

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (8): 1871-1883.DOI: 10.6048/j.issn.1001-4330.2025.08.006
秦金鑫1, 单煜2, 吴茂林1, 王昕悦1, 张宇辰1, 李沛锦1, 袁文杰1, 王冰1, 王心愿1, 盛建东1, 刘耘华1
收稿日期:2025-01-02
发布日期:2025-12-06
作者简介:秦金鑫(1998—),男,河南商丘人,硕士,研究方向为土壤与植物营养,(E-mail)1522607876@qq.com
基金资助:QIN Jinxin1, SHAN Yu2, WU Maolin1, WANG Xinyue1, ZHANG Yuchen1, LI Peijin1, YUAN Wenjie1, WANG Bing1, WANG Xinyuan1, SHENG Jiandong1, LIU Yunhua1
Received:2025-01-02
Online:2025-12-06
Supported by:摘要: 【目的】研究氮肥和氮肥配施牛粪对干旱区棉田土壤团聚体及其中有机碳和微生物残体碳累积的影响。【方法】在新疆阿克苏地区沙雅县连续3年进行田间定位试验,设置5个氮肥施入水平(0、200、300、400、500 kg/hm2)和在5个施氮水平上配施牛粪(3 000 kg/hm2)。【结果】氮肥与牛粪配施可显著增加土壤>2 mm粒级团聚体的比例;在施氮量为300 kg/hm2时,单施氮肥与氮肥配施牛粪均可显著提高土壤各粒级团聚体中微生物残体碳含量;单施氮肥时,真菌残体碳和细菌残体碳的含量均随施氮量的增加而增加;施氮300 kg/hm2配施牛粪时,真菌残体碳含量较高,相比于仅施氮肥增加了14.61%;施氮500 kg/hm2配施牛粪时,细菌残体碳含量最高,相比于仅施氮肥增加了20.79%。【结论】氮肥以及氮肥与牛粪配施均可改变土壤团聚体的组成,并能增加各粒级团聚体中的有机碳含量和微生物残体碳含量。
中图分类号:
秦金鑫, 单煜, 吴茂林, 王昕悦, 张宇辰, 李沛锦, 袁文杰, 王冰, 王心愿, 盛建东, 刘耘华. 氮肥配施牛粪对干旱区棉田土壤团聚体中微生物残体碳含量的影响[J]. 新疆农业科学, 2025, 62(8): 1871-1883.
QIN Jinxin, SHAN Yu, WU Maolin, WANG Xinyue, ZHANG Yuchen, LI Peijin, YUAN Wenjie, WANG Bing, WANG Xinyuan, SHENG Jiandong, LIU Yunhua. Effects of nitrogen fertilizer combined with cattle manure on microbial residual carbon content in soil aggregates of cotton field in arid areas[J]. Xinjiang Agricultural Sciences, 2025, 62(8): 1871-1883.
| [1] 盖霞普, 刘宏斌, 杨波, 等. 不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应[J]. 中国农业科学, 2019, 52(4):676-689. GAI Xiapu, LIU Hongbin, YANG Bo, et al. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years[J]. Scientia Agricultura Sinica, 2019, 52(4):676-689. [2] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2):447-455. LIU Zhongliang, YU Wantai. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2):447-455. [3] Jastrow J D, Miller R M, Boutton T W. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance[J]. Soil Science Society of America Journal, 1996, 60(3):801-807. [4] 李鉴霖. 缙云山土地利用方式对土壤团聚体及其碳氮的影响[D]. 重庆:西南大学, 2014. LI Jianlin. Effects of land uses on soil aggregates and its carbon and nitrogen in Jinyun mountain[D]. Chongqing:Southwest University, 2014. [5] 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6):2642-2650. LIU Manqiang, HU Feng, CHEN Xiaoyun. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6):2642-2650. [6] 顾钊, 陈小磊, 江建峰, 等. 施用不同类型生物质炭对红黄壤团聚体碳氮分布的影响[J]. 江苏农业科学, 2024, 52(1):240-247. GU Zhao, CHEN Xiaolei, JIANG Jianfeng, et al. Effects of different types of biochar application on carbon and nitrogen distribution in red-yellow soil aggregates[J]. Jiangsu Agricultural Sciences, 2024, 52(1):240-247. [7] 贺凌云,陈伏生,郑志宇,等.氮磷添加对常绿阔叶林土壤团聚体有机碳及其与磷组分相关的影响[J].水土保持学报,2024,38(02):377-386. HE Lingyun, CHEN Fusheng, ZHENG Zhiyu, et al. Effects of nitrogen and phosphorus addition on soil aggregate organic carbon and its correlation with phosphorus fractions in evergreen broadleaved forest[J].Journal Of Soil And Water Conservation,2024,38(02):377-386. [8] 朱锟恒, 段良霞, 李元辰, 等. 土壤团聚体有机碳研究进展[J]. 中国农学通报, 2021, 37(21):86-90. ZHU Kunheng, DUAN Liangxia, LI Yuanchen, et al. Research progress of organic carbon in soil aggregates[J]. Chinese Agricultural Science Bulletin, 2021, 37(21):86-90. [9] Huang L, Wang C Y, Tan W F, et al. Distribution of organic matter in aggregates of eroded Ultisols, Central China[J]. Soil and Tillage Research, 2010, 108(1/2):59-67. [10] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学:地球科学, 2021, 51(5):680-695. LIANG Chao, ZHU Xuefeng. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Scientia Sinica(Terrae), 2021, 51(5):680-695. [11] 王宝荣. 土壤微生物残体对不同生态系统有机碳形成的贡献及机理[D]. 北京:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2022. WANG Baorong. Features and mechanisms of the contribution of microbial necromass to soil organic carbon formation in different ecosystems[D]. Beijing:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2022. [12] Bailey V L, Smith J L, Bolton H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration[J]. Soil Biology and Biochemistry, 2002, 34(7):997-1007. [13] López-Mondéjar R, Brabcová V, Štursová M, et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling[J]. The ISME Journal, 2018, 12(7):1768-1778. [14] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14):2099-2103. [15] 陈恩凤, 关连珠, 汪景宽, 等. 土壤特征微团聚体的组成比例与肥力评价[J]. 土壤学报, 2001, 38(1):49-53. CHEN Enfeng, GUAN Lianzhu, WANG Jingkuan, et al. Compositional proportion of soil characteristic microaggregates and soil fertility evaluation[J]. Acta Pedologica Sinica, 2001, 38(1):49-53. [16] Meng Q F, Sun Y T, Zhao J, et al. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under longterm manure application in solonetzic soils of the Songnen plain, Northeast China[J]. Journal of Soils and Sediments, 2014, 14(6):1041-1049. [17] 薛萍落. 玉米不同残体添加对棕壤团聚体中氨基糖和微生物残体氮的影响[D]. 沈阳:沈阳农业大学, 2022. XUE Pingluo. Amino sugar and microbial residual nitrogen distribution in aggregates of brown earth affected by different maize residues[D]. Shenyang:Shenyang Agricultural University, 2022. [18] Ni H W, Jing X Y, Xiao X, et al. Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates[J]. The ISME Journal, 2021, 15(9):2561-2573. [19] Bhattacharyya R, Kundu S, Prakash V, et al. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas[J]. European Journal of Agronomy, 2008, 28(1):33-46. [20] 郭力铭, 陈宇琳, 周碧青, 等. 猪粪配施化肥对侵蚀林地土壤团聚体及其有机碳分布的影响[J]. 福建农业学报, 2021, 36(9):1092-1099. GUO Liming, CHEN Yulin, ZHOU Biqing, et al. Effect of pig manure combined with chemical fertilizer on soil properties and aggregate organic carbon distribution on eroded forest lands[J]. Fujian Journal of Agricultural Sciences, 2021, 36(9):1092-1099. [21] Ding X L, Han X Z, Zhang X D. Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions[J]. Biology and Fertility of Soils, 2013, 49(7):949-954. [22] 吴梦琴, 曹凑贵, 刘天奇, 等. 长期有机无机氮肥配施对玉米-豇豆复种土壤团聚体碳含量和官能团分子结构的影响[J]. 土壤学报, 2023, 60(6):1822-1831. WU Mengqin, CAO Cougui, LIU Tianqi, et al. Effect of longterm organic and inorganic nitrogen fertilization on carbon content and molecular structure of functional groups in soil aggregates in maize-cowpea cropping systems[J]. Acta Pedologica Sinica, 2023, 60(6):1822-1831. [23] Ding X L, Liang C, Zhang B, et al. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil[J]. Soil Biology and Biochemistry, 2015, 84:137-146. [24] 张杰, 李敏, 敖子强, 等. 中国西部干旱区土壤有机碳储量估算[J]. 干旱区资源与环境, 2018, 32(9):132-137. ZHANG Jie, LI Min, AO Ziqiang, et al. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China[J]. Journal of Arid Land Resources and Environment, 2018, 32(9):132-137. [25] 徐薇薇, 乔木. 干旱区土壤有机碳含量与土壤理化性质相关分析[J]. 中国沙漠, 2014, 34(6):1558-1561. XU Weiwei, QIAO Mu. Soil carbon contents in relation to soil physicochemical properties in arid regions of China[J]. Journal of Desert Research, 2014, 34(6):1558-1561. [26] 中华人民共和国统计局. 中国统计年鉴[M].北京:中国统计出版社, 2023. Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M].Beijing:China Statistics Press, 2023. [27] 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5):103-111. WU Shuxia, LIU Hongbin, HUANG Hongkun, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE, 2018, 20(5):103-111. [28] 安丰华. 苏打盐渍土团聚体稳定性与有机质组分变化的机理研究[D]. 哈尔滨:中国科学院大学(中国科学院东北地理与农业生态研究所), 2022. AN Fenghua. Mechanism of agglomerate stability and organic matter composition change in saline-sodic soils[D]. Harbin:Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2022. [29] 鲍士旦. 土壤农化分析(第三版)[M]. 北京:中国农业出版社, 2000. BAO Shidan. Soil and agricultural chemistry analysis(3rd Ed.)[M]. Beijing:China Agriculture Press, 2000. [30] Indorf C, Dyckmans J, Khan K S, et al. Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates[J]. Biology and Fertility of Soils, 2011, 47(4):387-396. [31] Liang C, Kao-Kniffin J, Sanford G R, et al. Microorganisms and their residues under restored perennial grassland communities of varying diversity[J]. Soil Biology and Biochemistry, 2016, 103:192-200. [32] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11):3578-3590. [33] 司澳, 肖永翔, 陈俊, 等. 氮添加对华西雨屏区常绿阔叶林土壤团聚体稳定性及养分含量的影响[J]. 应用与环境生物学报, 2024, 30(5):879-885. SI Ao, XIAO Yongxiang, CHEN Jun, et al. Effects of nitrogen addition on soil aggregate stability and nutrient contents in an evergreen broad-leaved forest in the Rainy Area of Western China[J]. Chinese Journal of Applied and Environmental Biology, 2024, 30(5):879-885. [34] Fan Y X, Yang L M, Zhong X J, et al. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest[J]. Geoderma, 2020, 375:114470. [35] 于锐, 王其存, 朱平, 等. 长期不同施肥对黑土团聚体及有机碳组分的影响[J]. 土壤通报, 2013, 44(3):594-600. YU Rui, WANG Qicun, ZHU Ping, et al. Effect of long-term fertilization on aggregate and fractions of organic carbon in black soil[J]. Chinese Journal of Soil Science, 2013, 44(3):594-600. [36] 赵红, 袁培民, 吕贻忠, 等. 施用有机肥对土壤团聚体稳定性的影响[J]. 土壤, 2011, 43(2):306-311. ZHAO Hong, YUAN Peimin, LYU Yizhong, et al. Effects of organic manure application on stability of soil aggregates[J]. Soils, 2011, 43(2):306-311. [37] 朱刘兵, 李慧, 韩燕来, 等. 化肥与有机物料配施对黄褐土团聚体分布及有机碳含量的影响[J]. 土壤通报, 2015, 46(5):1181-1188. ZHU Liubing, LI Hui, HAN Yanlai, et al. Effect of chemical fertilizers combined with organic materials on aggregate distribution and its organic carbon content in yellow cinnamon soil[J]. Chinese Journal of Soil Science, 2015, 46(5):1181-1188. [38] Ramrez K S, Craine J M, Fierer N. Consistent efects ofsnitrogen amendments on soil microbial communities and isprocesses across biomes[J]. Global Change Biology, 2012, 18, 1918-1927. [39] 陈建国, 田大伦, 闫文德, 等. 土壤团聚体固碳研究进展[J]. 中南林业科技大学学报, 2011, 31(5):74-80. CHEN Jianguo, TIAN Dalun, YAN Wende, et al. Research progress on carbon sequestration of soil aggregates[J]. Journal of Central South University of Forestry & Technology, 2011, 31(5):74-80. [40] Xu J K, Yuan L, Wen Y C, et al. Nitrogen and phosphorus replacement value of three representative livestock manures applied to summer maize in the North China Plain[J]. Agronomy, 2022, 12(11):2716. [41] 罗功文. 有机培肥下土壤微生物群落及其功能特征的变化与机制研究[D]. 南京:南京农业大学, 2020. LUO Gongwen. Studies on the characterization and response mechanism of soil microbial communities and functions to organic amendments[D]. Nanjing:Nanjing Agricultural University, 2020. [42] 王怡宁, 郝鲜俊, 高文俊, 等. 有机肥对矿区复垦土壤团聚体活性有机碳含量的影响[J]. 山西农业科学, 2023, 51(11):1299-1306. WANG Yining, HAO Xianjun, GAO Wenjun, et al. Effects of organic fertilizer on active organic carbon content in aggregates of reclaimed soil in mining area[J].Journal of Shanxi Agricultural Sciences, 2023, 51(11):1299-1306. [43] Puget P, Chenu C, Balesdent J. Total and young organic matter distributions in aggregates of silty cultivated soils[J]. European Journal of Soil Science, 1995, 46(3):449-459. [44] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3):627-633. [45] 史奕, 陈欣, 沈善敏. 有机胶结形成土壤团聚体的机理及理论模型[J]. 应用生态学报, 2002, 13(11):1495-1498. SHI Yi, CHEN Xin, SHEN Shanmin. Mechanisms of organic cementing soil aggregate formation and its theoretical models[J]. Chinese Journal of Applied Ecology, 2002, 13(11):1495-1498. [46] Lu X F, Hou E Q, Guo J Y, et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China:a meta-analysis[J]. Global Change Biology, 2021, 27(12):2780-2792. [47] 尹云锋, 高人, 马红亮, 等. 稻草及其制备的生物质炭对土壤团聚体有机碳的影响[J]. 土壤学报, 2013, 50(5):909-914. YIN Yunfeng, GAO Ren, MA Hongliang, et al. Effects of application of rice straw and straw biochar on organic carbon in soil aggregates[J]. Acta Pedologica Sinica, 2013, 50(5):909-914. [48] 李婕, 黎青慧, 李平儒, 等. 长期有机肥施用、秸秆还田对塿土团聚体及其有机碳含量的影响[J]. 土壤通报, 2012, 43(6):1456-1460. LI Jie, LI Qinghui, LI Pingru, et al. Effects of long-term organic inputs on distribution of aggregate size and its organic carbon content on Lou soil[J]. Chinese Journal of Soil Science, 2012, 43(6):1456-1460. [49] 张亚杰, 钱慧慧, 刘坤平, 等. 施肥对玉米/大豆套作土壤活性有机碳组分及碳库管理指数的影响[J]. 华南农业大学学报, 2016, 37(3):29-36. ZHANG Yajie, QIAN Huihui, LIU Kunping, et al. Effect of fertilization on soil active organic carbon and carbon pool management index under maize/soybean intercropping condition[J]. Journal of South China Agricultural University, 2016, 37(3):29-36. [50] 井大炜, 王明友, 张红, 等. 鸡粪对芸豆土壤有机碳氧化稳定性与碳库管理指数的影响[J]. 农业机械学报, 2016, 47(8):192-200. JING Dawei, WANG Mingyou, ZHANG Hong, et al. Effects of chicken manure co-applied with nitrogen fertilizer on soil organic carbon oxidation stability and carbon pool management index in kidney bean/maize rotation soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8):192-200. [51] Wang B R, Huang Y M, Li N, et al. Initial soil formation by biocrusts:Nitrogen demand and clay protection control microbial necromass accrual and recycling[J]. Soil Biology and Biochemistry, 2022, 167:108607. [52] Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J]. Soil Biology and Biochemistry, 2006, 38(8):2219-2232. [53] 霍海南, 李杰, 张效琛, 等. 不同施肥管理措施对农田土壤中植物和微生物残留组分的影响[J]. 应用生态学报, 2020, 31(9):3060-3066. HUO Hainan, LI Jie, ZHANG Xiaochen, et al. Effects of different fertilization managements on microbial necromass and plant lignin accumulation in a Mollisol[J]. Chinese Journal of Applied Ecology, 2020, 31(9):3060-3066. [54] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2):447-455. LIU Zhongliang, YU Wantai. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2):447-455. [55] 梁满, 孟维伟, 陈志德, 等. 施氮水平对花生根际土壤微生物群落结构和多样性的影响[J]. 山东农业科学, 2023, 55(2):78-83. LIANG Man, MENG Weiwei, CHEN Zhide, et al. Effects of nitrogen application levels on microbial community structure and diversity in peanut rhizosphere soil[J]. Shandong Agricultural Sciences, 2023, 55(2):78-83. [56] He L, Mazza Rodrigues, I L., Soudzilovskaia N A, et al. Global biogeography offungal and bacterial biomass carbon in topsoil[J]. Soil Biology and Biochemistry, 2020, 151:108024. [57] Schweigert M, Herrmann S, Miltner A, et al. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation[J]. Soil Biology and Biochemistry, 2015, 88:120-127. [58] Vidal A, Klöffel T, Guigue J, et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms[J]. Soil Biology and Biochemistry, 2021, 160:108347. [59] Xia Y H, Chen X B, Zheng X D, et al. Preferential uptake of hydrophilic and hydrophobic compounds by bacteria and fungi in upland and paddy soils[J]. Soil Biology and Biochemistry, 2020, 148:107879. [60] 韩建, 张玉铭, 何红波, 等. 长期不同施氮量下微生物残体氮对土壤氮库稳定性和玉米氮素吸收的影响[J]. 中国生态农业学报(中英文), 2024, 32(5):766-779. HAN Jian, ZHANG Yuming, HE Hongbo, et al. Impact of microbial residue nitrogen on soil nitrogen pool stability and maize nitrogen uptake under long-term varying nitrogen applications[J]. Chinese Journal of Eco-Agriculture, 2024, 32(5):766-779. |
| [1] | 傅鹏宇, 梁萌, 李晨华. 荒漠开垦与施肥对土壤有机碳储量与微生物群落特征的影响[J]. 新疆农业科学, 2025, 62(3): 739-747. |
| [2] | 杨吉祥, 李新国. 湖滨绿洲土壤有机碳含量的支持向量机估算模型[J]. 新疆农业科学, 2024, 61(6): 1477-1486. |
| [3] | 夏晓莹, 李思瑶, 王杰, 马小龙, 席丽, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞. 地形因子对天山北坡天山云杉林土壤有机碳的影响[J]. 新疆农业科学, 2023, 60(4): 965-973. |
| [4] | 潘金龙, 唐光木, 徐万里, 马雪琴, 张云舒, 马海刚, 贾宏涛. 棉秆炭对灰漠土活性有机碳氮的影响[J]. 新疆农业科学, 2022, 59(7): 1615-1624. |
| [5] | 木衣那恰·吐斯甫汉, 武红旗, 侯艳娜, 范燕敏. 新疆北疆不同土壤类型有机碳含量变化特征及其影响因素分析[J]. 新疆农业科学, 2022, 59(6): 1513-1521. |
| [6] | 汪振国, 马媛媛, 王西娜, 刘少泉, 古超峰, 姬强. 生物炭输入对土壤有机碳和玉米生长的影响[J]. 新疆农业科学, 2022, 59(4): 818-826. |
| [7] | 王卫霞, 阿丽娅·阿力木, 杨光, 王振锡. 干旱荒漠绿洲区不同土地利用方式对土壤易氧化及溶解性有机碳的影响[J]. 新疆农业科学, 2022, 59(2): 441-450. |
| [8] | 杨柳, 张广杰, 郭佩佩, 任豪辉, 依明江·图尔迪, 马少军, 王云鹤, 马德英. 不同引诱物及诱捕器对葡萄园白星花金龟诱集效果比较[J]. 新疆农业科学, 2022, 59(10): 2554-2561. |
| [9] | 高文翠, 杨卫君, 史春玲, 陈磊. 膜下滴灌连作棉田土壤有机碳及其活性变化分析[J]. 新疆农业科学, 2021, 58(9): 1603-1609. |
| [10] | 杜孝敬, 安崇霄, 徐文修, 唐江华, 房彦飞, 张娜, 李玲. 膜下不同滴灌量对复播大豆农田土壤呼吸及有机碳的影响[J]. 新疆农业科学, 2021, 58(3): 457-466. |
| [11] | 刘建成, 曾军, 丁峰, 许先查, 窦晶晶, 陈开旭, 李凤鸣, 高雁. 再生固体牛粪垫料中细菌多样性分析及评价[J]. 新疆农业科学, 2021, 58(12): 2334-2341. |
| [12] | 王卫霞, 杨光, 王振锡. 更新方式对天山云杉林土壤碳氮的影响[J]. 新疆农业科学, 2020, 57(8): 1474-1483. |
| [13] | 杨光, 阿丽娅·阿力木, 王卫霞. 阿克苏地区不同土地利用方式对土壤有机碳的影响[J]. 新疆农业科学, 2020, 57(8): 1542-1550. |
| [14] | 安崇霄, 张永杰, 符小文, 杜孝敬, 徐文修, 房彦飞, 厍润祥. 夏大豆土壤微生物有机碳及颗粒有机碳对不同耕作措施的响应[J]. 新疆农业科学, 2019, 56(6): 1012-1021. |
| [15] | 张永杰, 符小文, 徐文修, 房彦飞, 杜孝敬, 安崇霄, 厍润祥. 麦豆轮作体系有机肥和氮肥不同组合对复播大豆产量及土壤有机碳的影响[J]. 新疆农业科学, 2019, 56(4): 632-641. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||