新疆农业科学 ›› 2022, Vol. 59 ›› Issue (1): 1-10.DOI: 10.6048/j.issn.1001-4330.2022.01.001
• 作物遗传育种·分子遗传学·耕作栽培·种质资源 • 上一篇 下一篇
贺宏伟1(), 张巨松1(
), 陈振1, 卡地力亚·阿不都克力木1, 彭增莹1, 刘群1, 崔建平2, 林涛2, 郭仁松2
收稿日期:
2021-01-13
出版日期:
2022-01-20
发布日期:
2022-02-18
通信作者:
张巨松( 1963-),男,江苏江都人,教授,博士,硕/博士生导师,研究方向为棉花高产栽培与生理,( E-mail) xjndzjs@163.com作者简介:
贺宏伟 ( 1994-),男,山西吕梁人,硕士研究生,研究方向为棉花高产栽培,( E-mail) 1351733226@qq.com
基金资助:
HE Hongwei1(), ZHANG Jusong1(
), CHEN Zhen1, Kadiliya Abudukelimu1, PENG Zengying1, LIU Qun1, CUI Jianping2, LIN Tao2, GUO Rensong2
Received:
2021-01-13
Published:
2022-01-20
Online:
2022-02-18
Supported by:
摘要:
【目的】研究适合等行距机采棉生长的最优水氮投入。【方法】以新陆中88号为供试材料,总滴灌量3 800 m3/hm2,总施氮量320 kg/hm2,设置3种灌水方式W1、W2、W3,3种施肥方式N1、N2、N3,分析土壤含水率、叶片含水率、棉铃时空分布、农艺性状、产量性状。【结果】W2、N2灌水施肥方式下,土壤含水率相对稳定,更好地给植株提供所需的营养物质。且棉花叶片保持功能的时间较长;W2,N2灌水施肥方式下,棉株成铃数较多,且呈筒状分布,更适宜机械采收;W2,N2灌水施肥方式下,植株获得的单铃重和单株结铃数均达到最高,最高产量为7 070.84 kg/hm2。【结论】W2、N2灌水施肥方式为最优水氮投入。
中图分类号:
贺宏伟, 张巨松, 陈振, 卡地力亚·阿不都克力木, 彭增莹, 刘群, 崔建平, 林涛, 郭仁松. 水氮调配对等行距机采棉土壤、叶片水分及棉铃分布的影响[J]. 新疆农业科学, 2022, 59(1): 1-10.
HE Hongwei, ZHANG Jusong, CHEN Zhen, Kadiliya Abudukelimu, PENG Zengying, LIU Qun, CUI Jianping, LIN Tao, GUO Rensong. Effects of Water and Nitrogen Adjustment on the Distribution of Soil, Leaf Moisture and Bolls of Cotton Harvested with Equal Row Spacing[J]. Xinjiang Agricultural Sciences, 2022, 59(1): 1-10.
处理 | 基肥 | 6/20 | 7/1 | 7/10 | 7/17 | 7/24 | 7/31 | 8/7 | 8/14 | 8/24 |
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Base fertilizer | |||||||||
灌水量Irrigation quantity(m3/hm2) | ||||||||||
W1 | 380 | 380 | 285 | 285 | 570 | 570 | 570 | 570 | 190 | |
W2 | 380 | 380 | 427.5 | 427.5 | 570 | 570 | 427.5 | 427.5 | 190 | |
W3 | 380 | 380 | 570 | 570 | 570 | 570 | 285 | 285 | 190 | |
施肥量Fertilizer application(kg/hm2) | ||||||||||
N1 | 64 | 0 | 32 | 16 | 16 | 48 | 48 | 48 | 48 | 0 |
N2 | 64 | 0 | 32 | 32 | 32 | 48 | 48 | 32 | 32 | 0 |
N3 | 64 | 0 | 32 | 48 | 48 | 48 | 48 | 16 | 16 | 0 |
表1 灌水施肥量及时间(月/日)
Table 1 Irrigation and fertilization amount and time (M/D)
处理 | 基肥 | 6/20 | 7/1 | 7/10 | 7/17 | 7/24 | 7/31 | 8/7 | 8/14 | 8/24 |
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Base fertilizer | |||||||||
灌水量Irrigation quantity(m3/hm2) | ||||||||||
W1 | 380 | 380 | 285 | 285 | 570 | 570 | 570 | 570 | 190 | |
W2 | 380 | 380 | 427.5 | 427.5 | 570 | 570 | 427.5 | 427.5 | 190 | |
W3 | 380 | 380 | 570 | 570 | 570 | 570 | 285 | 285 | 190 | |
施肥量Fertilizer application(kg/hm2) | ||||||||||
N1 | 64 | 0 | 32 | 16 | 16 | 48 | 48 | 48 | 48 | 0 |
N2 | 64 | 0 | 32 | 32 | 32 | 48 | 48 | 32 | 32 | 0 |
N3 | 64 | 0 | 32 | 48 | 48 | 48 | 48 | 16 | 16 | 0 |
处理 Treatment | 株高 Plant height (cm) | 始果枝高 Branch High envoy (cm) | 倒三叶宽 Inverted three leaves wide (cm) | 真叶数 True leaf number (片) | 果枝数 Number Fruit branch (台) | |
---|---|---|---|---|---|---|
W1 | N1 | 75.5f | 19. | 10.9f | 10.0f | 7.0c |
N2 | 77. | 20.1a | 11.7e | 11. | 9. | |
N3 | 78.0e | 20.1a | 12. | 11.0e | 8.7bc | |
W2 | N1 | 81. | 20.2a | 11. | 11.7d | 10. |
M2 | 83. | 20.6a | 12. | 12.3c | 11.0a | |
N3 | 79. | 19. | 12. | 12. | 10. | |
W3 | N1 | 81. | 19. | 12. | 12. | 9. |
N2 | 85.7a | 20.5a | 13. | 13. | 10. | |
N3 | 84. | 20.7a | 13.2a | 13.3a | 9. |
表2 不同水氮互作下机采棉农艺性状变化
Table 2 The effects of different water and nitrogen interactions on the agronomic characteristics of mechanically harvested cotton
处理 Treatment | 株高 Plant height (cm) | 始果枝高 Branch High envoy (cm) | 倒三叶宽 Inverted three leaves wide (cm) | 真叶数 True leaf number (片) | 果枝数 Number Fruit branch (台) | |
---|---|---|---|---|---|---|
W1 | N1 | 75.5f | 19. | 10.9f | 10.0f | 7.0c |
N2 | 77. | 20.1a | 11.7e | 11. | 9. | |
N3 | 78.0e | 20.1a | 12. | 11.0e | 8.7bc | |
W2 | N1 | 81. | 20.2a | 11. | 11.7d | 10. |
M2 | 83. | 20.6a | 12. | 12.3c | 11.0a | |
N3 | 79. | 19. | 12. | 12. | 10. | |
W3 | N1 | 81. | 19. | 12. | 12. | 9. |
N2 | 85.7a | 20.5a | 13. | 13. | 10. | |
N3 | 84. | 20.7a | 13.2a | 13.3a | 9. |
处理 Treatment | 伏前桃数 Fuzen peach number | 伏桃数 Number of volts | 秋桃数 Number of autumn peaches | ||||
---|---|---|---|---|---|---|---|
数值 Value | 比例 Proportion(%) | 数值 Value | 比例 Proportion(%) | 数值 Value | 比例 Proportion(%) | ||
W1 | N1 | 2.48±0.02a | 33.83b | 3.02±0.0 | 54.8 | 0.83±0.02c | 11.32c |
N2 | 2.33±0.02a | 34.88b | 3.32±0.02d | 49.70e | 1.03±0.02b | 15.42b | |
N3 | 2.43±0.03a | 39.32a | 2.88±0.03e | 46.60e | 0.87±0.03c | 14.07b | |
W2 | N1 | 1.53±0.04b | 21.16c | 4.33±0.0 | 59.89d | 1.37±0.04a | 18.95a |
N2 | 1.12±0.02c | 14.09d | 5.78±0.02a | 72.70a | 1.05±0.02b | 13.21b | |
N3 | 1.17±0.05c | 15.66d | 5.18±0.05b | 69.35b | 1.12±0.0 | 14.99b | |
W3 | N1 | 1.07±0.04c | 15.99d | 4.62±0.04c | 69.06b | 1.00±0.04b | 14.95b |
N2 | 1.20±0.03c | 17.1 | 4.57±0.04c | 65.38c | 1.22±0.0 | 17.4 | |
N3 | 1.10±0.04c | 18.0 | 4.12±0.02d | 67.65c | 0.87±0.05c | 14.29b |
表3 不同处理“三桃”数及所占比例
Table 3 The number and proportion of "three peaches" in different treatments
处理 Treatment | 伏前桃数 Fuzen peach number | 伏桃数 Number of volts | 秋桃数 Number of autumn peaches | ||||
---|---|---|---|---|---|---|---|
数值 Value | 比例 Proportion(%) | 数值 Value | 比例 Proportion(%) | 数值 Value | 比例 Proportion(%) | ||
W1 | N1 | 2.48±0.02a | 33.83b | 3.02±0.0 | 54.8 | 0.83±0.02c | 11.32c |
N2 | 2.33±0.02a | 34.88b | 3.32±0.02d | 49.70e | 1.03±0.02b | 15.42b | |
N3 | 2.43±0.03a | 39.32a | 2.88±0.03e | 46.60e | 0.87±0.03c | 14.07b | |
W2 | N1 | 1.53±0.04b | 21.16c | 4.33±0.0 | 59.89d | 1.37±0.04a | 18.95a |
N2 | 1.12±0.02c | 14.09d | 5.78±0.02a | 72.70a | 1.05±0.02b | 13.21b | |
N3 | 1.17±0.05c | 15.66d | 5.18±0.05b | 69.35b | 1.12±0.0 | 14.99b | |
W3 | N1 | 1.07±0.04c | 15.99d | 4.62±0.04c | 69.06b | 1.00±0.04b | 14.95b |
N2 | 1.20±0.03c | 17.1 | 4.57±0.04c | 65.38c | 1.22±0.0 | 17.4 | |
N3 | 1.10±0.04c | 18.0 | 4.12±0.02d | 67.65c | 0.87±0.05c | 14.29b |
处理Treament | 上部铃Upper boll | 中部铃Middle boll | 下部铃Lower boll | |||||||
---|---|---|---|---|---|---|---|---|---|---|
外围铃 Boll closer to steam | 内围铃 Boll from to steam | 总铃数 Total number of bells | 外围铃 Boll closer to steam | 内围铃 Boll from to steam | 总铃数 Total number of bells | 外围铃 Boll closer to steam | 内围铃 Boll from to steam | 总铃数 Total number of bells | ||
W1 | N1 | 1.04a | 1.3 | 2.35b | 0.2 | 2.2 | 2.43b | 0.05b | 1.5b | 1.55c |
N2 | 0.82b | 1.63b | 2.85a | 0.3 | 2.53a | 2.87a | 0.02b | 1.34b | 1.36c | |
N3 | 0.92b | 1.52b | 2.44b | 0.52a | 2.1 | 2.68a | 0.06b | 1.00c | 1.06c | |
W2 | N1 | 0.25d | 1.94a | 2.19c | 0.3 | 2.1 | 2.41b | 0.6 | 1.9 | 2.63b |
N2 | 0.20d | 2.02a | 2.22c | 0.42a | 2.1 | 2.6 | 1.05a | 2.08a | 3.13b | |
N3 | 0.63c | 1.61b | 2.24c | 0.3 | 2.2 | 2.5 | 0.5 | 2.15a | 2.65b | |
W3 | N1 | 0.21d | 0.85c | 1.06d | 0.2 | 2.42a | 2.65a | 1.32a | 1.9 | 3.28a |
N2 | 0.24d | 0.84c | 1.08d | 0.12b | 2.42a | 2.5 | 1.25a | 2.12a | 3.37a | |
N3 | 0.15d | 0.40d | 0.55e | 0.14b | 2.38a | 2.5 | 1.40a | 1.62b | 3.02b |
表4 各处理棉铃空间分布
Table 4 Spatial distribution of cotton bolls in each
处理Treament | 上部铃Upper boll | 中部铃Middle boll | 下部铃Lower boll | |||||||
---|---|---|---|---|---|---|---|---|---|---|
外围铃 Boll closer to steam | 内围铃 Boll from to steam | 总铃数 Total number of bells | 外围铃 Boll closer to steam | 内围铃 Boll from to steam | 总铃数 Total number of bells | 外围铃 Boll closer to steam | 内围铃 Boll from to steam | 总铃数 Total number of bells | ||
W1 | N1 | 1.04a | 1.3 | 2.35b | 0.2 | 2.2 | 2.43b | 0.05b | 1.5b | 1.55c |
N2 | 0.82b | 1.63b | 2.85a | 0.3 | 2.53a | 2.87a | 0.02b | 1.34b | 1.36c | |
N3 | 0.92b | 1.52b | 2.44b | 0.52a | 2.1 | 2.68a | 0.06b | 1.00c | 1.06c | |
W2 | N1 | 0.25d | 1.94a | 2.19c | 0.3 | 2.1 | 2.41b | 0.6 | 1.9 | 2.63b |
N2 | 0.20d | 2.02a | 2.22c | 0.42a | 2.1 | 2.6 | 1.05a | 2.08a | 3.13b | |
N3 | 0.63c | 1.61b | 2.24c | 0.3 | 2.2 | 2.5 | 0.5 | 2.15a | 2.65b | |
W3 | N1 | 0.21d | 0.85c | 1.06d | 0.2 | 2.42a | 2.65a | 1.32a | 1.9 | 3.28a |
N2 | 0.24d | 0.84c | 1.08d | 0.12b | 2.42a | 2.5 | 1.25a | 2.12a | 3.37a | |
N3 | 0.15d | 0.40d | 0.55e | 0.14b | 2.38a | 2.5 | 1.40a | 1.62b | 3.02b |
处理 Treatment | 单铃重 Boll weight (g) | 单株结铃数 Boll number per plant (个) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg/hm2) | |
---|---|---|---|---|---|
W1 | N1 | 5.55±0.0 | 6.33±0.13d | 46.23±0.52a | 5 481.83±76.35d |
N2 | 5.58±0.0 | 6.68±0.03c | 46.25±0.30a | 5 816.20±97.8 | |
N3 | 5.67±0.01a | 6.18±0.0 | 45.24±0.0 | 5 467.64±86.55d | |
W2 | N1 | 5.41±0.28b | 7.23±0.29b | 46.13±0.45a | 6 103.30±124.40b |
N2 | 5.70±0.17a | 7.95±0.15a | 46.42±0.06a | 7 070.84±76.45a | |
N3 | 5.65±0.21a | 7.47±0.22b | 46.81±0.89a | 6 585.64±168.1 | |
W3 | N1 | 5.43±0.25b | 6.69±0.30c | 46.74±0.44a | 5 668.33±93.45c |
N2 | 5.52±0.0 | 6.99±0.1 | 46.47±0.21a | 6 020.68±56.45b | |
N3 | 5.54±0.4 | 6.09±0.45d | 46.58±0.25a | 5 264.47±87.80e | |
P值 | W | <0.001 | 0.001 | 0.75 | <0.001 |
N | 0.36 | 0.001 | 0.23 | <0.001 | |
W×N | <00.01 | 0.021 | 1.192 | <0.001 |
表5 不同水氮互作下棉花产量及产量构成因素变化
Table 5 The effects of different water and nitrogen interactions on cotton yield and yield components
处理 Treatment | 单铃重 Boll weight (g) | 单株结铃数 Boll number per plant (个) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg/hm2) | |
---|---|---|---|---|---|
W1 | N1 | 5.55±0.0 | 6.33±0.13d | 46.23±0.52a | 5 481.83±76.35d |
N2 | 5.58±0.0 | 6.68±0.03c | 46.25±0.30a | 5 816.20±97.8 | |
N3 | 5.67±0.01a | 6.18±0.0 | 45.24±0.0 | 5 467.64±86.55d | |
W2 | N1 | 5.41±0.28b | 7.23±0.29b | 46.13±0.45a | 6 103.30±124.40b |
N2 | 5.70±0.17a | 7.95±0.15a | 46.42±0.06a | 7 070.84±76.45a | |
N3 | 5.65±0.21a | 7.47±0.22b | 46.81±0.89a | 6 585.64±168.1 | |
W3 | N1 | 5.43±0.25b | 6.69±0.30c | 46.74±0.44a | 5 668.33±93.45c |
N2 | 5.52±0.0 | 6.99±0.1 | 46.47±0.21a | 6 020.68±56.45b | |
N3 | 5.54±0.4 | 6.09±0.45d | 46.58±0.25a | 5 264.47±87.80e | |
P值 | W | <0.001 | 0.001 | 0.75 | <0.001 |
N | 0.36 | 0.001 | 0.23 | <0.001 | |
W×N | <00.01 | 0.021 | 1.192 | <0.001 |
[1] | 田立文, 徐海江, 孔杰, 等. 新疆棉花持续发展对策优化分析[J]. 中国纤检, 2018,(9):110-113. |
TIAN Liwen, XU Haijiang, KONG Jie, et al. Optimization and Analysis of Countermeasures for Sustainable Development of Cotton in Xinjiang[J]. China Fiber Inspection, 2018,(9):110-113. | |
[2] | 张昊, 林涛, 尔晨, 崔建平, 等. 配置模式对南疆机采棉生长发育及产量形成的调控效应[J]. 新疆农业大学学报, 2018, 41(5):307-313. |
ZHANG Hao, LIN Tao, ER Chen, et al. Effects of Planting Patterns on Growth and Yield Formation for Machine-picked Cotton in Southern Xinjiang[J]. Journal of Xinjiang Agricultural University, 2018, 41(5):307-313. | |
[3] |
杨培, 陈振, 阿不都卡地尔·库尔班, 等. 对等密度条件下机采棉不同种植模式的综合评价[J]. 新疆农业科学, 2019, 56(4):599-609.
DOI |
YANG Pei, CHEN Zhen, Abudukadier Kuerban, et al. Comprehensive Evaluation of Different Planting Modes of Machine-picked Cotton under the Equal Density Condition[J]. Xinjiang Agricultural Sciences, 2019, 56(4):599-609.
DOI |
|
[4] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4):783-795. |
JU Xiaotang GU Baojing. Status quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4):783-795. | |
[5] | 张伟, 李鲁华, 吕新. 水氮耦合对滴灌春小麦根系时空分布及产量的影响[J]. 灌溉排水学报, 2015, 34(11):47-51. |
ZHANG Wei, LI Luhua, LÜ Xin. Effects of Water-nitrogen Coupling on Spatial and Temporal Distributionsof Spring Wheat Roots and Yield under Drip Irrigation[J]. Journal of Irrigation and Drainage, 2015, 34(11):47-51. | |
[6] | 邵东国, 孙春敏, 王洪强, 等. 稻田水肥资源高效利用与调控模拟[J]. 农业工程学报, 2010, 26(12):72-78. |
SHAO Dongguo, SUN Chunmin, WANG Hongqiang, et al. Simulation on regulation for efficient utilization of water and fertilizer resources in paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12):72-78. | |
[7] | 张文斌, 张荣, 李文德, 等. 水肥耦合对河西绿洲板蓝根生理特性及产量影响[J]. 西北农业学报, 2017, 26(1):25-31. |
ZHANG Wenbin, ZHANG Rong, LI Wende, et al. Effect of Yield and Physiological Characteristics on Isatis tinctoria of Water and Fertilizer Coupling in Hexi Oasis[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(1):25-31. | |
[8] | Wang H,., Wu L,., Cheng M., et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China(Article)[J]. Field Crops Research, 2018:169-179. |
[9] | 李春艳, 张巨松, 石洪亮, 等. 密度与氮肥对机采棉叶铃分布的影响及与产量的关系[J]. 中国农业大学学报, 2018, 23(11):47-59. |
LI Chunyan, ZHANG Jusong, SHI Hongliang, et al. Effect of planting density and nitrogen application on the distribution of leaf and boll in machine picking cotton and its relationship with yield[J]. Journal of China Agricultural University, 2018, 23(11):47-59. | |
[10] | 邢英英, 张富仓, 张燕, 等. 滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响[J]. 中国农业科学, 2015, 48(4):713-726. |
XING Yingying, ZHANG Fucang, ZHANG Yan, et al. Effect of Irrigation and Fertilizer Coupling on Greenhouse Tomato Yield, Quality, Water and Nitrogen Utilization Under Fertigation[J]. Scientia Agricultura Sinica, 2015, 48(4):713-726. | |
[11] | 李建明, 潘铜华, 王玲慧, 等. 水肥耦合对番茄光合、产量及水分利用效率的影响[J]. 农业工程学报, 2014, 30(10):82-90. |
LI Jianming, PAN Tonghua, WANG Linghui, et al. Effects of water-fertilizer coupling on tomato photosynjournal, yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10):82-90. | |
[12] | 何海兵, 杨茹, 廖江, 等. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展[J]. 中国农业科学, 2016, 49(2):305-318. |
HE Haibing, YANG Ru, LIAO Jiang, et al. Research Advance of High-Yielding and High Efficiency in Resource Use and Improving Grain Quality of Rice Plants Under Water and Nitrogen Managements in an Irrigated Region[J]. Scientia Agricultura Sinica, 2016, 49(2):305-318. | |
[13] | 崔永生, 王峰, 孙景生, 等. 南疆机采棉田灌溉制度对土壤水盐变化和棉花产量的影响[J]. 应用生态学报, 2018, 29(11):3634-3642. |
CUI Yongsheng, WANG Feng, SUN Jingsheng, et al. Effects of irrigation regimes on the variation of soil water and salt and yield of mechanically harvested cotton in Southern Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11):3634-3642. | |
[14] | 高黎明, 周保平, 唐梓涯, 等. 不同水氮处理对棉花土壤水分迁移的影响[J]. 安徽农学通报, 2020, 26(Z1):118-119. |
GAO Liming, ZHOU Baoping, TANG Ziya, et al. Effects of Different Water and Nitrogen Treatments on Soil Water Movement in Cotton[J]. Anhui Agricultural Science Bulletin, 2020, 26(Z1):118-119. | |
[15] | 忠智博, 翟国亮, 邓忠, 等. 水氮施量对膜下滴灌棉花生长及水氮分布的影响[J]. 灌溉排水学报, 2020, 39(1):67-76. |
ZHONG Zhibo, ZHAI Guoliang, DENG Zhong, et al. The Impact of N Application and Drip Irrigation Amount on Cotton Growth and Water and N Distributions in Soil Mulched with Film[J]. Journal of Irrigation and Drainage, 2020, 39(1):67-76. | |
[16] |
罗振, 辛承松, 李维江, 等. 部分根区灌溉与合理密植对旱区棉花产量和水分生产率的影响[J]. 应用生态学报, 2019, 30(9):3137-3146.
PMID |
LUO Zhen, XIN Chengsong, LI Weijiang, et al. Effects of partial root-zone irrigation and rational close planting on yield and water productivity of cotton in arid area[J]. Chinese Journal of Applied Ecology, 2019, 30(9):3137-3146.
DOI PMID |
|
[17] |
杜刚锋, 汪江涛, 孙雪冰, 等. 不同灌溉方式和灌水量对棉花冠层叶铃配置的影响[J]. 新疆农业科学, 2019, 56(7):1177-1186.
DOI |
DU Gangfeng, WANG Jiangtao, SUN Xuebing, et al. Effects of Irrigation Method and Irrigation Amount on Cotton Crown Leaf Boll Configuration[J]. Xinjiang Agricultural Sciences, 2019, 56(7):1177-1186.
DOI |
|
[18] | 朱晓伟, 刘连涛, 万华龙, 等. 整枝方式和冠层高度对棉铃时空分布及产量的影响[J]. 棉花学报, 2019, 31(1):79-88. |
ZHU Xiaowei, LIU Liantao, WAN Hualong, et al. Effects of Pruning Methods and Canopy Patterns on the Temporal -Spatial Distribution of Cotton Bolls and Yield[J]. Cotton Science, 2019, 31(1):79-88. | |
[20] | 冯克云. 不同灌水量和施钾水平对棉花产量及其构成因素的影响[J]. 干旱地区农业研究, 2009, 27(6):44-49. |
FENG Keyun. Effect of different irrigation and potassium on cotton yield and its component factors[J]. Agricultural Research in the Arid Areas, 2009, 27(6):44-49. | |
[21] | 谢志良, 田长彦. 膜下滴灌水氮耦合对棉花干物质积累和氮素吸收及水氮利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(1):160-165. |
XIE Zhiliang, TIAN Changyan. Coupling effects of water and nitrogen on dry matter accumulation, nitrogen uptake and water-nitrogen use efficiency of cotton under mulched drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1):160-165. | |
[22] | 余炳凤, 王海江, 侯振安, 等. 膜下滴灌水氮对不同生育期棉花根系与产量影响[J]. 石河子大学学报(自然科学版), 2015, 33(3):265-269. |
YU Bingfeng, WANG Haijiang, HOU Zhenan, et al. Effect of Water-Nitrogen on Cotton Yield and Root Characteristics in Different Growth Stage under Mulching Drip Irrigation[J]. Journal of Shihezi University (Natural Science), 2015, 33(3):265-269. |
[1] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[2] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[3] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[4] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[5] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[6] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[7] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[8] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[9] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[10] | 袁莹莹, 赵经华, 迪力穆拉提·司马义, 杨庭瑞. 基于apriori算法对盆栽春小麦生理指标及产量的分析[J]. 新疆农业科学, 2024, 61(8): 1861-1871. |
[11] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[12] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
[13] | 李锁丞, 柳延涛, 董红业, 孙振博, 李紫薇, 张春媛, 王开勇, 李强, 杨明凤. 不同施钾量对滴灌花生光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1926-1936. |
[14] | 张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053. |
[15] | 杨梅, 赵红梅, 迪丽热巴·夏米西丁, 杨卫君, 张金汕, 惠超. 氮肥减量配施生物质炭对春小麦群体结构、光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1582-1589. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||