新疆农业科学 ›› 2022, Vol. 59 ›› Issue (4): 1009-1015.DOI: 10.6048/j.issn.1001-4330.2022.04.027
• 基因工程·草业·农产品分析检测·畜牧兽医 • 上一篇 下一篇
收稿日期:
2021-05-11
出版日期:
2022-04-20
发布日期:
2022-04-24
通信作者:
李俊华(1972-),男,陕西汉中人,教授,研究方向为土壤生态与环境,(E-mail) ljh630703@163.com作者简介:
陈丽丽(1996-),女,新疆五家渠人,硕士研究生,研究方向为土壤生态与环境,(E-mail) 1806916226@qq.com
基金资助:
CHEN Lili(), TIAN Shuang, LU Weidan, LI Junhua(
), SUN Benben
Received:
2021-05-11
Published:
2022-04-20
Online:
2022-04-24
Supported by:
摘要:
【目的】研究镉胁迫对作物生长及富集特性的影响,探寻更适宜修复镉污染的植物。【方法】设计水培试验,以德高小白菜、新陆早42号棉花、野生龙葵为供试材料,人工模拟不同浓度镉胁迫条件,测定不同浓度镉胁迫下3种植物生长、镉吸收与积累。【结果】(1)镉胁迫下,棉花株高生长显著受到抑制;随镉胁迫浓度的增加,龙葵及棉花生物量下降尤为显著。(2)各处理下,棉花和小白菜地下部镉含量大于地上部,根系表现出较强的耐性与镉吸收能力;龙葵在低浓度镉(10和20 mg/kg)处理下地上部镉含量大于地下部,此时,根至茎叶表现出较强的镉转移能力。(3)高浓度镉胁迫下,龙葵的镉积累能力高于小白菜和棉花。【结论】镉胁迫下,小白菜生长无显著抑制。镉处理浓度分别为5、3.5和50 mg/kg时,对应的小白菜、棉花和龙葵镉积累量达到最大。3种植物对镉污染的修复能力表现为龙葵>小白菜>棉花。
中图分类号:
陈丽丽, 田爽, 鲁伟丹, 李俊华, 孙奔奔. 镉胁迫对3种植物生长及镉吸收和积累的影响[J]. 新疆农业科学, 2022, 59(4): 1009-1015.
CHEN Lili, TIAN Shuang, LU Weidan, LI Junhua, SUN Benben. Effects of Cadmium Stress on Growth in Three Plants and Cadmium Uptake and Its Accumulation[J]. Xinjiang Agricultural Sciences, 2022, 59(4): 1009-1015.
作物 Crops | 镉处理及对应浓度 Cadmium treatment and corresponding concentration (mg/kg) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | T5 | |||||||||
龙葵 Solanum nigrum | 0 | 10 | 20 | 25 | 50 | 100 | ||||||||
小白菜 Chinese cabbage | 0 | 1 | 2.5 | 5 | 10 | 15 | ||||||||
棉花 cotton | 0 | 3.5 | 7 | 14 | 21 | 28 |
表1 水培3种植物镉胁迫浓度
Table 1 Cadmium stress concentration of three plants in Hydroponics
作物 Crops | 镉处理及对应浓度 Cadmium treatment and corresponding concentration (mg/kg) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | T5 | |||||||||
龙葵 Solanum nigrum | 0 | 10 | 20 | 25 | 50 | 100 | ||||||||
小白菜 Chinese cabbage | 0 | 1 | 2.5 | 5 | 10 | 15 | ||||||||
棉花 cotton | 0 | 3.5 | 7 | 14 | 21 | 28 |
图1 不同镉浓度下3种植物株高变化 注: 不同小写字母代表不同处理差异显著性(P<0. 05),下同
Fig.1 Effect of cadmium concentration on plant height of three plants Note: Different lowercase letters represent significant differences among different treatments (P<0.05).the same as below
处理 Treatments | 地下部生物量Underground biomass | 地上部生物量Aboveground biomass | |||||
---|---|---|---|---|---|---|---|
小白菜 Chinese cabbage | 龙葵 Solanum nigrum | 棉花 cotton | 小白菜 Chinese cabbage | 龙葵 Solanum nigrum | 棉花 Cotton | ||
CK | 0.93±0.03a | 0.90±0.04a | 1.20±0.06a | 1.96±0.0 | 1.35±0.04a | 1.69±0.07a | |
T1 | 0.97±0.06a | 0.90±0.02b | 1.00±0.04b | 1.39±0.27b | 1.30±0.0 | 1.53±0.03b | |
T2 | 0.95±0.05a | 0.86±0.01b | 0.95±0.03b | 2.39±0.41a | 1.27±0.0 | 1.51±0.02b | |
T3 | 0.92±0.01a | 0.87±0.01b | 0.93±0.01b | 2.24±0.09a | 1.12±0.0 | 1.46±0.08b | |
T4 | 0.92±0.03a | 0.83±0.01c | 0.73±0.01c | 2.14±0.09a | 1.05±0.04c | 1.45±0.04b | |
T5 | 0.95±0.04a | 0.84±0.01c | 0.64±0.01d | 1.95±0.1 | 0.99±0.02c | 1.09±0.01c |
表2 3种植物地上部及地下部生物量变化
Table 2 Aboveground and root biomass changes of three plants
处理 Treatments | 地下部生物量Underground biomass | 地上部生物量Aboveground biomass | |||||
---|---|---|---|---|---|---|---|
小白菜 Chinese cabbage | 龙葵 Solanum nigrum | 棉花 cotton | 小白菜 Chinese cabbage | 龙葵 Solanum nigrum | 棉花 Cotton | ||
CK | 0.93±0.03a | 0.90±0.04a | 1.20±0.06a | 1.96±0.0 | 1.35±0.04a | 1.69±0.07a | |
T1 | 0.97±0.06a | 0.90±0.02b | 1.00±0.04b | 1.39±0.27b | 1.30±0.0 | 1.53±0.03b | |
T2 | 0.95±0.05a | 0.86±0.01b | 0.95±0.03b | 2.39±0.41a | 1.27±0.0 | 1.51±0.02b | |
T3 | 0.92±0.01a | 0.87±0.01b | 0.93±0.01b | 2.24±0.09a | 1.12±0.0 | 1.46±0.08b | |
T4 | 0.92±0.03a | 0.83±0.01c | 0.73±0.01c | 2.14±0.09a | 1.05±0.04c | 1.45±0.04b | |
T5 | 0.95±0.04a | 0.84±0.01c | 0.64±0.01d | 1.95±0.1 | 0.99±0.02c | 1.09±0.01c |
[1] | 梅磊, 李玲, 陈进红, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1):102-110. |
MEI Lei, LI Ling, CHEN Jinhong, et al. Advances on Response and Resistance to Heavy Metal Stress in Cotton[J]. Cotton Science, 2018, 30(1):102-110. | |
[2] | 綦峥, 齐越, 杨红, 等. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 2020, 11(7):2286-2294. |
QI Zheng, QI Yue, YANG Hong, et al. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety & Quality, 2020, 11(7):2286-2294. | |
[3] | 张静, 赵秀侠, 汪翔, 等. 重金属镉(Cd)胁迫对水芹生长及生理特性的影响[J]. 植物生理学报, 2015, 51(11):1969-1974. |
ZHANG Jing, ZHAO Xiuxia, WANG Xiang, et al. Effects of Cadmium Stress on the Growth and Physiological Property of Oe-nanthejavanica[J]. Plant Physiology Communications, 2015, 51(11):1969-1974. | |
[4] | 张路, 张锡洲, 李廷轩, 等. 水稻镉安全亲本材料对镉的吸收分配特性[J]. 中国农业科学, 2015, 48(1):174-184. |
ZHANG Lu, ZHANG Xizhou, LI Tingxuan, et al. Cd Uptake and Distribution Characteristics of Cd Pollution-Safe Rice Materials[J]. Scientia Agricultura Sinica, 2015, 48(1):174-184. | |
[5] | 张红振, 骆永明, 章海波, 等. 土壤环境质量指导值与标准研究Ⅴ.镉在土壤-作物系统中的富集规律与农产品质量安全[J]. 土壤学报, 2010, 47(4):628-638. |
ZHANG Hongzhen, LUO Yongming, ZHANG Haibo, et al. Research on Soil Environmental Quality Guidance Values and Standards V. The Accumulation Law of Cadmium in Soil-Crop System and the Quality and Safety of Agricultural Products[J]. Acta Pedologica Sinica, 2010, 47(4):628-638. | |
[6] | 刘星, 刘晓文, 吴颖欣, 等. 农用地重金属污染植物提取修复技术研究进展[J]. 环境污染与防治, 2020, 42(4):507-513. |
LIU Xing, LIU Xiaowen, WU Yingxin, et al. Review on phytoextraction of heavy metals from contaminated agricultural land[J]. Environmental Pollution and Control, 2020, 42(4):507-513. | |
[7] | 何俊瑜, 任艳芳, 王阳阳, 等. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J]. 生态学报, 2011, 31(2):522-528. |
HE Junyu, REN Yanfang, WANG Yangyang, et al. Root morphological and physiological responses of rice seedlings with different tolerance to cadmium stress[J]. Acta EcologicaSinica, 2011, 31(2):522-528. | |
[8] |
Wei S H, Wang S S, Li Y M, Zhu J G. Root system responses of hyperaccumulat or Solanum nigrum L. to Cd[J]. Journal of Soils Sediments, 2013, 13:1069-1074.
DOI URL |
[9] | 陈悦, 李玲, 何秋伶, 等. 镉胁迫对三个棉花品种(系)产量、纤维品质和生理特性的影响[J]. 棉花学报, 2014, 26(6):521-530. |
CHEN Cheng, LI Zhongbao, DENG Nanxin, et al. Plants' Remediation of Cadmium Contaminated Soil[J]. Jiangsu Agricultural Sciences, 2020, 48(1):254-258. | |
[10] | 孙月美, 宁国辉, 刘树庆, 等. 耐受性植物油葵和棉花对镉的富集特征研究[J]. 水土保持学报, 2015, 29(6):281-286. |
SUN Yuemei, NING Guohui, LIU Shuqing, et al. Accumulation Characteristics of Cadmium in two Tolerant Plant Species, Oil Sunflower and Cotton[J]. Journal of Soil and Water Conservation, 2015, 29(6):281-286. | |
[11] | 王圣淳. 土壤镉污染及其修复研究进展[J]. 山东化工, 2017, 46(23):47-48. |
WANG Shengchun. Review on Soil Contamination by Cadmium and It's Remediation[J]. Shandong Chemical Industry, 2017, 46(23):47-48. | |
[12] | 王涛, 郭智, 奥岩松. 镉对龙葵幼苗生长的影响及镉富集特性研究[J]. 上海交通大学学报(农业科学版), 2009, 27(3):200-205. |
WANG Tao, GUO Zhi, AO Yansong. Effects of Cd Stress on Growth and Cd-Accumulation of Solanum nigrum L.Seedlings[J]. Journal of Shanghai JiaoTongUniversity(Agricultural Science Ed.), 2009, 27(3):200-205. | |
[13] | 杨青青, 王丹, 崔正旭, 等. Pb、Cd复合污染对不同品种小白菜生长及营养品质的影响[J]. 中国农学通报, 2019, 35(9):12-21. |
YANG Qingqing, WANG Dan, CUI Zhengxu, et al. Effects of Combined Pollution of Pb and Cd on Growth and Nutritional Quality of Chinese Cabbage Varieties[J]. Chinese Agricultural Science Bulletin, 2019, 35(9):12-21. | |
[14] |
Shuhe W, Qi X Z, Pavel V K. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1-3):441-446.
PMID |
[15] | Mukesh K A, Quan W, Hong Y C, et al. Role of compost biochar amendment on the (im)mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil[J]. Journal of Soils and Sediments, 2019, 19(12). |
[16] | An M J, Wang H J, Fan H, et al. Effects of Modifiers on the Growth, Photosynjournal, and Antioxidant Enzymes of Cotton Under Cadmium Toxicity[J]. Journal of Plant Growth Regulation, 2019, 38(4). |
[17] |
魏树和, 周启星, 王新. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 2005,(3):167-171.
PMID |
WEI Shuhe, ZHOU Qixing, WANG Xin. Cadmium-Hyperaccumulator Solanum nigrum L. and Its Accumulating Characteristics[J]. Chinese Journal of Environmental Science, 2005,(3):167-171.
PMID |
|
[18] | 刘可慧, 于方明, 李明顺, 等. 镉胁迫对小白菜(Brassica campestris L.)抗氧化机理的影响[J]. 生态环境, 2008,(4):1466-1470. |
LIU Kehui, YU Fangming, LI Mingshun, et al. Responses and resistance mechanism of Brassica campestris L. to cadmium stress[J]. Ecology and Environment, 2008,(4):1466-1470. | |
[19] | 江文静, 王丹, 姚天月. 铀及其伴生重金属镉的根茎类富集植物的筛选[J]. 农业环境科学学报, 2017, 36(1) :39-47. |
JIANG Wenjing, WANG Dan, YAO Tianyue. Screening of rhizomatic accumulators to uranium and cadmium[J]. Journal of Agricultural Environmental Sciences, 2017, 36(1):39-47. | |
[20] |
Wang L, Zhou Q X, Ding L L, et al. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Journal of Hazardous Materials, 2008, 154:818-825.
PMID |
[21] | Wang L, Li R, Yan X X, et al. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L.[J]. Ecotoxicology and Environmental Safety, 2020, 194. |
[22] | Wu H X, Wu F B, Zhang G P M D G,. Bachir L. Effect of Cadmium on Uptake and Translocation of Three Microelements in Cotton[J]. Journal of Plant Nutrition, 2005, 27(11). |
[23] | 刘柿良, 杨容孑, 马明东, 等. 土壤镉胁迫对龙葵(Solanum nigrum L.)幼苗生长及生理特性的影响[J]. 农业环境科学学报, 2015, 34(2):240-247. |
LIU Shiliang, YANG Rongjie, MA Mingdong, et al. Effects of Soil Cadmium on Growth and Physiological Characteristics of Solanum nigrum L. Plants[J]. Journal of Agro-Environment Science, 2015, 34(2):240-247. | |
[24] | Xu P X, Wang Z L. A Comparison Study in Cadmium Tolerance and Accumulation in Two Cool-Season Turfgrasses and Solanum nigrum L[J]. Water, Air, & Soil Pollution, 2014, 225(5). |
[25] | 谢德志, 魏子璐, 朱峻熠, 等. 水禾对镉胁迫的生理响应[J/OL]. 浙江农林大学学报:1-10 [2020-05-17]. |
XIE Dezhi, WEI Zilu, ZHU Junyi, et al. Physiological response of water grass to cadmium stress[J/OL]. Journal of Zhejiang A&F University:1-10 [2020-05-17]. | |
[26] | 潘雨齐, 黄仁志, 雷鸣, 等. 经济作物修复重金属污染土壤的研究现状与应用前景[J]. 中国麻业科学, 2015, 37(1):35-39. |
PAN Yuqi, HUANG Renzhi, LEI Ming, et al. Research Progress and Prospect of Remedying Soil Contaminated by Heavy Metals with Economic Crops[J]. Plant Fiber Sciences in China, 2015, 37(1):35-39. | |
[27] | 李玉军, 张志刚, 匡政成, 等. 植棉修复镉污染土壤研究进展[J]. 中国棉花, 2017, 44(4):8-10+2. |
LI Yujun, ZHANG Zhigang, KUANG Zhengcheng, et al. Research Progress in Remediation of Cadmium Contaminated Soils by Planting Cotton[J]. China Cotton, 2017, 44(4):8-10+2. | |
[28] | 曾星, 李伟亚, 陈章, 等. 龙葵修复镉污染土壤的研究进展[J]. 草业科学, 2019, 36(5):1308-1316. |
ZENG Xing, LI Weiya, CHEN Zhang, et al. Solanum nigrum mediated remediation of Cd contaminated soil[J]. Pratacultural Science, 2019, 36(5):1308-1316. |
[1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[2] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[3] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[4] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
[5] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
[6] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[7] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[8] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[9] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[10] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[11] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[12] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[13] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[14] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[15] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||