Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (1): 165-175.DOI: 10.6048/j.issn.1001-4330.2024.01.018
• Agricultural Product Analysis and Detection·Forestry·Agricultural Information·Plant Protection • Previous Articles Next Articles
MA Sijie1(), ZHU Tiansheng1,2, HE Lu1, YANG Shuqing1,2(
)
Received:
2023-05-09
Online:
2024-01-20
Published:
2024-02-21
Correspondence author:
YANG Shuqing(1986 -),female,doctor,associate professor,native of Hohhot,Inner Mongolia,master's supervisor,research direction is plant pathology,(E-mail)Supported by:
通讯作者:
杨叔青(1986-),女,内蒙古呼和浩特人,副教授,博士,硕士生导师,研究方向为植物病理学,(E-mail)作者简介:
马思洁(1999-),女,新疆乌鲁木齐人,硕士研究生,研究方向为植物病理学,(E-mail)2634377513@qq.com
基金资助:
基因登录号 Gene ID | 蛋白长度 Protein length (aa) | 分子式 Molecular formula | 分子量 Molecular weight | 原子总数 Total number of atoms | 带负电荷 氨基酸残 基总数 Total number of negatively Charged amino acid residues (Asp + Glu) | 带正电荷 氨基酸残 基总数 Total number of positively Charged amino acid residues (Arg + Lys) | 理论等 电点PI |
---|---|---|---|---|---|---|---|
CA01g27430 | 210 | C1037H1648N282O309S6 | 23 202.56 | 3 282 | 19 | 28 | 9.33 |
CA03g28070 | 174 | C861H1333N225O256S6 | 19 124.77 | 2 681 | 17 | 16 | 6.28 |
CA02g04310 | 197 | C986H1575N263O286S7 | 21 914.36 | 3 117 | 18 | 26 | 9.32 |
CA00g84620 | 197 | C971H1543N255O283S5 | 21 477.77 | 3 057 | 17 | 25 | 9.3 |
CA02g05500 | 197 | C969H1538N256O284S5 | 21 478.72 | 3 052 | 18 | 25 | 9.21 |
CA02g21300 | 197 | C973H1546N256O284S5 | 21 534.82 | 3 064 | 17 | 25 | 9.3 |
CA04g05500 | 210 | C1050H1649N271O301S5 | 23 045.58 | 3 276 | 18 | 25 | 9.17 |
CA08g19280 | 198 | C982H1566N262O283S5 | 21 731.12 | 3 098 | 18 | 27 | 9.39 |
CA00g82910 | 224 | C1130H1775N305O324S13 | 25 234.15 | 3 547 | 21 | 28 | 9.04 |
Tab.1 Physical and chemical properties of 9 CaROP proteins
基因登录号 Gene ID | 蛋白长度 Protein length (aa) | 分子式 Molecular formula | 分子量 Molecular weight | 原子总数 Total number of atoms | 带负电荷 氨基酸残 基总数 Total number of negatively Charged amino acid residues (Asp + Glu) | 带正电荷 氨基酸残 基总数 Total number of positively Charged amino acid residues (Arg + Lys) | 理论等 电点PI |
---|---|---|---|---|---|---|---|
CA01g27430 | 210 | C1037H1648N282O309S6 | 23 202.56 | 3 282 | 19 | 28 | 9.33 |
CA03g28070 | 174 | C861H1333N225O256S6 | 19 124.77 | 2 681 | 17 | 16 | 6.28 |
CA02g04310 | 197 | C986H1575N263O286S7 | 21 914.36 | 3 117 | 18 | 26 | 9.32 |
CA00g84620 | 197 | C971H1543N255O283S5 | 21 477.77 | 3 057 | 17 | 25 | 9.3 |
CA02g05500 | 197 | C969H1538N256O284S5 | 21 478.72 | 3 052 | 18 | 25 | 9.21 |
CA02g21300 | 197 | C973H1546N256O284S5 | 21 534.82 | 3 064 | 17 | 25 | 9.3 |
CA04g05500 | 210 | C1050H1649N271O301S5 | 23 045.58 | 3 276 | 18 | 25 | 9.17 |
CA08g19280 | 198 | C982H1566N262O283S5 | 21 731.12 | 3 098 | 18 | 27 | 9.39 |
CA00g82910 | 224 | C1130H1775N305O324S13 | 25 234.15 | 3 547 | 21 | 28 | 9.04 |
基因登录号 Gene ID | 不稳定系数 Instability coefficient | 不稳定/ 稳定蛋白 Instability/ stable protein | 脂肪系数 Fat coefficient | 亲水性总平均值 Total average hydrophilicity | 非亲水/ 亲水蛋白 Non hydrophilic/ hydrophilic protein |
---|---|---|---|---|---|
CA01g27430 | 47.19 | 不稳定蛋白 | 82.14 | -0.277 | 亲水蛋白 |
CA03g28070 | 43.18 | 不稳定蛋白 | 85.69 | -0.04 | 亲水蛋白 |
CA02g04310 | 38.96 | 稳定蛋白 | 90.56 | -0.138 | 亲水蛋白 |
CA00g84620 | 33.45 | 稳定蛋白 | 88.53 | -0.096 | 亲水蛋白 |
CA02g05500 | 36.01 | 稳定蛋白 | 87.56 | -0.121 | 亲水蛋白 |
CA02g21300 | 37.31 | 稳定蛋白 | 88.53 | -0.122 | 亲水蛋白 |
CA04g05500 | 29.96 | 稳定蛋白 | 91.43 | -0.029 | 亲水蛋白 |
CA08g19280 | 42.05 | 不稳定蛋白 | 90.61 | -0.12 | 亲水蛋白 |
CA00g82910 | 33.89 | 稳定蛋白 | 33.89 | -0.054 | 亲水蛋白 |
Tab.2 Information of hydrophilicity and hydrophobicity parameters of 9 CaROP proteins
基因登录号 Gene ID | 不稳定系数 Instability coefficient | 不稳定/ 稳定蛋白 Instability/ stable protein | 脂肪系数 Fat coefficient | 亲水性总平均值 Total average hydrophilicity | 非亲水/ 亲水蛋白 Non hydrophilic/ hydrophilic protein |
---|---|---|---|---|---|
CA01g27430 | 47.19 | 不稳定蛋白 | 82.14 | -0.277 | 亲水蛋白 |
CA03g28070 | 43.18 | 不稳定蛋白 | 85.69 | -0.04 | 亲水蛋白 |
CA02g04310 | 38.96 | 稳定蛋白 | 90.56 | -0.138 | 亲水蛋白 |
CA00g84620 | 33.45 | 稳定蛋白 | 88.53 | -0.096 | 亲水蛋白 |
CA02g05500 | 36.01 | 稳定蛋白 | 87.56 | -0.121 | 亲水蛋白 |
CA02g21300 | 37.31 | 稳定蛋白 | 88.53 | -0.122 | 亲水蛋白 |
CA04g05500 | 29.96 | 稳定蛋白 | 91.43 | -0.029 | 亲水蛋白 |
CA08g19280 | 42.05 | 不稳定蛋白 | 90.61 | -0.12 | 亲水蛋白 |
CA00g82910 | 33.89 | 稳定蛋白 | 33.89 | -0.054 | 亲水蛋白 |
基因代码 Gene ID | 丝氨酸 Serine | 苏氨酸 Threonine | 络氨酸 Tyrosine |
---|---|---|---|
CA01g27430 | 11 | 5 | 2 |
CA03g28070 | 5 | 4 | 4 |
CA02g04310 | 8 | 6 | 6 |
CA00g84620 | 9 | 4 | 4 |
CA02g05500 | 11 | 5 | 4 |
CA02g21300 | 10 | 3 | 4 |
CA04g05500 | 10 | 4 | 3 |
CA08g19280 | 10 | 2 | 4 |
CA00g82910 | 9 | 5 | 5 |
Tab.3 Information about 9 phosphorylation sites of carop proteins
基因代码 Gene ID | 丝氨酸 Serine | 苏氨酸 Threonine | 络氨酸 Tyrosine |
---|---|---|---|
CA01g27430 | 11 | 5 | 2 |
CA03g28070 | 5 | 4 | 4 |
CA02g04310 | 8 | 6 | 6 |
CA00g84620 | 9 | 4 | 4 |
CA02g05500 | 11 | 5 | 4 |
CA02g21300 | 10 | 3 | 4 |
CA04g05500 | 10 | 4 | 3 |
CA08g19280 | 10 | 2 | 4 |
CA00g82910 | 9 | 5 | 5 |
基因代码 Gene ID | α螺旋 Hh | α螺旋Hh 所占比值 Hh proportion | β-折叠 Ee | β-折叠 Ee 所占比值 Ee proportion | β-转角 Tt | β-转角 Tt 所占比值 Tt proportion | 无规则 卷曲Cc | 无规则 卷曲(Cc) 所占比值 Cc proportion |
---|---|---|---|---|---|---|---|---|
CA01g27430 | 77 | 0.366 7 | 40 | 0.190 5 | 10 | 0.047 6 | 83 | 0.395 2 |
CA03g28070 | 68 | 0.390 8 | 35 | 0.201 1 | 12 | 0.069 | 59 | 0.339 1 |
CA02g04310 | 66 | 0.335 | 41 | 0.208 1 | 12 | 0.060 9 | 78 | 0.395 9 |
CA00g84620 | 69 | 0.350 3 | 42 | 0.213 2 | 13 | 0.066 | 73 | 0.370 6 |
CA02g05500 | 72 | 0.365 5 | 40 | 0.203 | 11 | 0.055 8 | 74 | 0.375 6 |
CA02g21300 | 72 | 0.365 5 | 40 | 0.203 | 11 | 0.055 8 | 74 | 0.375 6 |
CA04g05500 | 75 | 0.357 1 | 43 | 0.204 8 | 11 | 0.052 4 | 81 | 0.385 7 |
CA08g19280 | 67 | 0.338 4 | 40 | 0.202 | 12 | 0.060 6 | 79 | 0.399 |
CA00g82910 | 82 | 0.366 1 | 56 | 0.25 | 11 | 0.049 1 | 75 | 0.334 8 |
Tab.4 Parameter information of secondary structure of nine carop proteins
基因代码 Gene ID | α螺旋 Hh | α螺旋Hh 所占比值 Hh proportion | β-折叠 Ee | β-折叠 Ee 所占比值 Ee proportion | β-转角 Tt | β-转角 Tt 所占比值 Tt proportion | 无规则 卷曲Cc | 无规则 卷曲(Cc) 所占比值 Cc proportion |
---|---|---|---|---|---|---|---|---|
CA01g27430 | 77 | 0.366 7 | 40 | 0.190 5 | 10 | 0.047 6 | 83 | 0.395 2 |
CA03g28070 | 68 | 0.390 8 | 35 | 0.201 1 | 12 | 0.069 | 59 | 0.339 1 |
CA02g04310 | 66 | 0.335 | 41 | 0.208 1 | 12 | 0.060 9 | 78 | 0.395 9 |
CA00g84620 | 69 | 0.350 3 | 42 | 0.213 2 | 13 | 0.066 | 73 | 0.370 6 |
CA02g05500 | 72 | 0.365 5 | 40 | 0.203 | 11 | 0.055 8 | 74 | 0.375 6 |
CA02g21300 | 72 | 0.365 5 | 40 | 0.203 | 11 | 0.055 8 | 74 | 0.375 6 |
CA04g05500 | 75 | 0.357 1 | 43 | 0.204 8 | 11 | 0.052 4 | 81 | 0.385 7 |
CA08g19280 | 67 | 0.338 4 | 40 | 0.202 | 12 | 0.060 6 | 79 | 0.399 |
CA00g82910 | 82 | 0.366 1 | 56 | 0.25 | 11 | 0.049 1 | 75 | 0.334 8 |
[1] | 龙言, 杨漪琳, 肖银燕, 等. 6个辣椒自交系农艺性状配合力分析[J]. 蔬菜, 2018,(10):11-16. |
LONG Yan, YANG Yilin, XIAO Yinyan, et al. Analysis of Combining Ability of Agronomic Traits in 6 Pepper Inbred Lines[J]. Vegetables, 2018,(10):11-16. | |
[2] |
邹学校, 朱凡. 辣椒的起源、 进化与栽培历史[J]. 园艺学报, 2022, 49(6):1371-1381
DOI |
ZOU Xuexiao, ZHU Fan. Origin, evolution and cultivation history of pepper[J]. Acta Horticulturae Sinica, 2022, 49(6):1371-1381
DOI |
|
[3] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9):1715-1726. |
ZOU Xuexiao, MA Yanqing, DAI Xiongze, et al. The spread and industrial development of pepper in China[J]. Acta Horticulturae Sinica, 2020, 47(9):1715-1726. | |
[4] | Assmann S M. Supplement:Signal Transduction || Heterotrimeric and Unconventional GTP Binding Proteins in Plant Cell Signaling[J]. Plant Cell, 2002, 14:S355-S373. |
[5] |
Li H, Wu G, Ware D, et al. Arabidopsis Rho-related GTPases:differential gene expression in pollen and polar localization in fission yeast[J]. Plant Physiology, 1998, 118(2):407-417.
PMID |
[6] |
Berken A. ROPs in the spotlight of plant signal transduction.[J]. Cell Mol Life Sci, 2006, 63(21):2446-2459.
PMID |
[7] |
Kawano Y., Chen L., Shimamoto K.. The Function of Rac Small GTPase and Associated Proteins in Rice Innate Immunity[J]. Rice 3, 2010, 3(2-3):112-121.
DOI URL |
[8] | 郭亚如, 陈欣, 黄俊骏. ROP蛋白在植物生长发育及逆境响应中的作用研究进展[J]. 河南农业科学, 2021, 50(11):1-5. |
GUO Yaru, CHEN Xin, HUANG Junjun. Research Progress on Function of ROP Protein in Plant Growth and Development and Stress Response[J]. Journal of Henan Agricultural Sciences, 2021, 50(11):1-5.
DOI |
|
[9] |
Kang E F, Zheng M Z, Zhang Y, et al. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth[J]. Plant Physiology, 2017, 174(1):202-222.
DOI PMID |
[10] |
Zhang Z W, Yang F, Ren N, et al. AtROP1 negatively regulates potato resistance to Phytophthora infestans via NADPH oxidase-mediated accumulation of H2O2[J]. Bmc Plant Biology, 2014, 14(1):392.
DOI URL |
[11] |
Li Z, Kang J, Sui N, et al. ROP11 GTPase is a Negative Regulator of Multiple ABA Responses in Arabidopsis[J]. Journal of Integrative Plant Biology, 2012, 54(3):169-179.
DOI URL |
[12] | Li C J, Lu H M, Li W, et al. A ROP2‐RIC1 pathway fine‐tunes microtubule reorganization for salt tolerance in Arabidopsis[J]. Plant Cell & Environment, 2017, 40(7):1127-1142. |
[13] | 杨叔青. 茄科植物小G蛋白ROPs在抗疫霉菌过程中的功能研究[D]. 呼和浩特: 内蒙古农业大学, 2018. |
YANG Shuqing. The Function Analyses of Solanaceous Small G Proteins ROPs to Phytophthora Pathogens[D].. Hohhot: Inner Mongolia Agricultural University, 2018. | |
[14] | 杨俊卿, 孔凡娜, 李超, 等. 条斑紫菜水通道蛋白PyAQP1基因的克隆及功能分析[J]. 中国海洋大学学报(自然科学版), 2016, 46(8):79-86. |
YANG Junqing, KONG Fanna, Ll Chao, et al. Cloning and Expression Analysis of PyAQP1 in Pyropia yezoensis[J]. Periodical of Ocean University of China, 2016, 46(8):79-86. | |
[15] | 张园, 徐绍忠, 毛自朝, 等. 紫色番茄SlWD40-like基因克隆与表达分析[J]. 西北农业学报, 2019, 28(4):586-593. |
ZHANG Yuan, XU Shaozhong, MAO Zichao, et al. Cloning and Expression Analysis ofSIWD40-likeGene in Purple Solanum lycopersicum[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(4):586-593. | |
[16] | 黄晓慧, 王炜莹, 王倩, 等. 生殖支原体P110蛋白的生物信息学分析[J]. 中国病原生物学杂志, 2021, 16(6):639-643,650. |
HUANG Xiaohui, WANG Weiying, WANG Qian, et al. Bioinformatics analysis of Mycoplasma genitalium P110 protein[J]. Journal of Pathogen Biology, 2021, 16(6):639-643,650. | |
[17] |
胡子曜, 代培红, 刘超, 等. 陆地棉小GTP结合蛋白基因GhROP3的克隆、表达及VIGS载体的构建[J]. 生物技术通报, 2021, 37(9):106-113.
DOI |
HU Ziyao, DAl Peihong, LIU Chao, et al. Molecular Cloning, Expression and VIGS Construction of a Small GTP-binding Protein Gene GhROP3 in Gossypium hirsutum[J]. Biotechnology Bulletin, 2021, 37(9):106-113.
DOI |
|
[18] | 雷欣, 居利香, 赵成志, 等. 黄灯笼辣椒CcCAD1基因的克隆与植物表达载体的构建[J]. 分子植物育种, 2020, 18(16):5373-5379. |
LEI Xin, JU Lixiang, ZHAO Chengzhi, et al. Cloning and Plant Expression Vector Construction of CcCAD1 Gene in Capsicum chinense[J]. Molecular Plant Breeding, 2020, 18(16):5373-5379. | |
[19] | 鲍佳佳, 李倩, 孙铭艳, 等. 铜绿假单胞菌YfiB蛋白的生物信息学分析[J]. 中国病原生物学杂志, 2021, 16(4):406-410. |
BAO Jiajia, Ll Qian, SUN Mingyan, et al. Bioinformatic analysis of the YfiB protein of Pseudomonas aeruginosa[J]. Journal of Pathogen Biology, 2021, 16(4):406-410. | |
[20] | 韦蔷, 季子钧, 宫铭, 等. 马尾松PmSnRK2.3基因的克隆与实时荧光定量表达分析[J]. 分子植物育种, 2018, 16(2):399-406. |
WEI Qiang, JI Zijun, GONG Ming, et al. Cloning and Real-time Quantitative Expression Analysis of PmSnRK2.3 Gene from Pinus massoniana[J]. Molecular Plant Breeding, 2018, 16(2):399-406. | |
[21] | 靳辉, 杨婧, 郭爽, 等. 绵羊VDR基因CDS区克隆、生物信息学分析及组织表达研究[J]. 黑龙江畜牧兽医, 2022,(11):65-71,138. |
JIN Hui, YANG Jing, GUO Shuang, et al. Cloning,bioinformatics and tissue expression analysis of the CDS region of VDR gene in sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022,(11):65-71,138. | |
[22] | 易华伟, 唐晓峰. 基于氨基酸序列和模拟结构预测蛋白质稳定性的研究进展[J]. 生物技术通报, 2017, 33(4):83-89. |
Yl Huawei, TANG Xiaofeng. Research Progress on the Prediction of Protein Stability Based on Amino Acid Sequence and Simulated Structure[J]. Biotechnology Bulletin, 2017, 33(4):83-89.
DOI |
|
[23] | 张来斌, 马光皇, 刘语涵, 等. 枣瘿蚊图尔病毒(DjTV-2a)衣壳蛋白生物信息学分析及抗原表位预测[J]. 江苏农业科学, 2022, 50(9):33-36. |
ZHANG Laibin, MA Guanghuang, LIU Yuhan, et al. Bioinformatics analysis and epitopes prediction of capsid protein of jujube gall midge tour virus(DjTV-2a)[J]. Jiangsu Agricultural Sciences, 2022, 50(9):33-36. | |
[24] | Yang Z B. Small GTPases:versatile signaling switches in plants. Plant Cell 14(Suppl)[J]. The Plant Cell, 2002, 14(Suppl1):375-388. |
[25] |
Yang S Q, Yan N N, Bouwmeester K, et al. Genome-wide identification of small G protein ROPs and their potential roles in Solanaceous family[J]. Gene, 2020, 753:144809.
DOI URL |
[1] | ZHANG Guoru, TANG Yaping, SHI Linyuan, YUAN Lei, ZHANG Yong, YANG Shengbao. Genetic properties of interspecific crosses in pepper [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 632-641. |
[2] | WANG Zhenlu, BAI Tao, LI Dongya, DAI Shuo, CHEN Zhen. Green chili pepper target detection method based on improved YOLOv5 [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3032-3041. |
[3] | CHEN Yan, HUANG Luyao, DENG Changrong, ZHANG Yanjun, HOU Quangang, SHAO Dengkui. Analysis on related physiological indexes of pepper with hair characteristic under chilling stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1492-1498. |
[4] | YUAN Lei, TANG Yaping, ZHANG Guoru, JI Xuehua, YANG Shengbao. Construction of genetic linkage map and QTL localization of fruit major traits based on interspecific hybrid F2 population of pepper [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1150-1161. |
[5] | LIU Yanchen, LIU Zhigang, BAI Xinhui, QIAO Peng, XU Cheng, BAI Huiming, ZHANG Juan. The effect of vermiculite compound matrix on pepper seedling cultivation [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1190-1199. |
[6] | XIAO Zhonglin, YAN Huizhuan, GAO Jie, WANG Siyi, ZHANG Xuxu, Ailixire Nijiati. Effects of Different Concentrations of NaCl and NaHCO3 Stress on Diurnal Changes of Photosynthetic Characteristics of Dried Pepper [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 140-149. |
[7] | PENG Yu, YAN Huizhuan, XIAO Zhonglin, JIA Kai, YAN Cunyao, WANG Yanxin. Effects of Different Fertilization Treatments on Soil Enzyme Activity and Soil Microbial Content of Potted Pepper [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2200-2208. |
[8] | YUAN Lei, JI Xuehua, ZHANG Guoru, SHI Linyuan, GUO Heyao, TANG Yaping, YANG Tao, YANG Shengbao. Genetic Diversity and Cluster Analysis on the Main Fruit Characters of 52 Accessions of Capsicum [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1935-1944. |
[9] | ZHANG Luhui, ZHAO Zhiqiang, GUO Qingyuan. Identification of Pathogen Causing Fruit Bacterial Streak on Pepper [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1726-1733. |
[10] | MA Yan, XU Mingqiang, LI Xidi, MENG Xintao, ZOU Shuping, ZHANG Ting, ZHANG Qian. Optimization of Preparation of Conjugated Linoleic Acid by Alkali Isomerization of Pepper Seed Oil by Response Surface Methodology and Its Oxidation Stability [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 908-915. |
[11] | XIE Xueguo, YUAN Lei, WANG Shining, SHENG Lingfeng, XIA Yahui, JI Xuehua. Effects of Different Nitrogen Application Levels on Photosynthetic Efficiency of Pigmented Peppers [J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2502-2513. |
[12] | ZHANG Lianjun, LI Jinlan, ZHANG Shuai, ZHANG Guangjie, YANG Liu, XU Tao, MA Deying, LIU Yusheng. Effects of Dung from Two Insects on the Growth and Fruit Quality of Pepper [J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1511-1518. |
[13] | SHI Lei, WANG Jun, CHEN Yun, LÜ Ning. Effects of Combined Application of Bio-Bacterial Manure with Reduced Chemical Fertilizer on Pigment Pepper Growth [J]. Xinjiang Agricultural Sciences, 2021, 58(5): 854-865. |
[14] | XIE Yanru, TANG Dan, ZHANG Pu, ZHAO Zhixin, DONG Ruifang, CUI Yongmin, XU Youzhang, GUI Ruiqi, YE Lihong, LI Meichen, QIN Yong. Effects Fertilizer Application Amount in Substrate on Growth of Pepper Plug Seedlings [J]. Xinjiang Agricultural Sciences, 2020, 57(7): 1287-1294. |
[15] | ZHANG Ni, Adili Abulaiti, JIA Kai, Alapati Tayierjiang, LIU Yu, GAO Jie. Effects of Applying Amino Acid Liquid Fertilizer by Reducing Chemical FertilizerAmount on Growth, Yield and Fruit Quality of Pepper ( Capsicum annuum L.) [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 918-924. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||