新疆农业科学 ›› 2022, Vol. 59 ›› Issue (5): 1203-1215.DOI: 10.6048/j.issn.1001-4330.2022.05.020
高宇洁1(), 詹发强1,2(
), 陈澄1, 包慧芳2, 杨蓉2, 王宁2, 侯新强2, 侯敏2, 史应武2, 龙宣杞1,2(
)
收稿日期:
2021-11-30
出版日期:
2022-05-20
发布日期:
2022-06-09
通信作者:
詹发强(1980-),男,新疆人,副研究员,硕士,研究方向为农业微生物及生物防治,(E-mail) zfq_xj@126.com;龙宣杞(1969-),女,四川人,研究员,硕士生导师,研究方向为微生物学,(E-mail) longxq_xj@sina.com作者简介:
高宇洁(1997-),女,河北石家庄人,硕士研究生,研究方向为食品工程(E-mail) 631353539@qq.com
基金资助:
GAO Yujie1(), ZHAN Faqiang1,2(
), CHEN Cheng1, BAO Huifang2, YANG Rong2, WANG Ning2, HOU Xinqiang2, HOU Min2, SHI Yingwu2, LONG Xuanqi1,2(
)
Received:
2021-11-30
Published:
2022-05-20
Online:
2022-06-09
Correspondence author:
ZHAN Faqiang (1980-), male, Xinjiang, associate researcher, master's degree, research direction in agricultural microbiology and biological control, (E-mail) zfq_xj@126.com; LONG Xuanqi (1969-), female, Sichuan, researcher, master, research direction in microbiology, (E-mail) longxq_xj@sina.comSupported by:
摘要:
【目的】从现有共生细菌资源中筛选对黑曲霉具有高拮抗作用的菌株,为寻求安全高效的生物保鲜材料提供更多选择。【方法】采用平板对峙法和琼脂扩散法,分别对现有昆虫病原线虫共生菌进行初筛和复筛,对筛选出的高效拮抗共生细菌进行生理生化以及16S rRNA 序列进化分析鉴定,通过单因素试验和响应面分析法优化菌株培养条件,利用损伤接种法在红地球葡萄上验证对黑曲霉防治效果。【结果】分离筛选共获得20株拮抗共生菌,复筛得到1株抑菌效果显著的共生细菌(445),经生理生化及分子生物学分析为伯氏致病杆菌Xenorhabdus bovienii,GeneBank ID:OK560680,与菌株Xenorhabdus bovienii strain Xb139 (MG995576.1)聚于同一分支,相似性达99.79%。获得445菌株抑菌活性的最优培养条件为接种量3.06 %、pH 7.0、装液量100.15 mL/250 mL,抑菌圈直径为(29.67±0.28) mm,抑菌效价为10.59 cm/mL,比优化前提高39.16%。Xenorhabdus bovienii 445发酵液对黑曲霉具有较好防治效果,3 d后防效为63.50%。【结论】筛选得到1株高效拮抗黑曲霉的昆虫病原线虫共生细菌,其发酵液对黑曲霉有良好的抑制效果,具有较好的生防潜能。
中图分类号:
高宇洁, 詹发强, 陈澄, 包慧芳, 杨蓉, 王宁, 侯新强, 侯敏, 史应武, 龙宣杞. 黑曲霉拮抗菌Xenorhabdus bovienii445筛选、鉴定及发酵优化[J]. 新疆农业科学, 2022, 59(5): 1203-1215.
GAO Yujie, ZHAN Faqiang, CHEN Cheng, BAO Huifang, YANG Rong, WANG Ning, HOU Xinqiang, HOU Min, SHI Yingwu, LONG Xuanqi. Screening, identification and optimization of fermentation conditions of antagonistic Xenorhabdus bovienii 445 against Aspergillus niger[J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1203-1215.
菌株编号 Strain No. | 种 Species |
---|---|
B5 | Photorhabdus luminescens B5 |
445 | Xenorhabdus bovienii 445 |
NLKSD 3-1 | Photorhabdus temperata NLKSD 3-1 |
YC | Xenorhabdus bovienii YC |
ALL | Xenorhabdus nematophila ALL |
sf-scp | Xenorhabdus bovienii SCP |
sf-ZMCH | Xenorhabdus bovienii sf-ZMCH |
Turkey 40-4 | Xenorhabdus bovienii Turkey40-4 |
B4-3 | Xenorhabdus bovienii B4-3 |
482 | Photorhabdus laumondii 482 |
B4-2 | Xenorhabdus bovienii B4-2 |
sf-ZMBHW | Xenorhabdus bovienii ZMBHW |
B30 | Xenorhabdus bovienii B30 |
B13 | Xenorhabdus bovienii B13 |
422 | Xenorhabdus bovienii 422 |
B24 | Xenorhabdusbovienii B24 |
421 | Xenorhabdus bovienii 421 |
B4-1 | Xenorhabdus bovienii B4-1 |
757 | Xenorhabdus bovienii 757 |
sf-ZMHYL | Xenorhabdu bovienii ZMHYL |
表 1 供试昆虫病原线虫共生菌
Table 1 Test strains of Entomopathogenic nematode symbiotic bacteria
菌株编号 Strain No. | 种 Species |
---|---|
B5 | Photorhabdus luminescens B5 |
445 | Xenorhabdus bovienii 445 |
NLKSD 3-1 | Photorhabdus temperata NLKSD 3-1 |
YC | Xenorhabdus bovienii YC |
ALL | Xenorhabdus nematophila ALL |
sf-scp | Xenorhabdus bovienii SCP |
sf-ZMCH | Xenorhabdus bovienii sf-ZMCH |
Turkey 40-4 | Xenorhabdus bovienii Turkey40-4 |
B4-3 | Xenorhabdus bovienii B4-3 |
482 | Photorhabdus laumondii 482 |
B4-2 | Xenorhabdus bovienii B4-2 |
sf-ZMBHW | Xenorhabdus bovienii ZMBHW |
B30 | Xenorhabdus bovienii B30 |
B13 | Xenorhabdus bovienii B13 |
422 | Xenorhabdus bovienii 422 |
B24 | Xenorhabdusbovienii B24 |
421 | Xenorhabdus bovienii 421 |
B4-1 | Xenorhabdus bovienii B4-1 |
757 | Xenorhabdus bovienii 757 |
sf-ZMHYL | Xenorhabdu bovienii ZMHYL |
因素 Design | 水平Levels | ||
---|---|---|---|
-1 | 0 | 1 | |
接种量A Lnoculation Amocont (%) | 2.5 | 3 | 3.5 |
pH B | 6.5 | 7.0 | 7.5 |
装液量C Liquid loading (mL) | 90 | 100 | 110 |
表 2 Box-Behnken 设计因素水平编码
Table 2 Factors and levels of Box-Behnken design
因素 Design | 水平Levels | ||
---|---|---|---|
-1 | 0 | 1 | |
接种量A Lnoculation Amocont (%) | 2.5 | 3 | 3.5 |
pH B | 6.5 | 7.0 | 7.5 |
装液量C Liquid loading (mL) | 90 | 100 | 110 |
菌株编号 Strain No. | 抑制率 Inhibition rate(%) |
---|---|
B5 | 65.00±1.47a |
445 | 64.92±2.05a |
NLKSD 3-1 | 64.30±1.95ab |
YC | 63.58±0.50abc |
ALL | 62.86±2.98abcd |
sf-scp | 62.25±1.67abcd |
sf-ZMCH | 61.86±1.58bcd |
Turkey 40-4 | 61.75±1.36bcd |
B4-3 | 61.50±3.53bcde |
482 | 61.44±0.55bcde |
B4-2 | 61.35±3.20bcde |
sf-ZMBHW | 61.12±1.20cde |
B30 | 61.02±0.94cde |
B13 | 60.96±1.74cde |
422 | 60.95±1.80cde |
B24 | 60.68±1.67cde |
421 | 60.20±1.02de |
B4-1 | 60.00±1.38de |
757 | 59.84±1.26de |
sf-ZMHYL | 58.49±1.55e |
表 3 不同共生菌株对黑曲霉的抑制率
Table 3 Inhibition rate of Aspergillus niger by different symbiotic strains
菌株编号 Strain No. | 抑制率 Inhibition rate(%) |
---|---|
B5 | 65.00±1.47a |
445 | 64.92±2.05a |
NLKSD 3-1 | 64.30±1.95ab |
YC | 63.58±0.50abc |
ALL | 62.86±2.98abcd |
sf-scp | 62.25±1.67abcd |
sf-ZMCH | 61.86±1.58bcd |
Turkey 40-4 | 61.75±1.36bcd |
B4-3 | 61.50±3.53bcde |
482 | 61.44±0.55bcde |
B4-2 | 61.35±3.20bcde |
sf-ZMBHW | 61.12±1.20cde |
B30 | 61.02±0.94cde |
B13 | 60.96±1.74cde |
422 | 60.95±1.80cde |
B24 | 60.68±1.67cde |
421 | 60.20±1.02de |
B4-1 | 60.00±1.38de |
757 | 59.84±1.26de |
sf-ZMHYL | 58.49±1.55e |
图2 不同共生细菌菌株对黑曲霉Aspergillus niger的抑制作用 注:
Fig.2 The antagonistic effect of different symbiotic bacterial strains on Aspergillus niger Note: 1: 445; 2: YC; 3: B5; 4: NLKSD3-1; 5: scp; 6: ALL.
菌株 Strain No. | 抑菌圈直径 Inhibition zone diameter (mm) | 抑菌效价 Anti-bacterial potency(cm/mL) |
---|---|---|
445 | 23.72±0.61a | 7.61 |
YC | 23.33±0.50b | 7.41 |
B5 | 20.42±0.46c | 5.96 |
NLKSD3-1 | 13.96±0.59d | 2.73 |
sf-scp | 13.20±0.51e | 2.35 |
ALL | 0 | - |
表4 不同共生菌株对黑曲霉的抑制效果
Table 4 The inhibitory effect of different symbiotic strains on Aspergillus niger
菌株 Strain No. | 抑菌圈直径 Inhibition zone diameter (mm) | 抑菌效价 Anti-bacterial potency(cm/mL) |
---|---|---|
445 | 23.72±0.61a | 7.61 |
YC | 23.33±0.50b | 7.41 |
B5 | 20.42±0.46c | 5.96 |
NLKSD3-1 | 13.96±0.59d | 2.73 |
sf-scp | 13.20±0.51e | 2.35 |
ALL | 0 | - |
图 3 A:Xenorhabdus bovienii 445菌落形态; B:Xenorhabdus bovienii 445革兰氏染色
Fig.3 A: Colonial morphology of Xenorhabdus bovienii 445; B: Gram staining of Xenorhabdus bovienii 445
生理生化试验 Physiological and biochemical test | 结果 Results |
---|---|
革兰氏染色 | - |
葡萄糖氧化发酵试验 | 发酵型 |
V-P 试验 | - |
甲基红试验 | - |
耐盐性试验 | 2% |
油脂水解试验 | + |
淀粉水解试验 | - |
硫化氢产生试验 | - |
接触酶试验 | - |
明胶液化试验 | - |
葡萄糖酸盐氧化试验 | + |
脲酶试验 | - |
蔗糖发酵试验 | - |
脂酶试验 | - |
乳糖发酵试验 | + |
甘露醇发酵试验 | - |
表5 Xenorhabdus bovienii 445主要生理生化特征
Table 5 Main physiological and biochemical test of Xenorhabdus bovienii 445
生理生化试验 Physiological and biochemical test | 结果 Results |
---|---|
革兰氏染色 | - |
葡萄糖氧化发酵试验 | 发酵型 |
V-P 试验 | - |
甲基红试验 | - |
耐盐性试验 | 2% |
油脂水解试验 | + |
淀粉水解试验 | - |
硫化氢产生试验 | - |
接触酶试验 | - |
明胶液化试验 | - |
葡萄糖酸盐氧化试验 | + |
脲酶试验 | - |
蔗糖发酵试验 | - |
脂酶试验 | - |
乳糖发酵试验 | + |
甘露醇发酵试验 | - |
图 4 基于16S rRNA序列的菌株445的系统发育树 注:分支处数值表示 Bootstrap 值;括号内数字表示序列 GeneBank 登录号;标尺为进化距离
Fig.4 Phylogenetic tree of strain 445 based on 16S rRNA genesequence Note: Numbers at branch nodes present bootstrap value; The GeneBank accession number of aligned sequences are shown in the brackets; Bar: Nucleotide divergence
图 6 不同初始种龄(A)、接种量(B)、pH(C)、装液量(D)、时间(E)和 温度(F)对Xenorhabdus bovienii 445 抑菌活性的影响
Fig.6 Effects of different initial seed ages (A),inoculum concentration (B), pH (C), liquid loading (D), time (E), and temperature (F) on the inhibitory activity of Xenorhabdus bovienii 445
试验编码 Experi mental coding | 编码水平 Encoding level | 抑菌圈直径 Bacteriostatic sphere diameter (mm) | ||
---|---|---|---|---|
A | B | C | ||
1 | -1 | 1 | 0 | 24.46 |
2 | 1 | 0 | 1 | 25.44 |
3 | -1 | 0 | 1 | 25.06 |
4 | 0 | 1 | 1 | 25.78 |
5 | 0 | 0 | 0 | 27.79 |
6 | 1 | -1 | 0 | 24.30 |
7 | 1 | 1 | 0 | 26.23 |
8 | 0 | 0 | 0 | 28.23 |
9 | 0 | 0 | 0 | 27.46 |
10 | 0 | -1 | 1 | 23.12 |
11 | 0 | 0 | 0 | 27.31 |
12 | 0 | 0 | 0 | 27.44 |
13 | 0 | -1 | -1 | 25.31 |
14 | -1 | 0 | -1 | 23.65 |
15 | -1 | -1 | 0 | 24.44 |
16 | 1 | 0 | -1 | 24.57 |
17 | 0 | 1 | -1 | 25.38 |
表 6 不同试验编码下菌株 445抑菌活性变化
Table 6 Effect of different test sites on the antibacterial activity of strain 445
试验编码 Experi mental coding | 编码水平 Encoding level | 抑菌圈直径 Bacteriostatic sphere diameter (mm) | ||
---|---|---|---|---|
A | B | C | ||
1 | -1 | 1 | 0 | 24.46 |
2 | 1 | 0 | 1 | 25.44 |
3 | -1 | 0 | 1 | 25.06 |
4 | 0 | 1 | 1 | 25.78 |
5 | 0 | 0 | 0 | 27.79 |
6 | 1 | -1 | 0 | 24.30 |
7 | 1 | 1 | 0 | 26.23 |
8 | 0 | 0 | 0 | 28.23 |
9 | 0 | 0 | 0 | 27.46 |
10 | 0 | -1 | 1 | 23.12 |
11 | 0 | 0 | 0 | 27.31 |
12 | 0 | 0 | 0 | 27.44 |
13 | 0 | -1 | -1 | 25.31 |
14 | -1 | 0 | -1 | 23.65 |
15 | -1 | -1 | 0 | 24.44 |
16 | 1 | 0 | -1 | 24.57 |
17 | 0 | 1 | -1 | 25.38 |
方差来源 Source of variance | 平方和 Quadratic sum | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型 | 34.96 | 9 | 3.88 | 10.03 | 0.003 | ** |
A-接种量 | 1.07 | 1 | 1.07 | 2.77 | 0.14 | |
B- PH | 2.74 | 1 | 2.74 | 7.07 | 0.032 5 | * |
C-装液量 | 0.03 | 1 | 0.03 | 0.077 | 0.788 8 | |
AB | 0.91 | 1 | 0.91 | 2.35 | 0.168 8 | |
AC | 0.07 | 1 | 0.073 | 0.19 | 0.677 5 | |
BC | 1.68 | 1 | 1.68 | 4.33 | 0.076 | |
A2 | 9.51 | 1 | 9.51 | 24.55 | 0.001 6 | ** |
B2 | 6.96 | 1 | 6.96 | 17.96 | 0.003 9 | ** |
C2 | 9.01 | 1 | 9.01 | 23.26 | 0.001 9 | ** |
剩余 | 2.71 | 7 | 0.39 | |||
失拟项 | 2.16 | 3 | 0.72 | 5.22 | 0.072 1 | |
纯误差 | 0.55 | 4 | 0.14 | |||
总离差 | 37.68 | 16 | ||||
R2=0.928 0 |
表 7 二次回归模型的方差显著性
Table 7 Significance of the variance in the quadratic regression model
方差来源 Source of variance | 平方和 Quadratic sum | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型 | 34.96 | 9 | 3.88 | 10.03 | 0.003 | ** |
A-接种量 | 1.07 | 1 | 1.07 | 2.77 | 0.14 | |
B- PH | 2.74 | 1 | 2.74 | 7.07 | 0.032 5 | * |
C-装液量 | 0.03 | 1 | 0.03 | 0.077 | 0.788 8 | |
AB | 0.91 | 1 | 0.91 | 2.35 | 0.168 8 | |
AC | 0.07 | 1 | 0.073 | 0.19 | 0.677 5 | |
BC | 1.68 | 1 | 1.68 | 4.33 | 0.076 | |
A2 | 9.51 | 1 | 9.51 | 24.55 | 0.001 6 | ** |
B2 | 6.96 | 1 | 6.96 | 17.96 | 0.003 9 | ** |
C2 | 9.01 | 1 | 9.01 | 23.26 | 0.001 9 | ** |
剩余 | 2.71 | 7 | 0.39 | |||
失拟项 | 2.16 | 3 | 0.72 | 5.22 | 0.072 1 | |
纯误差 | 0.55 | 4 | 0.14 | |||
总离差 | 37.68 | 16 | ||||
R2=0.928 0 |
图 8 优化前后抑菌活性比较 注: A、B为优化后的抑菌效果;C、D为优化前的抑菌效果
Fig.8 Comparison of the antibacterial activity before and after the optimization Note: A and B are the optimized antibacterial effect; C and D are the antibacterial effect before optimization
时间 Time (d) | Incidence(%) | |
---|---|---|
处理组 | CK | |
3 | 0.00 | 6.00 |
4 | 32.00 | 54.00 |
5 | 42.00 | 62.00 |
6 | 75.00 | 76.00 |
7 | 100.00 | 100.00 |
表 8 3~7 d内处理组与CK组的发病率
Table 8 Incidence rate of treatment group and control group within 3-7 days
时间 Time (d) | Incidence(%) | |
---|---|---|
处理组 | CK | |
3 | 0.00 | 6.00 |
4 | 32.00 | 54.00 |
5 | 42.00 | 62.00 |
6 | 75.00 | 76.00 |
7 | 100.00 | 100.00 |
Time (d) | CK | 处理组 | |
---|---|---|---|
Lesion diameter (mm) | Lesion diameter (mm) | Control effect (%) | |
3 | 7.19±0.10a | 0.00 | - |
4 | 7.61±0.32a | 6.01±0.40a | 61.30 |
5 | 8.80±0.03a | 6.93±0.45b | 49.21 |
6 | 10.89±0.99a | 8.65±0.48b | 38.03 |
7 | 12.57±0.29a | 10.47±0.0 | 27.74 |
表 9 3~7 d内Xenorhabdus bovienii 445对黑曲霉的抑制效果
Table 9 The inhibitory effect of Xenorhabdus bovienii 445 on Aspergillus niger within 3-7 days
Time (d) | CK | 处理组 | |
---|---|---|---|
Lesion diameter (mm) | Lesion diameter (mm) | Control effect (%) | |
3 | 7.19±0.10a | 0.00 | - |
4 | 7.61±0.32a | 6.01±0.40a | 61.30 |
5 | 8.80±0.03a | 6.93±0.45b | 49.21 |
6 | 10.89±0.99a | 8.65±0.48b | 38.03 |
7 | 12.57±0.29a | 10.47±0.0 | 27.74 |
[1] | 李小红, 李运景, 马晓青, 等. 我国葡萄产业发展现状与展望[J]. 中国南方果树, 2021,(5):161-166. |
Li X H, Li Y J, Ma X Q, et al. Current situation and prospect of grape industry development in China[J]. Southern China Fruit Tree, 2021, (5): 161-166. | |
[2] | 李丽梅, 刘霞, 李喜宏, 等. 常温下黑曲霉对刺伤红提葡萄的致病规律研究及拮抗菌筛选[J]. 食品研究与开发, 2020,(15):35-39. |
Li L M, Liu X, Li X H, et al. Study on the wound pathogenicity of aspergillus niger and its antagonistic bacteria screening of postharvest red globe grapes at room temperature[J]. Food Research and Development, 2020, (15): 35-39. | |
[3] | 李宁. 葡萄采后致腐菌检测及真菌源激发子诱导抗病研究[D]. 杨陵: 西北农林科技大学, 2005. |
Li N. Study on detection of rot pathogen on post-harvest grapes and induced resistance by elicitor from fungal[D]. Yang Ling: Northwest A & Forestry University, 2005 | |
[4] | 宋开艳, 阿米尼古丽·再那吉, 冯宏祖, 等. 南疆葡萄采后致病菌分离鉴定及拮抗菌的筛选[J]. 新疆农业科学, 2011(5): 871-876. |
Song K Y, Amigiguli then Naji, Feng H Z, et al. Separation and identification of pathogens and screening of antagonistic microorganisms against postharvest grapes[J]. Xinjiang Agricultural Science, 2011 (5): 871-876. | |
[5] | 王立霞, 杨秀芬, 简恒, 等. 昆虫病原线虫共生细菌的代谢产物[J]. 微生物学报, 2001, (6): 753-756. |
Wang L X, Yang X F, Jian H, et al. Metabolites of symbiotic bacteria of the entomogenic insect pathogen nematodes[J]. Microbiology Journal, 2001, (6): 753-756. | |
[6] | 米亚辉, 张晓蕾, 仲鑫, 等. 葡萄保鲜技术理论及其应用研究进展[J]. 现代园艺, 2015(24):42-43. |
Mi Y H, Zhang X L, Zhong X, et al. Progress in grape preservation technology[J]. Modern gardening, 2015 (24): 42-43. | |
[7] | 马丽丽, 许艳丽, 台莲梅. 昆虫病原线虫共生细菌对植物病原菌的抑制作用[J]. 植物保护, 2007, 33(4):7-10. |
Ma L L, Xu Y L, Tai L M. Antimirobial activity of the symbiotic bactria of entomopathgenic nematode against plant pathogens[J]. Plant Protection, 2007, 33 (4): 7-10. | |
[8] | 刘霞, 李骞, 许贤, 等. 昆虫病原线虫共生菌YL001细胞内代谢产物抑菌作用研究初报[J]. 农药学学报, 2006, 8(1):95-98. |
Liu X, Li Q, Xu X, et al. Study on the Antifungal Activity of Intracllular Secondary Metabolic Products from Xenorhabdus nematophilus[J]. Pesticide Journal, 2006, 8 (1): 95-98. | |
[9] | 张园, 南宫自艳, 王勤英, 等. 嗜线虫致病杆菌HB310对五种苹果病原菌抑菌活性的影响[J]. 北方园艺, 2012(20):123-126. |
Zhang Y, Nangong Z Y, Wang Q Y, et al. Study on Antimicrobial Activity of Symbiotic Bacteria of Xenorhabdus nematophila HB310 Against Five Apple Pathogens[J]. Northern gardening, 2012 (20): 123-126. | |
[10] | Fang X, Zhang M, Tang Q, et al. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta[J]. 2014, 4(4): 324-330 |
[11] | 俞晗. 致病杆菌Xenorhabdus bovienii SN84次生代谢产物对三种植物病原真菌抑菌作用的研究[D]. 沈阳农业大学, 2017. |
Yu H. The bacteriostasis of secondary metabolites of pathogenic Xenorhabdus bovienii SN84 on three kinds of plant pathogenic fungus[D]. Shenyang Agricultural University, 2017. | |
[12] |
PARAFATI L, VITALE A, RESTUCCIA C, et al. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing postharvest bunch rot of table grape[J]Food Microbiology, 2015, 47:85-92.
DOI URL |
[13] | 蒋凯丽, 周新丽, 高海燕. 一株具有拮抗作用的解淀粉芽孢杆菌的筛选、鉴定及生物学特性研究[J]. 工业微生物, 2020, 50(1):8-13. |
Jiang K L, Zhou X L, Gao H Y. Screening, identification and biological characteristics of an antagonistic Bacillus Amyloliquefaciens[J]. Industrial Microbiology, 2020, 50 (1): 8-13. | |
[14] | 魏雪, 江孟遥, 钟涛, 等. 荧光假单胞菌ZX对葡萄采后灰霉病的防治[J]. 食品工业科技, 2021, 42(22):125-132. |
Wei X, Jiang M Y, Zhong T, et al. Control of Gray Mold in Postharvest Grapes with Pseudomonas fluorescens ZX[J]. Science and Technology of Food Industry, 2021, 42(22): 125-132. | |
[15] | 方响. 高原乳酸菌对采后水果生物保鲜效果研究及其微生物学机制初探[D]. 兰州大学, 2020. |
Fang X. Study on the effect of lactic acid bacteria from Qinghai-Tibetan Plateau on the biopreservation of postharvest fruits and preliminary exploration of its microbiological mechanism[D]. Lanzhou University, 2020. | |
[16] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 349-387. |
Dong X Z, Cai M Y. Manual for systematic identifica-tion of common bacteria[M]. Beijing: Science Press, 2001: 349-387. | |
[17] |
Ullah I, Khan A L, Ali L, Khan A R, Waqas M, Lee I J, Shin J H.2014. An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules, 19(12): 20913-20928.
DOI URL |
[18] |
Kumar S N, Nambisan B.2014. Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro. Applied biochemistry and biotechnology, 172(2): 741-754.
DOI URL |
[19] | 张潘杰, 窦振国, 王浩, 等. 9株昆虫病原线虫共生菌菌株的分离、鉴定及其抗菌谱的筛选[J]. 南京农业大学学报, 2021, 44(3): 487-496. |
Zhang P J, Dou Z G, Wang H, et al. Isolation, identification and screening of antifungal spectrum of nine entomopathogenic nematode symbiotic bacterial strains[J], Nanjing Agricultural University, 2021, 44 (3): 487-496. | |
[20] | 窦振国, 邵子腾, 张潘杰, 等. 伯氏致病杆菌NN6胞外总蛋白抑制植物病原真菌的生防潜力[J/OL]. 中国生物防治学报. |
Dou Z G, Shao Z T, Zhang P J, et al. The extracellular total protein of B. NN6 suppresses the biodefense potential of plant pathogenic fungi [J/OL]. Chinese Journal of Biological Control:1-11 | |
[21] |
Julie G,. Chacón Orozco, César Jr.Bueno, David I,. Shapiro Ilan, et al. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum[J]. Scientific Reports, 2020, 10(1):20649.
DOI PMID |
[22] | Li Bo, Kong Lingxiao, Qiu Dewen, et al. Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis[J]. Biological Control, 2021,158,104605. |
[23] | 曹林青, 詹发强, 高宇洁, 等. 嗜线虫致病杆菌抑制灰葡萄孢的效应[J]. 微生物学通报, 2021, 48(11):4123-4133. |
Cao L Q, Zhan F Q, Gao Y J, et al. The inhibitory effect of Xenorhabdus nematophilus on Botrytis cinerea[J]. Microbiology Bulletin, 2021, 48 (11): 4123-4133. | |
[24] | 张梦君, 黎继烈, 申爱荣, 等. 亚麻立枯病拮抗菌的筛选、生防效果及发酵条件优化[J]. 微生物学通报, 2017, 44(5):1099-1107. |
Zhang M J, Li J L, Shen A R, et al. Screening, biocontrol effect and optimization of fermentation conditions of an antagonistic bacteria against Flax[J]. Microbiology China, 2017, 44(5):1099-1107. | |
[25] |
Marcosa B, Ricardo E, Eliane P, et al. Response surface methodology(RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5):965-977.
DOI URL |
[26] |
Wang Yonghong, Fang Xiangling, An Fengqiu, et al. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology[J]. Microbial Cell Factories, 2011, 10(1):98.
DOI URL |
[27] | 王永娟, 张杰, 孔繁芳, 等. 嗜线虫致病杆菌HB310培养基筛选和培养条件优化[J]. 环境昆虫学报, 2014, 36(6):997-1003. |
Wang Y J, Zhang J, Kong F F, et al. Screening of original medium and optimizing fermentation conditions of Xenorhabdus nematophila HB310[J]. Environmental Entomology, 2014, 36 (6): 997-1003. | |
[28] | 张磊, 魏佳, 张政, 等. 硫化氢(H2S)熏蒸对葡萄损伤接种黑曲霉的抑制及其采后品质的影响[J]. 现代食品科技, 2018, 34(7): 89-96. |
Zhang L, Wei J, Zhang Z, et al. HEffect of Gaseous H2S Fumigation on Aspergillusnige Inhibition and Postharvest Quality of Table Grape[J]Modern Food Technology, 2018, 34 (7): 89-96. |
[1] | 袁梓涵, 赵雯慧, 王小武, 吐尔逊·阿合买提, 丁新华, 张帅, 付开赟, 贾尊尊, 郭文超. 玉米茎腐病生防菌的筛选及生防效果评价[J]. 新疆农业科学, 2024, 61(S1): 35-48. |
[2] | 耿松毅, 孙洪涛, 赵伟琦, 王梅, 芦屹, 马荣. 苹果树腐烂病发生及新型防治药剂筛选[J]. 新疆农业科学, 2024, 61(6): 1461-1467. |
[3] | 曹竹君, 张振宇, 康宁, 赵倩, 胡红英. 新疆西天山野果林杏鬃球蚧寄生蜂资源调查[J]. 新疆农业科学, 2024, 61(4): 971-983. |
[4] | 孟卓, 唐小雯, 张广杰, 徐安东, 颜宇, 付娆, 羌松, 蒋平安, 马德英. 虫砂复合微生物菌剂2种施用方式对棉花生长发育及防控黄萎病的影响[J]. 新疆农业科学, 2024, 61(12): 2861-2871. |
[5] | 文霞, 田立超, 高桂珍. 四斑月瓢虫对紫薇长斑蚜的捕食功能反应[J]. 新疆农业科学, 2023, 60(9): 2266-2272. |
[6] | 杨海涛, 席欧彦, 赵倩, 曹竹君, 胡红英. 朝鲜球坚蚧成虫寄生蜂资源调查[J]. 新疆农业科学, 2023, 60(9): 2273-2280. |
[7] | 陈澄, 侯新强, 詹发强, 杨蓉, 包慧芳, 王宁, 史应武, 龙宣杞. 三种昆虫病原线虫非生物胁迫耐受特性及其共生菌抑菌作用[J]. 新疆农业科学, 2023, 60(12): 3072-3079. |
[8] | 李艳兵, 郭小虎, 努尔什瓦克·阿达力别克, 帕提玛·乌木尔汗, 马德英. 人工助迁多异瓢虫和化防2种模式对棉蚜的防效及天敌种群动态影响[J]. 新疆农业科学, 2022, 59(5): 1173-1179. |
[9] | 赵莹莹, 张军高, 李进, 梁晶, 高翔宇, 顾爱星, 雷斌. 枯草芽孢杆菌KXZ-33与化学药剂协同防控棉花枯萎病的效果评价[J]. 新疆农业科学, 2022, 59(5): 1216-1222. |
[10] | 刘海洋, 王伟, 张仁福, 温切木·阿布列孜, 姚举. 利用生防菌防治棉花黄萎病效果的制约因素[J]. 新疆农业科学, 2022, 59(1): 155-161. |
[11] | 杜鹏程, 刘海洋, 张军高, 李进, 周小云, 刘梦丽, 雷斌, 郭庆元. 棉花苗期根腐类病害生防细菌的筛选与鉴定[J]. 新疆农业科学, 2020, 57(4): 686-693. |
[12] | 詹发强, 侯敏, 杨蓉, 王宁, 包慧芳, 侯新强, 崔卫东, 龙宣杞. 1株新疆胡杨林昆虫病原线虫鉴定及生物学特性[J]. 新疆农业科学, 2020, 57(3): 536-544. |
[13] | 郭凯, 崔卫东, 王宁, 侯敏, 包慧芳, 房世杰. 黑曲霉ZD利用棉花秸秆固体发酵产纤维素酶条件优化[J]. 新疆农业科学, 2018, 55(9): 1717-1727. |
[14] | 郭凯, 侯敏, 包慧芳, 王宁, 詹发强, 杨蓉, 杨文绮, 龙宣杞, 崔卫东. 双指标优化黑曲霉液态发酵条件及降解棉秆效果[J]. 新疆农业科学, 2018, 55(11): 2122-2133. |
[15] | 朱丹, 鲁佳雄, 钟问, 李勤, 郭文超, 胡红英. 新疆马铃薯叶甲寄生蜂天敌资源调查研究[J]. 新疆农业科学, 2017, 54(12): 2248-2254. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 222
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||