreali-OccidentaliaSinica, 2018, 38(1):112-120. | |
[21] | 刘丰娇, 蔡冰冰, 孙胜楠, 等. 富氢水浸种增强黄瓜幼苗耐冷性的作用及其生理机制[J]. 中国农业科学, 2017, 50(5):881-889. |
LIU Fengjiao, CAI Bingbing, SUN Shengnan, et al. Effect of hydrogen-rich water soaked cucumber seeds on cold tolerance and its physiological mechanism in cucumber seedlings. Scientia Agricultura Sinica, 2017, 50(5):881-889. | |
[22] |
Su J C, Zhang Y H, Nie Y, et al. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings[J]. Environmental and Experimental Botany, 2018, 147:249-260.
DOI URL |
[23] | Sun Q Y, Li Z Y, Li H Y, et al. Effects of water stress on germination and physiological characteristics of nine Elymus sibiricus L. accessons[J]. Chinese Journal of Grassland, 2016, 38(3):19-25,95. |
[24] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48:909-930.
DOI URL |
[25] |
Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399.
DOI URL |
[26] |
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nature Medicine, 2007, 13:688-694.
DOI URL |
[1] | 巩雪花, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 乔小燕, 叶晓琴, 郭文超, 丁新华. 新疆绿洲灌区玉米田杂草种子库及环境因子对杂草种子萌发的影响[J]. 新疆农业科学, 2024, 61(S1): 49-59. |
[2] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[3] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[4] | 阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222. |
[5] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[6] | 奚瑞, 陈怡佳, 李宁, 余庆辉, 王强, 秦勇. 外源2, 4-表芸苔素内酯对盐胁迫下不同盐敏感型番茄种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1983-1992. |
[7] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[8] | 强立栋, 冯宽, 朱长安, 赵云, 李召锋, 李卫华. 花后高温胁迫对小麦籽粒萌发及相关酶活性影响[J]. 新疆农业科学, 2024, 61(6): 1345-1351. |
[9] | 杨君妍, 闫淼, 吴海波, 杨文莉, 王豪杰, 毛建才, 翟文强, 李俊华. 高温对不同厚皮甜瓜品种种子萌发的影响及其耐热性综合评价[J]. 新疆农业科学, 2024, 61(6): 1386-1396. |
[10] | 鞠乐, 齐军仓, 牛银亭, 石培春, 宋瑞娇, 宋凌宇, 阴志刚, 陈培育, 强学兰. 基于RNA-seq的大麦苗期抗旱相关基因的挖掘与分析[J]. 新疆农业科学, 2024, 61(5): 1077-1084. |
[11] | 张伟, 杨国慧, 于辉. 2,4-表油菜素内酯对干旱胁迫下西瓜幼苗生长及相关基因表达的影响[J]. 新疆农业科学, 2024, 61(3): 615-622. |
[12] | 周小云, 张军高, 梁晶, 龚静云, 周广威, 张少民, 雷斌. 低温和水分胁迫条件下萎锈灵对棉花种子萌发及幼苗生理特性的影响[J]. 新疆农业科学, 2024, 61(12): 3051-3060. |
[13] | 程云霞, 谭占明, 郭玲, 李雯雯, 杜佳庚. 不同干旱胁迫对野生山杏和人工栽培山杏品种根茎叶解剖结构的影响[J]. 新疆农业科学, 2024, 61(11): 2684-2692. |
[14] | 廖彩云, 马贵, 周炎炎, 丁家富, 周悦, 毕可心, 孙蓉, 李有花. 微塑料作用下锌对玉米种子萌发与生长影响[J]. 新疆农业科学, 2024, 61(11): 2713-2721. |
[15] | 邵疆, 赵云, 胡相伟, 刘杰, 纳斯如拉·克热木, 石书兵, 冯国郡. 不同时期干旱胁迫对谷子产量及干物质积累的影响[J]. 新疆农业科学, 2024, 61(10): 2388-2395. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 65
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||