新疆农业科学 ›› 2022, Vol. 59 ›› Issue (11): 2822-2830.DOI: 10.6048/j.issn.1001-4330.2022.11.029
马超鑫1(), 阿迪娜·吾斯曼1, 贾怡琪1, 陈晓1, 孟军1,2, 曾亚琦1,2, 王建文1,2, 王川坤1, 姚新奎1,2(
)
收稿日期:
2022-01-11
出版日期:
2022-11-20
发布日期:
2022-12-28
通信作者:
姚新奎(1961-),男,新疆奎屯人,教授,博士生导师,研究方向为动物生产学,(E-mail)yxk61@126.com作者简介:
马超鑫(1996-),男,安徽淮北人,硕士研究生,研究方向为动物生产学,(E-mail)1581971409@qq.com
基金资助:
MA Chaoxin1(), Adina Wusman1, JIA Yiqi1, CHEN Xiao1, MENG Jun1,2, ZENG Yaqi1,2, WANG Jianwen1,2, WANG chuankun1, YAO Xinkui1,2(
)
Received:
2022-01-11
Published:
2022-11-20
Online:
2022-12-28
Supported by:
摘要:
【目的】研究不同赛道维护方式对伊犁马步态特征、比赛成绩的影响,为伊犁马选种选育和赛道维护提供依据。【方法】以8匹伊犁马公马为研究对象,设计1 600 m途程比赛。用高速摄像机记录伊犁马在不同赛道维护方式下直道、弯道、终点的步态特征的视频素材,终点计时系统记录马匹比赛成绩,分析不同赛道维护方式下伊犁马各赛段步态特征、比赛成绩的差异性。【结果】直道阶段,前肢双支撑相、前位前蹄支撑相压实组极显著低于耙地组和普通组(P<0.01);步频压实组极显著高于耙地组和普通组(P<0.01),耙地组显著低于普通组(P<0.05);双支撑相步幅、总步幅、最大开张角度压实组极显著高于耙地组(P<0.01),显著高于普通组(P<0.05)。弯道阶段,后位后蹄支撑相、后肢间隔期、前位后蹄支撑相、后位前蹄支撑相、对角双支撑相、前肢间隔期、前肢双支撑相、前位前蹄支撑相压实组均极显著低于耙地组和普通组(P<0.01);腾空期、步频压实组极显著高于耙地组和普通组(P<0.01);腾空期步幅压实组显著高于普通组步幅(P<0.05);最大开张角度压实组显著高于耙地组和普通组(P<0.05)。终点阶段,后肢间隔期、前位后蹄支撑相、前肢双支撑相、前位前蹄支撑相压实组显著低于耙地组(P<0.05);步频压实组极显著高于耙地组(P<0.01),耙地组显著低于普通组(P<0.05);后肢步幅压实组显著高于普通组(P<0.05);双支撑相步幅压实组极显著高于耙地组(P<0.01),耙地组显著低于普通组(P<0.05);最大开张角度压实组显著高于耙地组和普通组(P<0.05)。【结论】压实组马匹步幅、步频较大,比赛成绩最好,赛道状况的差异会导致运动性能的差异。在选种选育,评价马匹运动性能过程中应考虑赛道状况,以提高个体选择准确性。
中图分类号:
马超鑫, 阿迪娜·吾斯曼, 贾怡琪, 陈晓, 孟军, 曾亚琦, 王建文, 王川坤, 姚新奎. 不同赛道维护方式对1 600 m速度赛伊犁马步态特征和比赛成绩的影响[J]. 新疆农业科学, 2022, 59(11): 2822-2830.
MA Chaoxin, Adina Wusman, JIA Yiqi, CHEN Xiao, MENG Jun, ZENG Yaqi, WANG Jianwen, WANG chuankun, YAO Xinkui. Effects of Different Track Maintenance Methods on the Gait Characteristics and Performance of Yili Horse in 1,600 M Speed Race[J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2822-2830.
英文缩写Abbreviation | 英文全称Full English name | 中文全称Full Chinese name |
---|---|---|
Stance TH | Stance of trail hindlimb | 后位后蹄支撑相 |
AP TH-LH | Advanced placement of trail hindlimb and lead hindlimb | 后肢间隔期 |
Swing TH | Swing of trail hindlimb | 后位后蹄摆动相 |
Overlap TH-LH | Overlap of trail hindlimb and lead hindlimb | 后肢双支撑相 |
AP LH-TF | Advanced placement of lead hindlimb and trail forelimb | 对角间隔期 |
Stance LH | Stance of lead hindlimb | 前位后蹄支撑相 |
Swing LH | Swing of lead hindlimb | 前位后蹄摆动相 |
Stance TF | Stance of trail forelimb | 后位前蹄支撑相 |
Overlap LH-TF | Overlap of lead hindlimb and trail forelimb | 对角双支撑相 |
AP TF-LF | Advanced placement of trail forelimb and lead forelimb | 前肢间隔期 |
Overlap LF-TF | Overlap of lead forelimb and trail forelimb | 前肢双支撑相 |
Stance LF | Stance of lead forelimb | 前位前蹄支撑相 |
Swing TF | Swing of trail forelimb | 后位前蹄摆动相 |
Swing LF | Swing of lead forelimb trail forelimb | 前位前蹄摆动相 |
AD | Aerial duration | 腾空期 |
SF | Stride frequency | 步频 |
Hind SL | Hind stride length | 后肢步幅 |
Mid SL | Mid stride length | 双支撑相步幅 |
Fore SL | Fore stride length | 前肢步幅 |
AD SL | Aerial duration stride length | 腾空期步幅 |
SL | Stride length | 总步幅 |
SA | Stride Angle | 最大开张角度 |
表1 步态特征缩略表
Table 1 Contraction of gait characteristics
英文缩写Abbreviation | 英文全称Full English name | 中文全称Full Chinese name |
---|---|---|
Stance TH | Stance of trail hindlimb | 后位后蹄支撑相 |
AP TH-LH | Advanced placement of trail hindlimb and lead hindlimb | 后肢间隔期 |
Swing TH | Swing of trail hindlimb | 后位后蹄摆动相 |
Overlap TH-LH | Overlap of trail hindlimb and lead hindlimb | 后肢双支撑相 |
AP LH-TF | Advanced placement of lead hindlimb and trail forelimb | 对角间隔期 |
Stance LH | Stance of lead hindlimb | 前位后蹄支撑相 |
Swing LH | Swing of lead hindlimb | 前位后蹄摆动相 |
Stance TF | Stance of trail forelimb | 后位前蹄支撑相 |
Overlap LH-TF | Overlap of lead hindlimb and trail forelimb | 对角双支撑相 |
AP TF-LF | Advanced placement of trail forelimb and lead forelimb | 前肢间隔期 |
Overlap LF-TF | Overlap of lead forelimb and trail forelimb | 前肢双支撑相 |
Stance LF | Stance of lead forelimb | 前位前蹄支撑相 |
Swing TF | Swing of trail forelimb | 后位前蹄摆动相 |
Swing LF | Swing of lead forelimb trail forelimb | 前位前蹄摆动相 |
AD | Aerial duration | 腾空期 |
SF | Stride frequency | 步频 |
Hind SL | Hind stride length | 后肢步幅 |
Mid SL | Mid stride length | 双支撑相步幅 |
Fore SL | Fore stride length | 前肢步幅 |
AD SL | Aerial duration stride length | 腾空期步幅 |
SL | Stride length | 总步幅 |
SA | Stride Angle | 最大开张角度 |
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后位后蹄支撑相Stance TH(s) | 0.12±0.01B | 0.15±0.01Ab | 0.16±0.01Aa |
后肢间隔期AP TH-LH(s) | 0.06±0.01B | 0.08±0.00A | 0.08±0.00A |
后位后蹄摆动相Swing TH(s) | 0.30±0.01 | 0.30±0.01 | 0.30±0.01 |
后肢双支撑相Overlap TH-LH(s) | 0.05±0.01Bb | 0.07±0.01ABa | 0.08±0.01Aa |
对角间隔期AP LH-TF(s) | 0.05±0.02 | 0.04±0.01 | 0.04±0.01 |
前位后蹄支撑相Stance LH(s) | 0.11±0.01Bb | 0.13±0.01ABa | 0.15±0.01Aa |
前位后蹄摆动相Swing LH(s) | 0.31±0.01 | 0.31±0.01 | 0.31±0.01 |
后位前蹄支撑相Stance TF(s) | 0.12±0.01Bc | 0.15±0.01Ab | 0.16±0.01Aa |
对角双支撑相Overlap LH-TF(s) | 0.06±0.02Bc | 0.09±0.01Ab | 0.11±0.01Aa |
前肢间隔期AP TF-LF(s) | 0.09±0.01 | 0.09±0.01 | 0.1±0.01 |
前肢双支撑相Overlap LF-TF(s) | 0.03±0.01B | 0.05±0.01A | 0.06±0.01A |
前位前蹄支撑相Stance LF(s) | 0.12±0.01B | 0.15±0.01A | 0.16±0.01A |
后位前蹄摆动相Swing TF(s) | 0.30±0.01 | 0.30±0.01 | 0.30±0.01 |
前位前蹄摆动相Swing LF(s) | 0.30±0.02 | 0.29±0.01 | 0.30±0.01 |
腾空期Aerial duration(s) | 0.09±0.01 | 0.08±0.01 | 0.08±0.01 |
步频SF(s-1) | 2.39±0.08Aa | 2.26±0.04Bb | 2.18±0.05Bc |
表2 不同维护方式下直道步态特征时间参数的差异
Table 2 difference of straight track gait characteristic time parameters under different maintenance modes
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后位后蹄支撑相Stance TH(s) | 0.12±0.01B | 0.15±0.01Ab | 0.16±0.01Aa |
后肢间隔期AP TH-LH(s) | 0.06±0.01B | 0.08±0.00A | 0.08±0.00A |
后位后蹄摆动相Swing TH(s) | 0.30±0.01 | 0.30±0.01 | 0.30±0.01 |
后肢双支撑相Overlap TH-LH(s) | 0.05±0.01Bb | 0.07±0.01ABa | 0.08±0.01Aa |
对角间隔期AP LH-TF(s) | 0.05±0.02 | 0.04±0.01 | 0.04±0.01 |
前位后蹄支撑相Stance LH(s) | 0.11±0.01Bb | 0.13±0.01ABa | 0.15±0.01Aa |
前位后蹄摆动相Swing LH(s) | 0.31±0.01 | 0.31±0.01 | 0.31±0.01 |
后位前蹄支撑相Stance TF(s) | 0.12±0.01Bc | 0.15±0.01Ab | 0.16±0.01Aa |
对角双支撑相Overlap LH-TF(s) | 0.06±0.02Bc | 0.09±0.01Ab | 0.11±0.01Aa |
前肢间隔期AP TF-LF(s) | 0.09±0.01 | 0.09±0.01 | 0.1±0.01 |
前肢双支撑相Overlap LF-TF(s) | 0.03±0.01B | 0.05±0.01A | 0.06±0.01A |
前位前蹄支撑相Stance LF(s) | 0.12±0.01B | 0.15±0.01A | 0.16±0.01A |
后位前蹄摆动相Swing TF(s) | 0.30±0.01 | 0.30±0.01 | 0.30±0.01 |
前位前蹄摆动相Swing LF(s) | 0.30±0.02 | 0.29±0.01 | 0.30±0.01 |
腾空期Aerial duration(s) | 0.09±0.01 | 0.08±0.01 | 0.08±0.01 |
步频SF(s-1) | 2.39±0.08Aa | 2.26±0.04Bb | 2.18±0.05Bc |
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后肢步幅Hind SL(cm) | 98.28±12.95 | 99.85±8.65 | 101.39±12.43 |
双支撑相步幅Mid SL(cm) | 193.33±17.15Aa | 176.05±16.86ABb | 163.38±13.2Bb |
前肢步幅Fore SL(cm) | 132.03±8.73a | 121.60±11.97ab | 116.14±13.2b |
腾空期步幅AD SL(cm) | 168.47±21.26A | 138.98±12.48B | 125.84±17.29B |
总步幅SL(cm) | 592.10±47.71Aa | 536.48±33.84ABb | 506.75±36.03Bb |
最大开张角度SA(°) | 112.00±4.47Aa | 108.25±1.75ABb | 104.75±3.20Bb |
表3 不同维护方式下直道步态特征空间参数的差异
Table 3 difference of spatial parameters of straight gait characteristics under different maintenance modes
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后肢步幅Hind SL(cm) | 98.28±12.95 | 99.85±8.65 | 101.39±12.43 |
双支撑相步幅Mid SL(cm) | 193.33±17.15Aa | 176.05±16.86ABb | 163.38±13.2Bb |
前肢步幅Fore SL(cm) | 132.03±8.73a | 121.60±11.97ab | 116.14±13.2b |
腾空期步幅AD SL(cm) | 168.47±21.26A | 138.98±12.48B | 125.84±17.29B |
总步幅SL(cm) | 592.10±47.71Aa | 536.48±33.84ABb | 506.75±36.03Bb |
最大开张角度SA(°) | 112.00±4.47Aa | 108.25±1.75ABb | 104.75±3.20Bb |
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后位后蹄支撑相Stance TH(s) | 0.11±0.01B | 0.15±0.01A | 0.15±0.01A |
后肢间隔期AP TH-LH(s) | 0.06±0.01B | 0.08±0.01A | 0.08±0.01A |
后位后蹄摆动相Swing TH(s) | 0.32±0.01 | 0.31±0.01 | 0.32±0.01 |
后肢双支撑相Overlap TH-LH(s) | 0.05±0.01B | 0.07±0.01A | 0.06±0.01AB |
对角间隔期AP LH-TF(s) | 0.05±0.01Aa | 0.03±0.01Bb | 0.04±0.02ABb |
前位后蹄支撑相Stance LH(s) | 0.12±0.01B | 0.14±0.02A | 0.14±0.02A |
前位后蹄摆动相Swing LH(s) | 0.32±0.02 | 0.32±0.01 | 0.32±0.01 |
后位前蹄支撑相Stance TF(s) | 0.11±0.02B | 0.15±0.01A | 0.15±0.02A |
对角双支撑相Overlap LH-TF(s) | 0.06±0.01B | 0.11±0.02A | 0.11±0.03A |
前肢间隔期AP TF-LF(s) | 0.09±0.01B | 0.10±0.01A | 0.10±0.01A |
前肢双支撑相Overlap LF-TF(s) | 0.02±0.02B | 0.05±0.02A | 0.05±0.02A |
前位前蹄支撑相Stance LF(s) | 0.12±0.01B | 0.15±0.02A | 0.15±0.02A |
后位前蹄摆动相Swing TF(s) | 0.32±0.02 | 0.31±0.02 | 0.31±0.02 |
前位前蹄摆动相Swing LF(s) | 0.31±0.02 | 0.31±0.02 | 0.32±0.01 |
腾空期AD(s) | 0.12±0.01A | 0.10±0.02B | 0.10±0.02B |
步频SF(s-1) | 2.32±0.12A | 2.17±0.11B | 2.16±0.07B |
表4 不同维护方式下弯道步态特征时间参数的差异
Table 4 difference of time parameters of curve gait characteristics under different maintenance modes
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后位后蹄支撑相Stance TH(s) | 0.11±0.01B | 0.15±0.01A | 0.15±0.01A |
后肢间隔期AP TH-LH(s) | 0.06±0.01B | 0.08±0.01A | 0.08±0.01A |
后位后蹄摆动相Swing TH(s) | 0.32±0.01 | 0.31±0.01 | 0.32±0.01 |
后肢双支撑相Overlap TH-LH(s) | 0.05±0.01B | 0.07±0.01A | 0.06±0.01AB |
对角间隔期AP LH-TF(s) | 0.05±0.01Aa | 0.03±0.01Bb | 0.04±0.02ABb |
前位后蹄支撑相Stance LH(s) | 0.12±0.01B | 0.14±0.02A | 0.14±0.02A |
前位后蹄摆动相Swing LH(s) | 0.32±0.02 | 0.32±0.01 | 0.32±0.01 |
后位前蹄支撑相Stance TF(s) | 0.11±0.02B | 0.15±0.01A | 0.15±0.02A |
对角双支撑相Overlap LH-TF(s) | 0.06±0.01B | 0.11±0.02A | 0.11±0.03A |
前肢间隔期AP TF-LF(s) | 0.09±0.01B | 0.10±0.01A | 0.10±0.01A |
前肢双支撑相Overlap LF-TF(s) | 0.02±0.02B | 0.05±0.02A | 0.05±0.02A |
前位前蹄支撑相Stance LF(s) | 0.12±0.01B | 0.15±0.02A | 0.15±0.02A |
后位前蹄摆动相Swing TF(s) | 0.32±0.02 | 0.31±0.02 | 0.31±0.02 |
前位前蹄摆动相Swing LF(s) | 0.31±0.02 | 0.31±0.02 | 0.32±0.01 |
腾空期AD(s) | 0.12±0.01A | 0.10±0.02B | 0.10±0.02B |
步频SF(s-1) | 2.32±0.12A | 2.17±0.11B | 2.16±0.07B |
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后肢步幅Hind SL(cm) | 106.83±7.98 | 103.78±7.35 | 110.03±8.02 |
双支撑相步幅Mid SL(cm) | 172.25±13.05 | 155.71±21.67 | 175.08±21.13 |
前肢步幅Fore SL(cm) | 123.06±7.33 | 119.26±10.61 | 125.85±15.03 |
腾空期步幅AD SL(cm) | 161.36±25.07a | 132.84±14.44b | 146.85±28.46ab |
总步幅SL(cm) | 563.50±38.09 | 511.59±38.44 | 557.81±61.93 |
最大开张角度SA(°) | 110.50±2.27a | 105.89±3.59b | 105.88±4.70b |
表5 不同维护方式下弯道步态特征空间参数的差异
Table 5 difference of spatial parameters of curve gait characteristics under different maintenance modes
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后肢步幅Hind SL(cm) | 106.83±7.98 | 103.78±7.35 | 110.03±8.02 |
双支撑相步幅Mid SL(cm) | 172.25±13.05 | 155.71±21.67 | 175.08±21.13 |
前肢步幅Fore SL(cm) | 123.06±7.33 | 119.26±10.61 | 125.85±15.03 |
腾空期步幅AD SL(cm) | 161.36±25.07a | 132.84±14.44b | 146.85±28.46ab |
总步幅SL(cm) | 563.50±38.09 | 511.59±38.44 | 557.81±61.93 |
最大开张角度SA(°) | 110.50±2.27a | 105.89±3.59b | 105.88±4.70b |
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后位后蹄支撑相Stance TH(s) | 0.12±0.01B | 0.12±0.01B | 0.14±0.01A |
后肢间隔期AP TH-LH(s) | 0.07±0.01b | 0.07±0.01ab | 0.08±0.01a |
后位后蹄摆动相Swing TH(s) | 0.32±0.02 | 0.32±0.03 | 0.33±0.01 |
后肢双支撑相Overlap TH-LH(s) | 0.05±0.02 | 0.05±0.02 | 0.05±0.01 |
对角间隔期AP LH-TF(s) | 0.04±0.01A | 0.03±0.02AB | 0.02±0.01B |
前位后蹄支撑相Stance LH(s) | 0.12±0.02b | 0.12±0.01ab | 0.14±0.01a |
前位后蹄摆动相Swing LH(s) | 0.31±0.02 | 0.32±0.03 | 0.32±0.02 |
后位前蹄支撑相Stance TF(s) | 0.12±0.02B | 0.13±0.01AB | 0.14±0.01A |
对角双支撑相Overlap LH-TF(s) | 0.07±0.02Bb | 0.09±0.02ABb | 0.11±0.01Aa |
前肢间隔期AP TF-LF(s) | 0.09±0.02 | 0.10±0.01 | 0.10±0.00 |
前肢双支撑相Overlap LF-TF(s) | 0.03±0.01b | 0.04±0.01ab | 0.05±0.01a |
前位前蹄支撑相Stance LF(s) | 0.12±0.03b | 0.14±0.01ab | 0.15±0.01a |
后位前蹄摆动相Swing TF(s) | 0.31±0.02 | 0.31±0.03 | 0.32±0.01 |
前位前蹄摆动相Swing LF(s) | 0.31±0.03 | 0.30±0.03 | 0.32±0.01 |
腾空期AD(s) | 0.11±0.03 | 0.10±0.02 | 0.11±0.01 |
步频SF(s-1) | 2.33±0.09Aa | 2.28±0.12ABa | 2.16±0.06Bb |
表6 不同维护方式下终点步态特征时间参数的差异
Table 6 differences of gait characteristic time parameters at the finish under different maintenance modes
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后位后蹄支撑相Stance TH(s) | 0.12±0.01B | 0.12±0.01B | 0.14±0.01A |
后肢间隔期AP TH-LH(s) | 0.07±0.01b | 0.07±0.01ab | 0.08±0.01a |
后位后蹄摆动相Swing TH(s) | 0.32±0.02 | 0.32±0.03 | 0.33±0.01 |
后肢双支撑相Overlap TH-LH(s) | 0.05±0.02 | 0.05±0.02 | 0.05±0.01 |
对角间隔期AP LH-TF(s) | 0.04±0.01A | 0.03±0.02AB | 0.02±0.01B |
前位后蹄支撑相Stance LH(s) | 0.12±0.02b | 0.12±0.01ab | 0.14±0.01a |
前位后蹄摆动相Swing LH(s) | 0.31±0.02 | 0.32±0.03 | 0.32±0.02 |
后位前蹄支撑相Stance TF(s) | 0.12±0.02B | 0.13±0.01AB | 0.14±0.01A |
对角双支撑相Overlap LH-TF(s) | 0.07±0.02Bb | 0.09±0.02ABb | 0.11±0.01Aa |
前肢间隔期AP TF-LF(s) | 0.09±0.02 | 0.10±0.01 | 0.10±0.00 |
前肢双支撑相Overlap LF-TF(s) | 0.03±0.01b | 0.04±0.01ab | 0.05±0.01a |
前位前蹄支撑相Stance LF(s) | 0.12±0.03b | 0.14±0.01ab | 0.15±0.01a |
后位前蹄摆动相Swing TF(s) | 0.31±0.02 | 0.31±0.03 | 0.32±0.01 |
前位前蹄摆动相Swing LF(s) | 0.31±0.03 | 0.30±0.03 | 0.32±0.01 |
腾空期AD(s) | 0.11±0.03 | 0.10±0.02 | 0.11±0.01 |
步频SF(s-1) | 2.33±0.09Aa | 2.28±0.12ABa | 2.16±0.06Bb |
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后肢步幅Hind SL(cm) | 119.01±22.37a | 100.35±9.52b | 110.59±10.09ab |
双支撑相步幅Mid SL(cm) | 173.26±9.05Aa | 162.86±10.61ABa | 144.71±24.78Bb |
前肢步幅Fore SL(cm) | 138.25±24.33 | 129.14±9.96 | 123.66±19.38 |
腾空期步幅AD SL(cm) | 155.58±38.66 | 160.15±19.87 | 159.13±16.63 |
总步幅SL(cm) | 586.09±73.34 | 552.49±34.93 | 538.09±59.62 |
最大开张角度SA(°) | 105.75±2.43a | 103.00±2.33b | 102.86±2.12b |
表7 不同维护方式下终点步态特征空间参数的差异
Table 7 differences of spatial parameters of gait characteristics at the finish under different maintenance modes
指标Index | 压实组Compact | 普通组Common | 耙地组Soft |
---|---|---|---|
后肢步幅Hind SL(cm) | 119.01±22.37a | 100.35±9.52b | 110.59±10.09ab |
双支撑相步幅Mid SL(cm) | 173.26±9.05Aa | 162.86±10.61ABa | 144.71±24.78Bb |
前肢步幅Fore SL(cm) | 138.25±24.33 | 129.14±9.96 | 123.66±19.38 |
腾空期步幅AD SL(cm) | 155.58±38.66 | 160.15±19.87 | 159.13±16.63 |
总步幅SL(cm) | 586.09±73.34 | 552.49±34.93 | 538.09±59.62 |
最大开张角度SA(°) | 105.75±2.43a | 103.00±2.33b | 102.86±2.12b |
[1] | 新疆维吾尔自治区畜牧厅. 新疆现代马产业发展规划(2019-2030年)[J]. 新疆畜牧业, 2020, 35(4): 4-10. |
Department of Animal Husbandry of Xinjiang Uygur Autonomous Region. Development plan of modern horse industry in Xinjiang (2019-2030)[J]. Xinjiang Xumuye, 2020, 35(4): 4-10. | |
[2] |
Mota M D S D. Genetic correlations between performance at different racing distances in Thoroughbreds[J]. Livestock Science, 2006, 104(3): 227-232.
DOI URL |
[3] | Oki H, Sasaki Y. Estimation of Genetic Trend in Racing Time of Thoroughbred Horse in Japan[J]. Animal Science & Technology, 1996, 67(2): 120-124. |
[4] | Oki H, Sasaki Y, Willham R L. Estimation of genetic correlations between racing times recorded at different racing distances by restricted maximum likelihood in Thoroughbred racehorses[J]. Journal of Animal Breeding & Genetics, 1997, (114): 105-109. |
[5] | Symons J E. Hitting the ground running: Relationships between racetrack surface properties and Thoroughbred forelimb dynamics[M]. University of California, Davis, 2015. |
[6] |
Peterson M L, Mcilwraith C W. Effect of track maintenance on mechanical properties of a dirt racetrack: a preliminary study[J]. Equine Veterinary Journal, 2008, 40(6): 602-605.
PMID |
[7] | Setterbo J J, Anh C, Fyhrie P B, et al. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces[J]. Plos One, 2012, 7(12): 505-514. |
[8] | Burn J F, Burn J F, Usmar S J. Hoof landing velocity is related to track surface properties in trotting horses[J]. Equine & Comparative Exercise Physiology, 2007, 2(1): 37-41. |
[9] |
Crevier-Denoix N, Audigié F, Emond A L, et al. Effect of track surface firmness on the development of musculoskeletal injuries in French Trotters during four months of harness race training[J]. American Journal of Veterinary Research, 2017, 78(11): 1293-1304.
DOI PMID |
[10] | Doğukan Ö, Ufuk K, Hülya Ö, et al. Investigation of Factors Influencing Thoroughbred Horses' Racing Career Length in Turkey[J]. Journal of Equine Veterinary Science, 2021, (5): 103-112. |
[11] |
Physick-Sheard P, Avison A, Sears W. Factors Associated with Mortality in Ontario Standardbred Racing: 2003-2015[J]. Animals, 2021, 11(4): 10-18.
DOI URL |
[12] | Doğukan Ö, GÜrcan I S. Determination of factors affecting the length of racing career of Arabian horses in Turkey[J]. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 2016, 63(3): 303-309. |
[13] |
Maeda Y, Tomioka M, Hanada M, et al. Influence of Track Surface Condition on Racing Times of Thoroughbred Racehorses in Flat Races[J]. Journal of Equine Veterinary Science, 2012, 32(11): 689-695.
DOI URL |
[14] |
Oikawa M, Kusunose R. Fractures sustained by racehorses in Japan during flat racing with special reference to track condition and racing time[J]. Veterinary Journal, 2005, 170(3): 369-374.
PMID |
[15] |
Setterbo J J, Yamaguchi A, Hubbard M, et al. Effects of equine racetrack surface type, depth, boundary area, and harrowing on dynamic surface properties measured using a track-testing device in a laboratory setting[J]. Sports Engineering, 2011, 14(2-4): 119-137.
DOI URL |
[16] | Frigerio M A, Cisneros D G, Llorente I S, et al. A kinematic comparison of the locomotor pattern of horses sedated with detomidine alone and in combination with low doses of butorphanol[J]. Equine Veterinary Journal, 2019, (45): 221-229. |
[17] | Hilary M, Clayton. Horse Species Symposium: Biomechanics of the exercising horse[J]. Journal of Animal Science, 2016, (43): 152-159. |
[18] | Nankervis K J, Launder E J, Murray R C. The Use of Treadmills Within the Rehabilitation of Horses[J]. Journal of Equine Veterinary Science, 2017, (53): 108-115. |
[19] | Komosa M, Frckowiak H, Purzyc H, et al. Differences in exterior conformation between primitive, Half-bred and Thoroughbred horses: anatomic-breeding approach[J]. Journal of Animal Science, 2013, 64(4): 1660-1668. |
[20] | SchÖllhorn W I, Peham C, Licka T, et al. A pattern recognition approach for the quantification of horse and rider interactions[J]. Equine Veterinary Journal, 2006, (47): 582-591. |
[21] |
Gunnarsson V, Stefánsdóttir G, Jansson A, et al. The effect of rider weight and additional weight in Icelandic horses in tlt: Part II. Stride parameters responses[J]. Animal, 2017, 11(9): 1-6.
DOI URL |
[22] | 曾亚琦, 王建文, 姚新奎, 等. 青年伊犁马步幅指数及步频指数与运动性能的关联性分析[J]. 中国畜牧兽医, 2021, 48(6): 2091-2100. |
ZENG Yaqi, WANG Jianwen, YAO Xinkui, et al. Correlation analysis between stride index, stride frequency index and sports performance of young Yili horses[J]. China Animal Husbandry and Veterinary, 2021, 48(6): 2091-2100. | |
[23] | 李林玲. 不同类型马体型结构差异及其与速步赛步态特征相关性分析[D]. 乌鲁木齐: 新疆农业大学, 2016. |
LI Linling. Analysis on the difference of body structure of different types of horses and its correlation with the gait characteristics of speed walking race [D. Urumqi:Xinjiang Agricultural University, 2016. | |
[24] |
Ratzlaff M H, Hyde M L, Hutton D V, et al. Interrelationships between moisture content of the track, dynamic properties of the track and the locomotor forces exerted by galloping horses[J]. Journal of Equine Veterinary Science, 1997, 17(1): 35-42.
DOI URL |
[25] |
Symons J E, Garcia T C, Stover S M. Distal hindlimb kinematics of galloping Thoroughbred racehorses on dirt and synthetic racetrack surfaces[J]. Equine Veterinary Journal, 2014, 46(2): 227-232.
DOI PMID |
[26] |
Ferris D P, Liang K, Farley C T. Runners adjust leg stiffness for their first step on a new running surface[J]. Journal of Biomechanics, 1999, 32(8): 787-794.
PMID |
[27] |
Lejeune T M, Willems P A, Heglund N C. Mechanics and energetics of human locomotion on sand[J]. Journal of Experimental Biology, 1998, 201(13): 2071-2080.
DOI URL |
[28] | Moritz C T, Farley C T. Human hopping on damped surfaces: strategies for adjusting leg mechanics[J]. Proceedings of the Royal Society B: Biological Sciences, 2003, 89(8): 856-862. |
[29] |
Chateau H, Holden L, Robin D, et al. Biomechanical analysis of hoof landing and stride parameters in harness trotter horses running on different tracks of a sand beach (from wet to dry) and on an asphalt road[J]. Equine Veterinary Journal, 2010, 42(38): 488-495.
DOI URL |
[30] | D, Robin, H., et al. Use of a 3D dynamometric horseshoe to assess the effects of an all-weather waxed track and a crushed sand track at high speed trot: Preliminary study[J]. Equine Veterinary Journal, 2009, (221): 741-747. |
[31] | 于佳彬. 短跑加速阶段与最大速度阶段生物力学特征研究[D]. 上海: 上海体育学院, 2016. |
YU Jiabin. Study on biomechanical characteristics of sprint acceleration stage and maximum speed stage[D]. Shanghai: Shanghai Institute of Physical Education, 2016. | |
[32] | Behnke R. Numerical time-domain modelling of hoof-ground interaction during the stance phase[J]. Equine Veterinary Journal, 2018, (45): 112-118. |
[33] | Northrop A J, Martin J H, Holt D, et al. Operational temperatures of all-weather thoroughbred racetracks influence surface functional properties[J]. Biosystems Engineering, 2020, (193): 37-45. |
[34] | Munoz-Nates F, Chateau H, Van Hamme A, et al. Accelerometric and dynamometric measurements of the impact shock of the equine forelimb and hindlimb at high speed trot on six different tracks-preliminary study in one horse[J]. Computer Methods in Biomechanics & Biomedical Engineering, 2015, 10(1): 2012-2013. |
[35] | Back W, Barneveld A, Bruin G, et al. Kinematic detection of superior gait quality in young trotting warmbloods[J]. Veterinary Quarterly, 1994, 16(2): 91-97. |
[36] |
任湘, 孟军, 王建文, 等. 2岁伊犁马细分体尺与3 600 m速度赛步态特征间的相关性[J]. 新疆农业科学, 2019, 56(7): 1344-1352.
DOI |
REN Xiang, MENG Jun, WANG Jianwen, et al. Correlation between subdivided body size of 2-year-old Yili horse and gait characteristics of 3600 m speed race[J]. Xinjiang Agricultural Sciences, 2019, 56(7): 1344-1352.
DOI |
[1] | 常笑康, 曾亚琦, 孟军, 王建文, 张亚昂, 李林玲, 邓海峰, 郑文祥, 姚新奎, 周静. 耐力运动对伊犁马血液生理指标的影响[J]. 新疆农业科学, 2024, 61(3): 742-748. |
[2] | 刘晔, 王彤亮, 孟军, 曾亚琦, 王建文, 衡士兵, 王培明, 姚新奎, 樊志伟. 不同强度遛马对伊犁马900 m测试赛成绩及血气指标的影响[J]. 新疆农业科学, 2024, 61(3): 749-756. |
[3] | 杨利平, 王川坤, 尚婷婷, 曾亚琦, 王建文, 诺鲁甫, 马康伟, 姚新奎, 孟军. 调教训练对伊犁马2 000 m速步赛血气指标的影响[J]. 新疆农业科学, 2024, 61(3): 757-765. |
[4] | 张仕琦, 李晓斌, 张文杰, 韩明, 王世昌, 郑文祥, 欧阳文, 祁居中, 杨开伦. 基于LC/MS的伊犁马3 600 m速度赛赛前、赛后血浆代谢组学差异变化[J]. 新疆农业科学, 2023, 60(2): 501-510. |
[5] | 刘律, 李晓斌, 马艳, 杨昊, 张文杰, 鲁豪, 卫鑫岚, 高俊杰, 欧阳文, 杨开伦. 补喂胍基乙酸对运动训练伊犁马血浆胍基乙酸、肌酸浓度的影响[J]. 新疆农业科学, 2022, 59(9): 2267-2275. |
[6] | 王洁, 孟军, 曾亚琦, 王建文, 吐尔逊江·吾木尔艾力, 王川坤, 袁鑫鑫, 王彤亮, 姚新奎. 伊犁马PFKM基因表达及酶活性分析[J]. 新疆农业科学, 2022, 59(11): 2758-2764. |
[7] | 王建文, 丁玉泽, 李璐伶, 姚新奎, 曾亚琦, 闫睛, 任万路, 王川坤, 孟军. 伊犁马LPL基因多态性及其与肉质性状关联性分析[J]. 新疆农业科学, 2022, 59(11): 2765-2771. |
[8] | 吴睿宸, 姚新奎, 孟军, 曾亚琦, 王川坤, 阿拉法特·艾合买提, 努尔塔依·库尔班塔依. 补饲不同剂量竹叶提取物对泌乳期伊犁马血液生化指标的影响[J]. 新疆农业科学, 2022, 59(11): 2772-2778. |
[9] | 张雪敏, 姚新奎, 孟军, 曾亚琦, 王建文, 叶尔哈拿提·卡得尔汗, 哈丽斯汗·巴哈依丁. 母源补喂竹叶提取物对伊犁马幼驹血液生化指标的影响[J]. 新疆农业科学, 2022, 59(11): 2779-2785. |
[10] | 马兵强, 姚新奎, 孟军, 曾亚琦, 王建文, 王川坤, 阿皮代姆·图尔荪. 补喂不同水平竹叶提取物对泌乳期伊犁马产奶量及乳成分的影响[J]. 新疆农业科学, 2022, 59(11): 2786-2792. |
[11] | 刘婷, 姚新奎, 孟军, 曾亚琦, 王川坤, 任万路, 布沙热木·阿不都卡地尔, 高婉婷. 补喂竹叶提取物对伊犁马挤奶期间心率变异性的影响[J]. 新疆农业科学, 2022, 59(11): 2793-2799. |
[12] | 钟浩杰, 姚新奎, 罗鹏辉, 孟军, 姚岳扬, 王川坤, 任万路. 基于代谢组学分析补喂发酵豆粕对伊犁马驹粪便代谢物的影响[J]. 新疆农业科学, 2022, 59(11): 2800-2807. |
[13] | 高晨霞, 孟军, 吕燕, 曾亚琦, 王川坤, 麦迪娜姆・布力布力, 胡泽旭, 艾力卡木・阿比来提, 姚新奎. 连续波中频电疗对伊犁马1 200 m速度赛后血气指标的影响[J]. 新疆农业科学, 2022, 59(11): 2808-2814. |
[14] | 吴金秋, 张冲, 孟军, 曾亚琦, 加娜尔・努尔顿, 王川坤, 袁鑫鑫, 王彤亮, 姚新奎. 伊犁马MCT1基因多态性与速度性能的关联性分析[J]. 新疆农业科学, 2022, 59(11): 2815-2821. |
[15] | 倪秀琳, 孟军, 欧阳文, 王建文, 车矿兵, 热孜艳木・努尔艾, 赛尔达尔・毛拉吐尔迪, 祖丽胡玛尔・阿卜来提, 姚新奎. 不同音乐对伊犁马运动性能及心率变异性的影响[J]. 新疆农业科学, 2022, 59(11): 2831-2837. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||