[1] Demmig-Adams B, Polutchko S K, Stewart J J, et al. History of excess-light exposure modulates extent and kinetics of fast-acting non-photochemical energy dissipation[J]. Plant Physiology Reports. 2022, 27(4):560-572. [2] Tan S L, Yang Y J, Huang W. Moderate heat stress accelerates photoinhibition of photosystem I under fluctuating light in tobacco young leaves[J]. Photosynthesis Research, 2020, 144(3):373-382. [3] Grieco M, Roustan V, Dermendjiev G, et al. Adjustment of photosynthetic activity to drought and fluctuating light in wheat[J]. Plant, Cell & Environment, 2020, 43(6):1484-1500. [4] Shi Y F, Ke X S, Yang X X, et al. Plants response to light stress[J]. Journal of Genetics and Genomics, 2022, 49(8):735-747. [5] Zeng Z L, Sun H, Wang X Q, et al. Regulation of leaf angle protects photosystem I under fluctuating light in tobacco young leaves[J]. Cells, 2022, 11(2):252. [6] Feng L Y, Ali Raza M, Li Z C, et al. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean[J]. Frontiers in Plant Science, 2018, 9:1952. [7] Levizou E, Kyparissis A. A novel pattern of leaf movement:the case of Capparis spinosa L[J]. Tree Physiology, 2016, 36(9):1117-1126. [8] Yao H, Zhang Y, Yi X, et al. Diaheliotropic leaf movement enhances leaf photosynthetic capacity and photosynthetic light and nitrogen use efficiency via optimising nitrogen partitioning among photosynthetic components in cotton(Gossypium hirsutum L.)[J]. Plant Biology, 2018, 20(2):213-222. [9] Gould K S, Dudle D A, Neufeld H S. Why some stems are red:cauline anthocyanins shield photosystem II against high light stress[J]. Journal of Experimental Botany, 2010, 61(10):2707-2717. [10] Lo Piccolo E, Landi M, Massai R, et al. Girled-induced anthocyanin accumulation in red-leafed Prunus cerasifera:Effect on photosynthesis, photoprotection and sugar metabolism[J]. Plant Science, 2020, 294:110456. [11] Yi X P, Zhang Y L, Yao H S, et al. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton(Gossypium hirsutum L)under water deficit[J]. Journal of Plant Physiology, 2018, 220:74-82. [12] Liu Y F, Li T L, Xu T, et al. Effect of low night temperature treatment and recovery on photosynthesis and the allocation of absorbed light energy in tomato (Lycopersicon esculentum Mill.)leaves[J]. The Journal of Horticultural Science and Biotechnology, 2011, 86(2):91-96. [13] 阚家强, 刘玉, 周治国, 等. 蕾铃脱落对棉花果枝叶光合产物积累及"源"潜力的影响[J]. 中国农业科学, 2023, 56(9):1658-1669. KAN Jiaqiang, LIU Yu, ZHOU Zhiguo, et al. Effects of squares and bolls abscission on photosynthate accumulation and its strength as an auxiliary source of cotton sympodial leaves[J]. Scientia Agricultura Sinica, 2023, 56(9):1658-1669. [14] Rumeau D, Bécuwe-Linka N, Beyly A, et al. New subunits NDH-M, -N, and-O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants[J]. The Plant Cell, 2005, 17(1):219-232. [15] Fabre D, Yin X Y, Dingkuhn M, et al. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation[J]. Journal of Experimental Botany, 2019, 70(20):5773-5785. [16] 权宝全, 白冬梅, 田跃霞, 等. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018,(4):102-105. QUAN Baoquan, BAI Dongmei, TIAN Yuexia, et al. Effects of different leaf-peg ratio on photosynthesis and yield of peanut[J]. Crops, 2018,(4):102-105. [17] 陈年来. 作物库源关系研究进展[J]. 甘肃农业大学学报, 2019, 54(1):1-10. CHEN Nianlai. Research advances on source-sink interaction of the crops[J]. Journal of Gansu Agricultural University, 2019, 54(1):1-10. [18] 张国伟, 李凯, 李思嘉, 等. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2):529-537. ZHANG Guowei, LI Kai, LI Sijia, et al. Effects of sink-limiting treatments on leaf carbon metabolism in soybean[J]. Acta Agronomica Sinica, 2022, 48(2):529-537. [19] 蔡贵芳, 刘艳, 白立华, 等. 去果河套蜜瓜源叶碳水化合物及其相关酶昼夜变化特征[J]. 西北植物学报, 2012, 32(9):1774-1780. CAI Guifang, LIU Yan, BAI Lihua, et al. Day and night variations of carbohydrate contents and activities of related enzymes in source leaves of defruiting Cucumis melo l.cv. Hetao[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(9):1774-1780. [20] 王凤华, 郭佳, 吴正景, 等. 植物花青素合成的环境调控研究进展[J]. 中国野生植物资源, 2024, 43(2):78-83. WANG Fenghua, GUO Jia, WU Zhengjing, et al. Progress of environmental regulation on plant anthocyanin biosynthesis[J]. Chinese Wild Plant Resources, 2024, 43(2):78-83. [21] 张亚黎, 罗宏海, 张旺锋, 等. 土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J]. 植物生态学报, 2008, 32(3):681-689. ZHANG Yali, LUO Honghai, ZHANG Wangfeng, et al. Effects of water deficit on photochemical activity and excitation energy dissipation of photosynthetic apparatus in cotton leaves during flowering and boll-setting stages[J]. Journal of Plant Ecology, 2008, 32(3):681-689. [22] 易小平, 张亚黎, 姚贺盛, 等. 土壤水分亏缺下棉花叶片光破坏防御机制研究进展[J]. 植物生理学报, 2017, 53(3):339-351. YI Xiaoping, ZHANG Yali, YAO Hesheng, et al. Research progress of the photoprotective mechanisms of cotton leaves under soil water deficit[J]. Plant Physiology Journal, 2017, 53(3):339-351. [23] Thanisawanyangkura S, Sinoquet H, Rivet P, et al. Leaf orientation and sunlit leaf area distribution in cotton[J]. Agricultural and Forest Meteorology, 1997, 86(1/2):1-15. [24] Zhang Y L, Zhang H Z, Feng G Y, et al. Leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition in upland cotton(Gossypium hirsutum L.)[J]. Photosynthetica, 2009, 47(4):609-615. [25] Zhang Y L, Zhang H Z, Du M W, et al. Leaf wilting movement can protect water-stressed cotton (Gossypium hirsutum L.) plants against photoinhibition of photosynthesis and maintain carbon assimilation in the field[J]. Journal of Plant Biology, 2010, 53:52-60. [26] Takahashi S, Badger M R. Photoprotection in plants:a new light on photosystem II damage[J]. Trends in Plant Science, 2011, 16(1):53-60. [27] Song X S, Shang Z W, Yin Z P, et al. Mechanism of xanthophyll-cycle-mediated photoprotection in Cerasus humilis seedlings under water stress and subsequent recovery[J]. Photosynthetica, 2011, 49(4):523-530. [28] Huang W, Zhang S B, Hu H. Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco[J]. Frontiers in Plant Science, 2014, 5:688. [29] Yi X P, Zhang Y L, Yao H S, et al. Alternative electron sinks are crucial for conferring photoprotection in field-grown cotton under water deficit during flowering and boll setting stages[J]. Functional Plant Biology, 2014, 41(7):737-747. [30] Huang W, Yang Y J, Hu H, et al. Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves[J]. Frontiers in Plant Science, 2015, 6:923. |