新疆农业科学 ›› 2023, Vol. 60 ›› Issue (12): 3065-3071.DOI: 10.6048/j.issn.1001-4330.2023.12.023
• 畜牧兽医·微生物·农业装备工程与机械化 • 上一篇 下一篇
林青(), 秦新政, 高雁, 曾军, 娄恺, 时红玲, 霍向东(
)
收稿日期:
2023-03-06
出版日期:
2023-12-20
发布日期:
2024-01-03
作者简介:
林青(1985-),女,山东人,助理研究员,研究方向为微生物生态,(E-mail)qinglinxj@163.com
基金资助:
LIN Qing(), Qin Xinzheng, GAO Yan, ZENG Jun, LOU Kai, SHI Hongling, HUO Xiangdong(
)
Received:
2023-03-06
Published:
2023-12-20
Online:
2024-01-03
Supported by:
摘要:
【目的】优化从新疆哈密七角井盐湖土壤中分离到一株四氢嘧啶产量较高的中度嗜盐菌N35-6发酵培养基。【方法】以四氢嘧啶产量为指标,采用响应面法优化培养基成分,利用HPLC检测四氢嘧啶产量。【结果】从七角井盐湖土壤中分离获得一株能够产四氢嘧啶的细菌,经16S rDNA 序列分析鉴定为Halomonas salifodinae,并命名为H.salifodinae N35-6,该菌株四氢嘧啶产量能够达到0.83 g/L。【结论】中度嗜盐菌Halomonas salifodinae N35-6具有高产四氢嘧啶的潜力。
中图分类号:
林青, 秦新政, 高雁, 曾军, 娄恺, 时红玲, 霍向东. 中度嗜盐菌Halomonas salifodinae N35-6产四氢嘧啶的培养基优化[J]. 新疆农业科学, 2023, 60(12): 3065-3071.
LIN Qing, Qin Xinzheng, GAO Yan, ZENG Jun, LOU Kai, SHI Hongling, HUO Xiangdong. Optimization of medium for ectoine production by Halomonas salifodinae N35-6, a moderately halophilic bacterium[J]. Xinjiang Agricultural Sciences, 2023, 60(12): 3065-3071.
变量 Different variables | 水平 Levels | ||
---|---|---|---|
-1 | 0 | 1 | |
X1:酵母粉(g/L) | 5 | 10 | 15 |
X2:L-谷氨酸钠(g/L) | 10 | 25 | 40 |
X3:NH4Cl(g/L) | 2 | 11 | 20 |
X4:葡萄糖(g/L) | 10 | 25 | 40 |
X5:NaCl | 50 | 100 | 150 |
表1 因子水平编码
Tab.1 Different variables with their levels
变量 Different variables | 水平 Levels | ||
---|---|---|---|
-1 | 0 | 1 | |
X1:酵母粉(g/L) | 5 | 10 | 15 |
X2:L-谷氨酸钠(g/L) | 10 | 25 | 40 |
X3:NH4Cl(g/L) | 2 | 11 | 20 |
X4:葡萄糖(g/L) | 10 | 25 | 40 |
X5:NaCl | 50 | 100 | 150 |
来源 Source | 自由度 Freedom | Seq SS | 分布 Distribution | Adj SS | F 值 F value | P 值 P value |
---|---|---|---|---|---|---|
模型 Model | 20 | 0.656 490 | 83.87% | 0.656 490 | 6.50 | 0.000 |
线性 Linear | 5 | 0.539 441 | 68.91% | 0.539 441 | 21.36 | 0.000 |
yeast | 1 | 0.403 437 | 51.54% | 0.403 437 | 79.86 | 0.000 |
MSG | 1 | 0.014 003 | 1.79% | 0.014 003 | 2.77 | 0.108 |
NH4Cl | 1 | 0.047 560 | 6.08% | 0.047 560 | 9.41 | 0.005 |
NaCl | 1 | 0.067 947 | 8.68% | 0.067 947 | 13.45 | 0.001 |
glucose | 1 | 0.006 494 | 0.83% | 0.006 494 | 1.29 | 0.268 |
平方Square | 5 | 0.033 945 | 4.34% | 0.033 945 | 1.34 | 0.279 |
yeast×yeast | 1 | 0.012 647 | 1.62% | 0.007 807 | 1.55 | 0.225 |
MSG×MSG | 1 | 0.000 217 | 0.03% | 0.000 008 | 0.00 | 0.968 |
NH4Cl×NH4Cl | 1 | 0.003 460 | 0.44% | 0.003 851 | 0.76 | 0.391 |
NaCl×NaCl | 1 | 0.013 609 | 1.74% | 0.009 018 | 1.79 | 0.194 |
glucose×glucose | 1 | 0.004 011 | 0.51% | 0.004 011 | 0.79 | 0.381 |
双因子交互作用 Two factor interaction | 10 | 0.083 104 | 10.62% | 0.083 104 | 1.65 | 0.151 |
yeast×MSG | 1 | 0.014 762 | 1.89% | 0.014 762 | 2.92 | 0.100 |
yeast×NH4Cl | 1 | 0.007 253 | 0.93% | 0.007 253 | 1.44 | 0.242 |
yeast×NaCl | 1 | 0.009 184 | 1.17% | 0.009 184 | 1.82 | 0.190 |
yeast×glucose | 1 | 0.011 413 | 1.46% | 0.011413 | 2.26 | 0.145 |
MSG×NH4Cl | 1 | 0.016 087 | 2.06% | 0.016 087 | 3.18 | 0.086 |
MSG×NaCl | 1 | 0.008 130 | 1.04% | 0.008 130 | 1.61 | 0.216 |
MSG×glucose | 1 | 0.002 256 | 0.29% | 0.002 256 | 0.45 | 0.510 |
NH4Cl×NaCl | 1 | 0.010 302 | 1.32% | 0.010 302 | 2.04 | 0.166 |
NH4Cl×glucose | 1 | 0.000 136 | 0.02% | 0.000 136 | 0.03 | 0.871 |
NaCl×glucose | 1 | 0.003 580 | 0.46% | 0.003 580 | 0.71 | 0.408 |
误差 Error | 25 | 0.126 293 | 16.13% | 0.126 293 | ||
失拟 Lacr of fit | 20 | 0.111 613 | 14.26% | 0.111 613 | 1.90 | 0.246 |
纯误差 Pure error | 5 | 0.014 679 | 1.88% | 0.014 679 | ||
合计 Total | 45 | 0.782 783 | 100.00% | |||
R2=0.838 7 |
表2 响应面二次模型的方差
Tab.2 Analysis of variance of response surface quadratic model
来源 Source | 自由度 Freedom | Seq SS | 分布 Distribution | Adj SS | F 值 F value | P 值 P value |
---|---|---|---|---|---|---|
模型 Model | 20 | 0.656 490 | 83.87% | 0.656 490 | 6.50 | 0.000 |
线性 Linear | 5 | 0.539 441 | 68.91% | 0.539 441 | 21.36 | 0.000 |
yeast | 1 | 0.403 437 | 51.54% | 0.403 437 | 79.86 | 0.000 |
MSG | 1 | 0.014 003 | 1.79% | 0.014 003 | 2.77 | 0.108 |
NH4Cl | 1 | 0.047 560 | 6.08% | 0.047 560 | 9.41 | 0.005 |
NaCl | 1 | 0.067 947 | 8.68% | 0.067 947 | 13.45 | 0.001 |
glucose | 1 | 0.006 494 | 0.83% | 0.006 494 | 1.29 | 0.268 |
平方Square | 5 | 0.033 945 | 4.34% | 0.033 945 | 1.34 | 0.279 |
yeast×yeast | 1 | 0.012 647 | 1.62% | 0.007 807 | 1.55 | 0.225 |
MSG×MSG | 1 | 0.000 217 | 0.03% | 0.000 008 | 0.00 | 0.968 |
NH4Cl×NH4Cl | 1 | 0.003 460 | 0.44% | 0.003 851 | 0.76 | 0.391 |
NaCl×NaCl | 1 | 0.013 609 | 1.74% | 0.009 018 | 1.79 | 0.194 |
glucose×glucose | 1 | 0.004 011 | 0.51% | 0.004 011 | 0.79 | 0.381 |
双因子交互作用 Two factor interaction | 10 | 0.083 104 | 10.62% | 0.083 104 | 1.65 | 0.151 |
yeast×MSG | 1 | 0.014 762 | 1.89% | 0.014 762 | 2.92 | 0.100 |
yeast×NH4Cl | 1 | 0.007 253 | 0.93% | 0.007 253 | 1.44 | 0.242 |
yeast×NaCl | 1 | 0.009 184 | 1.17% | 0.009 184 | 1.82 | 0.190 |
yeast×glucose | 1 | 0.011 413 | 1.46% | 0.011413 | 2.26 | 0.145 |
MSG×NH4Cl | 1 | 0.016 087 | 2.06% | 0.016 087 | 3.18 | 0.086 |
MSG×NaCl | 1 | 0.008 130 | 1.04% | 0.008 130 | 1.61 | 0.216 |
MSG×glucose | 1 | 0.002 256 | 0.29% | 0.002 256 | 0.45 | 0.510 |
NH4Cl×NaCl | 1 | 0.010 302 | 1.32% | 0.010 302 | 2.04 | 0.166 |
NH4Cl×glucose | 1 | 0.000 136 | 0.02% | 0.000 136 | 0.03 | 0.871 |
NaCl×glucose | 1 | 0.003 580 | 0.46% | 0.003 580 | 0.71 | 0.408 |
误差 Error | 25 | 0.126 293 | 16.13% | 0.126 293 | ||
失拟 Lacr of fit | 20 | 0.111 613 | 14.26% | 0.111 613 | 1.90 | 0.246 |
纯误差 Pure error | 5 | 0.014 679 | 1.88% | 0.014 679 | ||
合计 Total | 45 | 0.782 783 | 100.00% | |||
R2=0.838 7 |
[1] |
Liu M, Liu H, Shi M, et al. Microbial production of ectoine and hydroxyectoine as high-value chemicals[J]. Microb Cell Fact, 2021, 20:76.
DOI PMID |
[2] | 朱道辰, 刘杏荣. 相容性溶质四氢嘧啶及其羟基化衍生物的研究进展[J]. 中国生物工程杂志, 2011, 31(2):95-101. |
ZHU Daochen, LIU Xingrong. Compatible Solutes Ectoine and Its Derivate Hydroxyectoine[J]. China Biotechnology, 2011, 31(2):95-101. | |
[3] |
Galinski EA, Pfeiffer HP, Truper HG. 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus ectothiorhodospira[J]. Eur J Biochem, 1985, 149:135-139.
PMID |
[4] |
Pastor JM, Salvador M, Argandona M, et al. Ectoines in cell stress protection: Uses and biotechnological production[J]. Biotechnol Adv, 2010, 28:782-801.
DOI PMID |
[5] |
Sauer T, Galinski EA. Bacterial milking: A novel bioprocess for production of compatible solutes[J]. Biotechnol Bioeng, 1998, 57:306-313.
PMID |
[6] |
Van-Thuoc D, Guzman H, Quillaguaman J, et al. High productivity of ectoines by halomonas boliviensis using a combined two-step fed-batch culture and milking process[J]. J Biotechnol, 2010, 147:46-51.
DOI PMID |
[7] |
Zhang LH, Lang YJ, Nagata S. Efficient production of ectoine using ectoine-excreting strain[J]. Extremophiles, 2009, 13:717-724.
DOI URL |
[8] | Chen WC, Hsu CC, Lan JC, et al. Production and characterization of ectoine using a moderately halophilic strain halomonas salina bcrc17875[J]. J Biosci Bioeng, 2018. |
[9] |
Ning Y, Wu X, Zhang C, et al. Pathway construction and metabolic engineering for fermentative production of ectoine in escherichia coli[J]. Metab Eng, 2016, 36:10-18.
DOI PMID |
[10] |
Perez-Garcia F, Ziert C, Risse JM, et al. Improved fermentative production of the compatible solute ectoine by corynebacterium glutamicum from glucose and alternative carbon sources[J]. J Biotechnol, 2017, 258:59-68.
DOI URL |
[11] | Li S, Shang Y, Zhao Q, et al. Promoter engineering for high ectoine production in a lower saline medium by halomonas hydrothermalis y2[J]. Biotechnol Lett, 2021. |
[12] |
Jiang A, Song Y, You J, et al. High-yield ectoine production in engineered corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library[J]. Bioresour Technol, 2022, 362:127802.
DOI URL |
[13] |
Chen J, Chen J, Wang S, et al. Development and validation of polar rp-hplc method for screening for ectoine high-yield strains in marine bacteria with green chemistry[J]. Nat Prod Res, 2019, 33:1122-1126.
DOI PMID |
[14] |
Kunte HJ, Lentzen G, Galinski EA. Industrial production of the cell protectant ectoine: Protection mechanisms, processes, and products[J]. Current Biotechnology, 2014, 3:10-25.
DOI URL |
[15] |
Becker J, Wittmann C. Microbial production of extremolytes - high-value active ingredients for nutrition, health care, and well-being[J]. Curr Opin Biotechnol, 2020, 65:118-128.
DOI URL |
[16] |
Van-Thuoc D, Guzman H, Thi-Hang M, et al. Ectoine production by halomonas boliviensis: Optimization using response surface methodology[J]. Mar Biotechnol (NY), 2010, 12:586-593.
DOI PMID |
[17] |
Chen WC, Yuan FW, Wang LF, et al. Ectoine production with indigenous marinococcus sp. Mar2 isolated from the marine environment[J]. Prep Biochem Biotechnol, 2020, 50:74-81.
DOI URL |
[18] |
Fallet C, Rohe P, Franco-Lara E. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress[J]. Biotechnol Bioeng, 2010, 107:124-133.
DOI PMID |
[19] |
Wei YH, Yuan FW, Chen WC, et al. Production and characterization of ectoine by marinococcus sp. Ect1 isolated from a high-salinity environment[J]. J Biosci Bioeng, 2011, 111:336-342.
DOI PMID |
[20] |
Onraedt AE, Walcarius BA, Soetaert WK, et al. Optimization of ectoine synthesis through fed-batch fermentation of brevibacterium epidermis[J]. Biotechnol Prog, 2005, 21:1206-1212.
DOI URL |
[21] |
Zhang H, Liang Z, Zhao M, et al. Metabolic engineering of escherichia coli for ectoine production with a fermentation strategy of supplementing the amino donor[J]. Front Bioeng Biotechnol, 2022, 10:824859.
DOI URL |
[22] |
Salar-Garcia MJ, Bernal V, Pastor JM, et al. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of chromohalobacter salexigens[J]. Microb Cell Fact, 2017, 16:23.
DOI PMID |
[1] | 周艳, 何磊, 宋龙, 潘云飞, 王强, 宋振帅. 果园履带自走式疏花机的设计与试验[J]. 新疆农业科学, 2024, 61(10): 2514-2526. |
[2] | 张伟, 靳范, 李谦绪, 张俊三, 翟修萍, 王善博. 玉米籽粒联合收获机清选装置优化设计与试验[J]. 新疆农业科学, 2023, 60(12): 3102-3112. |
[3] | 陈凤, 董宇, 蔡宏宇, 张苏江, 雷曼红, 孙禹. 一株盐碱绿藻的SE培养基优化[J]. 新疆农业科学, 2023, 60(10): 2509-2520. |
[4] | 袁华伟, 魏溢, 赵余, 陶涛, 周敏, 江佳骏, 李莉, 徐洲, 唐江, 娄恺. 豆渣杏鲍菇菌丝曲奇饼干的配方优化[J]. 新疆农业科学, 2022, 59(9): 2240-2246. |
[5] | 高宇洁, 詹发强, 陈澄, 包慧芳, 杨蓉, 王宁, 侯新强, 侯敏, 史应武, 龙宣杞. 黑曲霉拮抗菌Xenorhabdus bovienii445筛选、鉴定及发酵优化[J]. 新疆农业科学, 2022, 59(5): 1203-1215. |
[6] | 马燕, 许铭强, 李喜弟, 孟新涛, 邹淑萍, 张婷, 张谦. 响应面法优化辣椒籽油碱异构化制备共轭亚油酸工艺及其氧化稳定性[J]. 新疆农业科学, 2022, 59(4): 908-915. |
[7] | 毛吾兰, 祝兆帅, 杨莉玲, 崔宽波, 朱占江. 杏果切分去核机构优化及作业参数分析[J]. 新疆农业科学, 2022, 59(12): 3084-3092. |
[8] | 张丽, 边博, 吐鲁洪·吐尔迪, 王学农. 气吸式巴旦木壳仁风选装置试验与优化分析[J]. 新疆农业科学, 2021, 58(8): 1540-1546. |
[9] | 王庆惠, 杨嘉鹏, 杨忠强. 基于Box-Behnken响应面法优化杏子干燥工艺[J]. 新疆农业科学, 2021, 58(11): 2103-2110. |
[10] | 谢玉清, 代金平, 陈竞, 王志方, 古丽努尔·艾合买提, 杨新平, 张慧涛, 王小武, 冯蕾. 一株无柄灵芝菌(G.resinaceum)LZ02高产漆酶液体培养基的响应面法优化[J]. 新疆农业科学, 2020, 57(5): 869-876. |
[11] | 朱倩倩, 武雪萍, 张淑香, 许咏梅, 吉丽丽, 赵来明, 李小伟, 马文新. 化肥减量有机替代对新疆滴灌棉花产量及土壤养分的影响[J]. 新疆农业科学, 2020, 57(11): 2135-2143. |
[12] | 王露露, 刘欣婷, 周涛, 王娟, 贾东海, 李强, 侯献飞, 石必显, 顾元国, 兰海燕. 银染聚丙烯酰胺凝胶电泳技术体系的优化[J]. 新疆农业科学, 2019, 56(12): 2312-2319. |
[13] | 王宁, 侯敏, 房世杰, 艾尼江·尔斯满, 侯新强, 杨蓉, 包慧芳. 红枣黑斑病拮抗细菌JK1产芽孢培养基的优化[J]. 新疆农业科学, 2018, 55(6): 1098-1106. |
[14] | 帕提古丽·艾斯木托拉, 买合木提·肉孜, 李宁, 唐亚萍, 布合里切木·吾甫尔, 余庆辉. 优化施用氮肥使用量对拱棚辣椒生长发育及产量的影响[J]. 新疆农业科学, 2018, 55(5): 855-862. |
[15] | 杨蓉;古孜亚;詹发强;侯敏;龙宣杞. 一株油菜根际促生菌的产芽孢发酵条件优化[J]. , 2016, 53(9): 1700-1707. |
阅读次数 | ||||||||||||||||||||||
全文 |
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||