

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (4): 962-974.DOI: 10.6048/j.issn.1001-4330.2025.04.021
• Plant Protection · Prataculture • Previous Articles Next Articles
SONG Yuying1(
), ZHENG Xuan2(
), HU Heyan1, LIU Jinbao2, YANG Huaijun2, LI Fan2
Received:2024-08-11
Online:2025-04-20
Published:2025-06-20
Supported by:
宋禹莹1(
), 郑炫2(
), 胡赫岩1, 刘进宝2, 杨怀君2, 李帆2
通讯作者:
郑炫(1971-),女,江苏徐州人,研究员,硕士生导师,研究方向为农业机械,(E-mail)1014756957@qq.com
作者简介:宋禹莹(2000-),女,黑龙江佳木斯人,硕士研究生,研究方向为农业机械,(E-mail)songyuying41@163.com
基金资助:CLC Number:
SONG Yuying, ZHENG Xuan, HU Heyan, LIU Jinbao, YANG Huaijun, LI Fan. Research and predictionanalyses of topsoil overburden depth and distribution[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 962-974.
宋禹莹, 郑炫, 胡赫岩, 刘进宝, 杨怀君, 李帆. 表层土壤翻埋深度及分布与预测分析[J]. 新疆农业科学, 2025, 62(4): 962-974.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.04.021
| 质地组 Texture group | 质地名称 Texture name | 颗粒组成 Particle composition | |||
|---|---|---|---|---|---|
| 砂粒 (1~0.05 mm) | 粗粉粒 (0.05~ 0.01 mm) | 细黏粒 (<0.001 mm) | |||
| 砂土 Sandy soil | 粗砂土 | >70 | <30 | ||
| 细砂土 | ≥60~≤70 | ||||
| 面砂土 | ≥50~60 | ||||
| 壤土 Soil | 砂粉土 | ≥20 | ≥40 | ||
| 粉土 | <20 | <40 | |||
| 砂壤土 | ≥20 | ||||
| 壤土 | <20 | ||||
| 砂黏土 | ≥50 | ≥30 | |||
| 黏土 Clay | 粉黏土 | ≥30~35 | |||
| 壤黏土 | ≥35~40 | ||||
| 黏土 | ≥40~≤60 | ||||
| 重黏土 | >60 | ||||
Tab.1 Classification scheme of soil texture in China(%)
| 质地组 Texture group | 质地名称 Texture name | 颗粒组成 Particle composition | |||
|---|---|---|---|---|---|
| 砂粒 (1~0.05 mm) | 粗粉粒 (0.05~ 0.01 mm) | 细黏粒 (<0.001 mm) | |||
| 砂土 Sandy soil | 粗砂土 | >70 | <30 | ||
| 细砂土 | ≥60~≤70 | ||||
| 面砂土 | ≥50~60 | ||||
| 壤土 Soil | 砂粉土 | ≥20 | ≥40 | ||
| 粉土 | <20 | <40 | |||
| 砂壤土 | ≥20 | ||||
| 壤土 | <20 | ||||
| 砂黏土 | ≥50 | ≥30 | |||
| 黏土 Clay | 粉黏土 | ≥30~35 | |||
| 壤黏土 | ≥35~40 | ||||
| 黏土 | ≥40~≤60 | ||||
| 重黏土 | >60 | ||||
| 参数 Parametric | 数值 Value | 参数 Parametric | 数值 Value |
|---|---|---|---|
| 土壤密度 Soil density (kg/cm3) | 1 482 | 犁体密度 Plough density (kg/cm3) | 7 865 |
| 土壤剪切模量 Soil shear modulus (Pa) | 1×106 | 犁体剪切模量 Plough shear modulus (Pa) | 7.9×1010 |
| 土壤泊松比 Poisson's ratio for soil | 0.37 | 犁体泊松比 Poisson's ratio for plough | 0.3 |
| 土壤与土壤间碰撞恢复系数 Coefficient of recovery for soil-soil collisions | 0.57 | 土壤与犁体间碰撞恢复系数 Coefficient of recovery for soil-plough collisions | 0.51 |
| 土壤与土壤间动摩擦系数 Coefficient of soil-soil dynamic friction | 0.23 | 土壤与犁体间动摩擦系数 Coefficient of soil-plough dynamic friction | 0.08 |
| 土壤与土壤间静摩擦系数 Coefficient of static soil-soil friction | 0.65 | 土壤与犁体间静摩擦系数 Coefficient of static soil- plough friction | 0.56 |
| 土壤与土壤间JKR表面能 Soil-to-soil JKR surface energy | 4.49 | 土壤与犁体间JKR表面能 Soil-to-plough JKR surface energy | 4.12 |
Tab.2 Soil modelling parameters
| 参数 Parametric | 数值 Value | 参数 Parametric | 数值 Value |
|---|---|---|---|
| 土壤密度 Soil density (kg/cm3) | 1 482 | 犁体密度 Plough density (kg/cm3) | 7 865 |
| 土壤剪切模量 Soil shear modulus (Pa) | 1×106 | 犁体剪切模量 Plough shear modulus (Pa) | 7.9×1010 |
| 土壤泊松比 Poisson's ratio for soil | 0.37 | 犁体泊松比 Poisson's ratio for plough | 0.3 |
| 土壤与土壤间碰撞恢复系数 Coefficient of recovery for soil-soil collisions | 0.57 | 土壤与犁体间碰撞恢复系数 Coefficient of recovery for soil-plough collisions | 0.51 |
| 土壤与土壤间动摩擦系数 Coefficient of soil-soil dynamic friction | 0.23 | 土壤与犁体间动摩擦系数 Coefficient of soil-plough dynamic friction | 0.08 |
| 土壤与土壤间静摩擦系数 Coefficient of static soil-soil friction | 0.65 | 土壤与犁体间静摩擦系数 Coefficient of static soil- plough friction | 0.56 |
| 土壤与土壤间JKR表面能 Soil-to-soil JKR surface energy | 4.49 | 土壤与犁体间JKR表面能 Soil-to-plough JKR surface energy | 4.12 |
| 水平 Level | j | tanθ | k01 | k02 | k11 | k12 | k21 | k22 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0.84 | 0.086 | 0.110 | -0.029 | 0.154 | 0.203 | 0.073 |
| 2 | 75 | 0.92 | 0.09 | 0.114 | -0.018 | 0.159 | 0.214 | 0.077 |
| 3 | 150 | 1 | 0.094 | 0.118 | -0.007 | 0.164 | 0.225 | 0.081 |
Tab.3 Orthogonal experimental design factor level table
| 水平 Level | j | tanθ | k01 | k02 | k11 | k12 | k21 | k22 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0.84 | 0.086 | 0.110 | -0.029 | 0.154 | 0.203 | 0.073 |
| 2 | 75 | 0.92 | 0.09 | 0.114 | -0.018 | 0.159 | 0.214 | 0.077 |
| 3 | 150 | 1 | 0.094 | 0.118 | -0.007 | 0.164 | 0.225 | 0.081 |
| 示踪剂含量 Tracer concentration(g) | 0 | 50 | 100 | 150 | 200 | 250 | 300 |
|---|---|---|---|---|---|---|---|
| 实测值 Measured value (10-3SI) | 3.00 | 16.10 | 36.10 | 58.30 | 79.10 | 95.00 | 108.70 |
| 拟合值 Simulation value (10-3SI) | 1.13 | 19.63 | 38.13 | 56.63 | 75.13 | 93.63 | 112.13 |
| 相对误差 Relative error(%) | 16.70 | 18.00 | 5.30 | 3.00 | 5.3 | 1.50 | 3.10 |
Tab.4 Soil modelling parameters
| 示踪剂含量 Tracer concentration(g) | 0 | 50 | 100 | 150 | 200 | 250 | 300 |
|---|---|---|---|---|---|---|---|
| 实测值 Measured value (10-3SI) | 3.00 | 16.10 | 36.10 | 58.30 | 79.10 | 95.00 | 108.70 |
| 拟合值 Simulation value (10-3SI) | 1.13 | 19.63 | 38.13 | 56.63 | 75.13 | 93.63 | 112.13 |
| 相对误差 Relative error(%) | 16.70 | 18.00 | 5.30 | 3.00 | 5.3 | 1.50 | 3.10 |
| 土层 Soil | T1 | T2 | T3 | T4 |
|---|---|---|---|---|
| 实测值 Measured value (%) | 19.61 | 34.79 | 32.62 | 12.98 |
| 仿真值 Simulation value (%) | 26.59 | 34.90 | 32.55 | 5.97 |
| 误差 Errors (%) | 6.98 | 0.11 | 0.07 | 7.01 |
Tab.5 Soil modelling parameters
| 土层 Soil | T1 | T2 | T3 | T4 |
|---|---|---|---|---|
| 实测值 Measured value (%) | 19.61 | 34.79 | 32.62 | 12.98 |
| 仿真值 Simulation value (%) | 26.59 | 34.90 | 32.55 | 5.97 |
| 误差 Errors (%) | 6.98 | 0.11 | 0.07 | 7.01 |
| 编号 | J | tanθ | k11 | k21 | k22 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0.84 | -0.029 | 0.203 | 0.073 | 13.88 | 60.24 | 20.88 | 5.00 |
| 2 | 0 | 0.84 | -0.018 | 0.225 | 0.081 | 14.40 | 45.63 | 32.96 | 7.01 |
| 3 | 0 | 0.84 | -0.007 | 0.214 | 0.077 | 22.40 | 59.00 | 18.60 | 0.00 |
| 4 | 0 | 0.92 | -0.018 | 0.203 | 0.077 | 15.25 | 42.17 | 34.75 | 7.83 |
| 5 | 0 | 0.92 | -0.007 | 0.225 | 0.073 | 22.90 | 60.44 | 16.66 | 0.00 |
| 6 | 0 | 0.92 | -0.029 | 0.214 | 0.081 | 10.42 | 57.75 | 31.83 | 0.00 |
| 7 | 0 | 1 | -0.007 | 0.203 | 0.081 | 16.07 | 74.65 | 9.28 | 0.00 |
| 8 | 0 | 1 | -0.029 | 0.225 | 0.077 | 14.57 | 60.35 | 20.08 | 5.00 |
| 9 | 0 | 1 | -0.018 | 0.214 | 0.073 | 18.14 | 50.93 | 24.93 | 6.00 |
| 10 | 75 | 0.84 | -0.007 | 0.225 | 0.077 | 10.78 | 74.10 | 15.11 | 0.00 |
| 11 | 75 | 0.84 | -0.029 | 0.214 | 0.073 | 0.42 | 50.81 | 44.58 | 4.19 |
| 12 | 75 | 0.84 | -0.018 | 0.203 | 0.081 | 11.52 | 43.78 | 32.96 | 11.73 |
| 13 | 75 | 0.92 | -0.029 | 0.225 | 0.081 | 0.14 | 49.49 | 45.25 | 5.12 |
| 14 | 75 | 0.92 | -0.018 | 0.214 | 0.077 | 4.85 | 47.52 | 38.23 | 9.40 |
| 15 | 75 | 0.92 | -0.007 | 0.203 | 0.073 | 7.34 | 75.62 | 17.04 | 0.00 |
| 16 | 75 | 1 | -0.018 | 0.225 | 0.073 | 11.77 | 46.40 | 37.95 | 3.88 |
| 17 | 75 | 1 | -0.007 | 0.214 | 0.081 | 2.36 | 69.25 | 28.39 | 0.00 |
| 18 | 75 | 1 | -0.029 | 0.203 | 0.077 | 0.00 | 49.07 | 43.85 | 7.08 |
| 19 | 150 | 0.84 | -0.018 | 0.214 | 0.081 | 13.57 | 38.23 | 39.89 | 8.31 |
| 20 | 150 | 0.84 | -0.007 | 0.203 | 0.077 | 17.59 | 70.08 | 12.33 | 0.00 |
| 21 | 150 | 0.84 | -0.029 | 0.225 | 0.073 | 15.54 | 60.12 | 16.34 | 8.00 |
| 22 | 150 | 0.92 | -0.007 | 0.214 | 0.073 | 23.09 | 63.59 | 13.32 | 0.00 |
| 23 | 150 | 0.92 | -0.029 | 0.203 | 0.081 | 10.00 | 51.07 | 32.51 | 6.42 |
| 24 | 150 | 0.92 | -0.018 | 0.225 | 0.077 | 20.79 | 40.43 | 33.93 | 4.85 |
| 25 | 150 | 1 | -0.029 | 0.214 | 0.077 | 12.36 | 53.23 | 29.89 | 4.52 |
| 26 | 150 | 1 | -0.018 | 0.203 | 0.073 | 16.88 | 39.9 | 31.86 | 11.36 |
| 27 | 150 | 1 | -0.007 | 0.225 | 0.081 | 23.39 | 67.6 | 9.01 | 0 |
Tab.6 Orthogonal test results
| 编号 | J | tanθ | k11 | k21 | k22 | T1 | T2 | T3 | T4 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0.84 | -0.029 | 0.203 | 0.073 | 13.88 | 60.24 | 20.88 | 5.00 |
| 2 | 0 | 0.84 | -0.018 | 0.225 | 0.081 | 14.40 | 45.63 | 32.96 | 7.01 |
| 3 | 0 | 0.84 | -0.007 | 0.214 | 0.077 | 22.40 | 59.00 | 18.60 | 0.00 |
| 4 | 0 | 0.92 | -0.018 | 0.203 | 0.077 | 15.25 | 42.17 | 34.75 | 7.83 |
| 5 | 0 | 0.92 | -0.007 | 0.225 | 0.073 | 22.90 | 60.44 | 16.66 | 0.00 |
| 6 | 0 | 0.92 | -0.029 | 0.214 | 0.081 | 10.42 | 57.75 | 31.83 | 0.00 |
| 7 | 0 | 1 | -0.007 | 0.203 | 0.081 | 16.07 | 74.65 | 9.28 | 0.00 |
| 8 | 0 | 1 | -0.029 | 0.225 | 0.077 | 14.57 | 60.35 | 20.08 | 5.00 |
| 9 | 0 | 1 | -0.018 | 0.214 | 0.073 | 18.14 | 50.93 | 24.93 | 6.00 |
| 10 | 75 | 0.84 | -0.007 | 0.225 | 0.077 | 10.78 | 74.10 | 15.11 | 0.00 |
| 11 | 75 | 0.84 | -0.029 | 0.214 | 0.073 | 0.42 | 50.81 | 44.58 | 4.19 |
| 12 | 75 | 0.84 | -0.018 | 0.203 | 0.081 | 11.52 | 43.78 | 32.96 | 11.73 |
| 13 | 75 | 0.92 | -0.029 | 0.225 | 0.081 | 0.14 | 49.49 | 45.25 | 5.12 |
| 14 | 75 | 0.92 | -0.018 | 0.214 | 0.077 | 4.85 | 47.52 | 38.23 | 9.40 |
| 15 | 75 | 0.92 | -0.007 | 0.203 | 0.073 | 7.34 | 75.62 | 17.04 | 0.00 |
| 16 | 75 | 1 | -0.018 | 0.225 | 0.073 | 11.77 | 46.40 | 37.95 | 3.88 |
| 17 | 75 | 1 | -0.007 | 0.214 | 0.081 | 2.36 | 69.25 | 28.39 | 0.00 |
| 18 | 75 | 1 | -0.029 | 0.203 | 0.077 | 0.00 | 49.07 | 43.85 | 7.08 |
| 19 | 150 | 0.84 | -0.018 | 0.214 | 0.081 | 13.57 | 38.23 | 39.89 | 8.31 |
| 20 | 150 | 0.84 | -0.007 | 0.203 | 0.077 | 17.59 | 70.08 | 12.33 | 0.00 |
| 21 | 150 | 0.84 | -0.029 | 0.225 | 0.073 | 15.54 | 60.12 | 16.34 | 8.00 |
| 22 | 150 | 0.92 | -0.007 | 0.214 | 0.073 | 23.09 | 63.59 | 13.32 | 0.00 |
| 23 | 150 | 0.92 | -0.029 | 0.203 | 0.081 | 10.00 | 51.07 | 32.51 | 6.42 |
| 24 | 150 | 0.92 | -0.018 | 0.225 | 0.077 | 20.79 | 40.43 | 33.93 | 4.85 |
| 25 | 150 | 1 | -0.029 | 0.214 | 0.077 | 12.36 | 53.23 | 29.89 | 4.52 |
| 26 | 150 | 1 | -0.018 | 0.203 | 0.073 | 16.88 | 39.9 | 31.86 | 11.36 |
| 27 | 150 | 1 | -0.007 | 0.225 | 0.081 | 23.39 | 67.6 | 9.01 | 0 |
| 因素 Consider- ations | f | T1 | T2 | T3 | T4 | ||||
|---|---|---|---|---|---|---|---|---|---|
| F值 | P值 | F值 | P值 | F值 | P值 | F值 | P值 | ||
| j | 2 | 48.035 | <0.001 | 0.604 | 0.565 | 7.110 | 0.012 | 0.963 | 0.414 |
| tanθ | 2 | 0.116 | 0.892 | 0.407 | 0.676 | 0.757 | 0.494 | 0.601 | 0.567 |
| k11 | 2 | 17.565 | 0.001 | 35.745 | <0.001 | 22.251 | <0.001 | 26.743 | <0.001 |
| k21 | 2 | 3.204 | 0.084 | 0.233 | 0.797 | 1.355 | 0.302 | 1.868 | 0.205 |
| k22 | 2 | 2.790 | 0.109 | 0.129 | 0.881 | 1.009 | 0.399 | 0.000 | 1.000 |
Tab.7 Orthogonal experiment variance
| 因素 Consider- ations | f | T1 | T2 | T3 | T4 | ||||
|---|---|---|---|---|---|---|---|---|---|
| F值 | P值 | F值 | P值 | F值 | P值 | F值 | P值 | ||
| j | 2 | 48.035 | <0.001 | 0.604 | 0.565 | 7.110 | 0.012 | 0.963 | 0.414 |
| tanθ | 2 | 0.116 | 0.892 | 0.407 | 0.676 | 0.757 | 0.494 | 0.601 | 0.567 |
| k11 | 2 | 17.565 | 0.001 | 35.745 | <0.001 | 22.251 | <0.001 | 26.743 | <0.001 |
| k21 | 2 | 3.204 | 0.084 | 0.233 | 0.797 | 1.355 | 0.302 | 1.868 | 0.205 |
| k22 | 2 | 2.790 | 0.109 | 0.129 | 0.881 | 1.009 | 0.399 | 0.000 | 1.000 |
| 土层 Soil layer | 因素 Factor | 拟合关系式 Fit the relation ship equation | 显著水平P Significant level | 判定系数R2 The coeffecient of determination |
|---|---|---|---|---|
| T1 | j | T1=3×10-5j2-3.37×10-3j+0.203 | 0.037 | 0.963 |
| k11 | T1=13.7 k11+0.481 | 0.003 | 0.963 | |
| T2 | k11 | T2=1 922.31 | 0.030 | 0.970 |
| T3 | j | T3=-2×10-5j2+3.37×10-3j+0.24 | 0.027 | 0.973 |
| k11 | T3=-1 268.95 | 0.042 | 0.958 | |
| T4 | k11 | T4=-399.53 | 0.030 | 0.960 |
Tab.8 One-factor fitted relational equation
| 土层 Soil layer | 因素 Factor | 拟合关系式 Fit the relation ship equation | 显著水平P Significant level | 判定系数R2 The coeffecient of determination |
|---|---|---|---|---|
| T1 | j | T1=3×10-5j2-3.37×10-3j+0.203 | 0.037 | 0.963 |
| k11 | T1=13.7 k11+0.481 | 0.003 | 0.963 | |
| T2 | k11 | T2=1 922.31 | 0.030 | 0.970 |
| T3 | j | T3=-2×10-5j2+3.37×10-3j+0.24 | 0.027 | 0.973 |
| k11 | T3=-1 268.95 | 0.042 | 0.958 | |
| T4 | k11 | T4=-399.53 | 0.030 | 0.960 |
| [1] | 田艳博. 分层深松整地作业机的设计与研究[D]. 保定: 河北农业大学, 2018. |
| TIAN Yanbo. Design and research of layered subsoiling soil preparation machine[D]. Baoding: Hebei Agricultural University, 2018. | |
| [2] |
刘进宝, 郑炫, 孟祥金, 等. 铧式犁犁体曲面研究现状与展望[J]. 中国农机化学报, 2021, 42(3): 13-21, 39.
DOI |
| LIU Jinbao, ZHENG Xuan, MENG Xiangjin, et al. Current situation and prospect of research on plough surface[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 13-21, 39. | |
| [3] | 刘进宝, 郑炫, 杨怀君, 等. 高速低阻防过载犁耕装备设计与试验[J]. 农业工程, 2023, 13(10): 84-90. |
| LIU Jinbao, ZHENG Xuan, YANG Huaijun, et al. Design and test of high speed and low resistance anti-overload ploughing equipment[J]. Agricultural Engineering, 2023, 13(10): 84-90. | |
| [4] | 夏国峰. 铧式犁体表面激光熔覆铁基涂层制备及性能研究[D]. 济南: 济南大学, 2021. |
| XIA Guofeng. Study on preparation and properties of laser cladding iron-based coating on the surface of share plough[D]. Jinan: University of Jinan, 2021. | |
| [5] | Ucgul M, Saunders C, Fielke J M. Discrete element modelling of top soil burial using a full scale mouldboard plough under field conditions[J]. Biosystems Engineering, 2017, 160: 140-153. |
| [6] | Ucgul M, Saunders C, Fielke J M. Discrete element modelling of tillage forces and soil movement of a one-third scale mouldboard plough[J]. Biosystems Engineering, 2017, 155: 44-54. |
| [7] | Azimi-Nejadian H, Karparvarfard S H, Naderi-Boldaji M. Weed seed burial as affected by mouldboard design parameters, ploughing depth and speed: DEM simulations and experimental validation[J]. Biosystems Engineering, 2022, 216: 79-92. |
| [8] | Bulgakov V, Pascuzzi S, Adamchuk V, et al. A theoretical study of the limit path of the movement of a layer of soil along the plough mouldboard[J]. Soil and Tillage Research, 2019, 195: 104406. |
| [9] | Tarverdyan A P, Grigoryan S M, Esoyan A M. Investigation of the regularity of movement of furrow slice at tillage with a plough with ripping moldboard[J]. Annals of Agrarian Science, 2018, 16(2): 218-221. |
| [10] | Ahmadi I. Development and evaluation of a draft force calculator for moldboard plow using the laws of classical mechanics[J]. Soil and Tillage Research, 2016, 161: 129-134. |
| [11] | Mattetti M, Varani M, Molari G, et al. Influence of the speed on soil-pressure over a plough[J]. Biosystems Engineering, 2017, 156: 136-147. |
| [12] | 刘进宝, 郑炫, 孟祥金, 等. 犁体耕作阻力模型仿真分析与试验研究[J]. 干旱地区农业研究, 2022, 40(1): 264-274. |
| LIU Jinbao, ZHENG Xuan, MENG Xiangjin, et al. Simulated analysis and experimental study on plough tillage resistance model[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 264-274. | |
| [13] | 魏国粱, 张青松, 王彪, 等. 油菜直播机扣垡犁体参数分析与试验[J]. 吉林大学学报(工学版), 2022, 52(7): 1709-1718. |
| WEI Guoliang, ZHANG Qingsong, WANG Biao, et al. Analysis and experiment on parameters of plough body of rapeseed direct seeder[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7): 1709-1718. | |
| [14] | 魏国粱. 油菜直播机犁旋组合式扣垡工作机理及种床制备技术[D]. 武汉: 华中农业大学, 2021. |
| WEI Guoliang. Working mechanism and seed bed preparation technology of plow-rotary combined buckle of rape direct seeding machine[D]. Wuhan: Huazhong Agricultural University, 2021. | |
| [15] | 魏国粱, 张青松, 刘立超, 等. 犁旋组合式油菜直播机扣垡装置设计与试验[J]. 农业机械学报, 2020, 51(6): 38-46. |
| WEI Guoliang, ZHANG Qingsong, LIU Lichao, et al. Design and experiment of plowing and rotary tillage buckle device for rapeseed direct seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 38-46. | |
| [16] | 曾德超, 赵作善. 犁体曲面设计的数学解析法[J]. 农业机械学报, 1979, 10(1): 1-22. |
| Zeng Dechao, Zhao Zuoshan. On an analytic method of plow bottom surface design[J]. Transactions of the Chinese Society of Agricultural Machinery, 1979, 10(1): 1-22. | |
| [17] | 曾德超. 在旱作沙壤土上铧犁犁体曲面性能的分析[J]. 农业机械学报, 1962,(1): 37-60. |
| Zeng Dechao. Analysis of the turning and pulverizing processes of plow bottom surface on sandy loamy soils[J]. Transactions of the Chinese Society of Agricultural Machinery, 1962,(1): 37-60. | |
| [18] | 李俊伟, 佟金, 胡斌, 等. 不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J]. 农业工程学报, 2019, 35(6): 130-140. |
| LI Junwei, TONG Jin, HU Bin, et al. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in NorthEast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 130-140. | |
| [19] |
李清超, 郑炫, 刘进宝, 等. 新疆农田粉土离散元仿真参数标定[J]. 新疆农业科学, 2022, 59(8): 2014-2024.
DOI |
|
LI Qingchao, ZHENG Xuan, LIU Jinbao, et al. Parameter calibration of discrete element simulation of farmland silt in Xinjiang[J]. Xinjiang Agricultural Sciences, 2022, 59(8): 2014-2024.
DOI |
|
| [20] | 孙景彬, 刘琪, 杨福增, 等. 黄土高原坡地土壤与旋耕部件互作离散元仿真参数标定[J]. 农业机械学报, 2022, 53(1): 63-73. |
| SUN Jingbin, LIU Qi, YANG Fuzeng, et al. Calibration of discrete element simulation parameters of sloping soil on Loess Plateau and its interaction with rotary tillage components[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 63-73. | |
| [21] |
刘坤宇, 苏宏杰, 李飞宇, 等. 基于响应曲面法的土壤离散元模型的参数标定研究[J]. 中国农机化学报, 2021, 42(9): 143-149.
DOI |
|
LIU Kunyu, SU Hongjie, LI Feiyu, et al. Research on parameter calibration of soil discrete element model based on response surface method[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 143-149.
DOI |
|
| [22] | 宋少龙, 汤智辉, 郑炫, 等. 新疆棉田耕后土壤模型离散元参数标定[J]. 农业工程学报, 2021, 37(20): 63-70. |
| SONG Shaolong, TANG Zhihui, ZHENG Xuan, et al. Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 63-70. | |
| [23] | 周华, 车海龙, 耿端阳, 等. 玉米田耕层典型土壤离散元模型建立与参数标定[J]. 农业机械学报, 2023, 54(11): 49-60,113. |
| ZHOU Hua, CHE Hailong, GENG Duanyang, et al. Discrete element modeling and parameter calibration of typical soil in maize field tillage layer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 49-60,113. | |
| [24] | 于悦, 张科利, 刘亮, 等. 磁化率技术在土壤侵蚀领域的研究进展[J]. 中国水土保持科学(中英文), 2022, 20(3): 135-141. |
| YU Yue, ZHANG Keli, LIU Liang, et al. Advance in studies on soil erosion using magnetic susceptibility technique[J]. Science of Soil and Water Conservation, 2022, 20(3): 135-141. | |
| [25] | 李富程, 江仁涛, 花小叶. 等高犁耕朝向对紫色土坡面土壤再分布的影响[J]. 水土保持研究, 2016, 23(3): 106-111. |
| LI Fucheng, JIANG Rentao, HUA Xiaoye. Effect of contour plowing orientation on soil redistribution on hillslope in purple soil[J]. Research of Soil and Water Conservation, 2016, 23(3): 106-111. | |
| [26] | 李富程, 花小叶, 黄强. 耕作深度对紫色土坡地旋耕机耕作侵蚀的影响[J]. 水土保持研究, 2016, 23(4): 1-5. |
| LI Fucheng, HUA Xiaoye, HUANG Qiang. Effects of tillage depth on tillage erosion by rotary cultivator plough on the steep land in purple soil[J]. Research of Soil and Water Conservation, 2016, 23(4): 1-5. | |
| [27] | 李富程, 花小叶, 江仁涛, 等. 紫色土坡地土壤性质对耕作侵蚀的影响[J]. 水土保持通报, 2016, 36(4): 152-157. |
| LI Fucheng, HUA Xiaoye, JIANG Rentao, et al. Effects of soil properties on tillage erosion on hillslopes of purple soil[J]. Bulletin of Soil and Water Conservation, 2016, 36(4): 152-157. |
| [1] | LI Qingchao, ZHENG Xuan, LIU Jinbao, YANG Huaijun, WANG Zilong, ZHANG Luyun. Parameter Calibration of Discrete Element Simulation of Farmland Silt in Xinjiang [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 2014-2024. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||