Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (9): 2091-2103.DOI: 10.6048/j.issn.1001-4330.2022.09.002
• Cultivation Physiology·Physiology and Biochemistry·Crop Genetics and Breeding·Germplasm Resources • Previous Articles Next Articles
PU Shenghai1,2,3(), WANG Zeyu1,2, DING Feng1,2, WANG Caifeng4, LIU Xiaoli1,2, MA Xiaopeng1,2(
), WANG Tao5, PENG Yinshuang6, LI Yuntong1
Received:
2021-12-01
Online:
2022-09-20
Published:
2023-01-16
Correspondence author:
MA Xiaopeng
Supported by:
蒲胜海1,2,3(), 王则玉1,2, 丁峰1,2, 王彩风4, 刘小利1,2, 马晓鹏1,2(
), 王涛5, 彭银双6, 李韵同1
通讯作者:
马晓鹏
作者简介:
蒲胜海(1982-),男,重庆垫江人,副研究员,研究方向为水肥资源高效利用,(E-mail)aiqing2008@126.com
基金资助:
CLC Number:
PU Shenghai, WANG Zeyu, DING Feng, WANG Caifeng, LIU Xiaoli, MA Xiaopeng, WANG Tao, PENG Yinshuang, LI Yuntong. Hysiological and Biochemical Characteristics of Rice under Mulch Drip Irrigation with Different Water Controlin the Filling Stage[J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2091-2103.
蒲胜海, 王则玉, 丁峰, 王彩风, 刘小利, 马晓鹏, 王涛, 彭银双, 李韵同. 膜下滴灌水稻生理生化特性对灌浆期控水的响应[J]. 新疆农业科学, 2022, 59(9): 2091-2103.
处理 Treatment | 灌溉标准 Irrigation limit | 苗期 Seedling Stage | 分蘖期 Tilling stage | 拔节期 Jointing stage | 灌浆期 Filling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|---|
W1 | 灌水下限(θs) | 0.90 | 0.75 | 0.90 | 0.90 | 0.70 |
灌水上限(θs) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
W2 | 灌水下限(θs) | 0.90 | 0.75 | 0.90 | 0.80 | 0.70 |
灌水上限(θs) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
W3 | 灌水下限(θs) | 0.90 | 0.75 | 0.9 | 0.70 | 0.70 |
灌水上限(θs) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
CK | 灌水下限(cm) | 0 | 5 | 5 | 5 | 0 |
灌水上限(cm) | 5 | 10 | 10 | 10 | 5 |
Table 1 Field water control standards for different irrigation treatments
处理 Treatment | 灌溉标准 Irrigation limit | 苗期 Seedling Stage | 分蘖期 Tilling stage | 拔节期 Jointing stage | 灌浆期 Filling stage | 成熟期 Maturity stage |
---|---|---|---|---|---|---|
W1 | 灌水下限(θs) | 0.90 | 0.75 | 0.90 | 0.90 | 0.70 |
灌水上限(θs) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
W2 | 灌水下限(θs) | 0.90 | 0.75 | 0.90 | 0.80 | 0.70 |
灌水上限(θs) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
W3 | 灌水下限(θs) | 0.90 | 0.75 | 0.9 | 0.70 | 0.70 |
灌水上限(θs) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
CK | 灌水下限(cm) | 0 | 5 | 5 | 5 | 0 |
灌水上限(cm) | 5 | 10 | 10 | 10 | 5 |
参数 Parameter | Pn | Gs | Ci | Tr |
---|---|---|---|---|
Pn | 1.00 | 0.62* | -0.71** | 0.49* |
Gs | 1.00 | -0.03 | 0.57** | |
Ci | 1.00 | 0.08 | ||
Tr | 1.00 |
Table 2 Correlation matrix between the photosynthetic parameters of drip irrigation rice
参数 Parameter | Pn | Gs | Ci | Tr |
---|---|---|---|---|
Pn | 1.00 | 0.62* | -0.71** | 0.49* |
Gs | 1.00 | -0.03 | 0.57** | |
Ci | 1.00 | 0.08 | ||
Tr | 1.00 |
年份 Years | 处理 Treatment | 有效穗数Effective panicle (穗/m2) | 穗粒数 Grain Number per spike | 千粒重 1000-grain weight(g) | 结实率 Seed setting rate(%) | 处理 Yield (kg/hm2) | ET (mm) | WUE (kg/(mm·hm2)) |
---|---|---|---|---|---|---|---|---|
2018 | W1 | 484.69±32.46bc | 121.66±14.21a | 21.04±0.91a | 73.96±2.10a | 7 018.06±260.31a | 1 438.66±35.44b | 4.88±0.08a |
W2 | 543.87±45.61b | 109.04±10.42a | 19.22±0.60b | 67.83±2.50b | 6 053.73±275.69b | 1 338.44±34.84b | 4.52±0.13b | |
W3 | 502.54±20.77b | 113.94±2.34a | 18.20±0.70b | 63.89±2.71c | 5 042.92±178.50c | 1 209.65±43.03c | 4.17±0.02c | |
CK | 604.57±22.77a | 128.05±9.52a | 25.77±1.07a | 80.27±6.21a | 8 228.01±296.54a | 3 279.71±26.97a | 2.51±0.11d | |
2019 | W1 | 490.77±8.40b | 125.34±5.82ab | 22.07±1.02b | 74.58±0.96b | 7 113.48±94.16b | 1 412.84±22.36b | 5.04±0.14a |
W2 | 508.29±31.87b | 114.68±8.42b | 19.14±0.42c | 68.95±1.41c | 6 195.35±181.73c | 1 384.77±45.61b | 4.47±0.049b | |
W3 | 480.07±19.72b | 110.34±8.11b | 18.39±0.53c | 64.83±1.48c | 5 237.49±283.88c | 1 278.54±21.68b | 4.10±0.29c | |
CK | 589.47±10.40a | 129.67±4.04a | 24.25±1.55a | 79.22±2.66a | 8 216.22±111.21a | 3 209.83±157.43a | 2.57±0.16d |
Table 3 Effect of water control treatment on rice yield
年份 Years | 处理 Treatment | 有效穗数Effective panicle (穗/m2) | 穗粒数 Grain Number per spike | 千粒重 1000-grain weight(g) | 结实率 Seed setting rate(%) | 处理 Yield (kg/hm2) | ET (mm) | WUE (kg/(mm·hm2)) |
---|---|---|---|---|---|---|---|---|
2018 | W1 | 484.69±32.46bc | 121.66±14.21a | 21.04±0.91a | 73.96±2.10a | 7 018.06±260.31a | 1 438.66±35.44b | 4.88±0.08a |
W2 | 543.87±45.61b | 109.04±10.42a | 19.22±0.60b | 67.83±2.50b | 6 053.73±275.69b | 1 338.44±34.84b | 4.52±0.13b | |
W3 | 502.54±20.77b | 113.94±2.34a | 18.20±0.70b | 63.89±2.71c | 5 042.92±178.50c | 1 209.65±43.03c | 4.17±0.02c | |
CK | 604.57±22.77a | 128.05±9.52a | 25.77±1.07a | 80.27±6.21a | 8 228.01±296.54a | 3 279.71±26.97a | 2.51±0.11d | |
2019 | W1 | 490.77±8.40b | 125.34±5.82ab | 22.07±1.02b | 74.58±0.96b | 7 113.48±94.16b | 1 412.84±22.36b | 5.04±0.14a |
W2 | 508.29±31.87b | 114.68±8.42b | 19.14±0.42c | 68.95±1.41c | 6 195.35±181.73c | 1 384.77±45.61b | 4.47±0.049b | |
W3 | 480.07±19.72b | 110.34±8.11b | 18.39±0.53c | 64.83±1.48c | 5 237.49±283.88c | 1 278.54±21.68b | 4.10±0.29c | |
CK | 589.47±10.40a | 129.67±4.04a | 24.25±1.55a | 79.22±2.66a | 8 216.22±111.21a | 3 209.83±157.43a | 2.57±0.16d |
参数 Parameter | 有效穗数 Effective panicle number | 穗粒数 Grain number per spike | 千粒重 1000-grain weight | 结实率 Seed setting rate | 产量 Yield | 耗水量 ET |
---|---|---|---|---|---|---|
有效穗数 Effective panicle number | 1 | 0.53 | 0.69* | 0.68* | 0.74** | 0.91** |
穗粒数 Grain number per spike | 1 | 0.81** | 0.72** | 0.78** | 0.63* | |
千粒重 1000-grain weight | 1 | 0.88** | 0.91** | 0.80** | ||
结实率 Seed setting rate | 1 | 0.98** | 0.77** | |||
产量 Yield | 1 | 0.82** | ||||
耗水量ET | 1 |
Table 4 Correlation matrix of yield component parameters
参数 Parameter | 有效穗数 Effective panicle number | 穗粒数 Grain number per spike | 千粒重 1000-grain weight | 结实率 Seed setting rate | 产量 Yield | 耗水量 ET |
---|---|---|---|---|---|---|
有效穗数 Effective panicle number | 1 | 0.53 | 0.69* | 0.68* | 0.74** | 0.91** |
穗粒数 Grain number per spike | 1 | 0.81** | 0.72** | 0.78** | 0.63* | |
千粒重 1000-grain weight | 1 | 0.88** | 0.91** | 0.80** | ||
结实率 Seed setting rate | 1 | 0.98** | 0.77** | |||
产量 Yield | 1 | 0.82** | ||||
耗水量ET | 1 |
[1] | 冀俊超. 不同水分管理对旱直播水稻生长生理特性与温室气体排放的影响[D]. 哈尔滨: 东北农业大学, 2021. |
Ji Junchao. Effects of Different Water Management on Growth and Physiological Characteristics and Greenhouse Gas Emissions of Dry Direct Seeding Rice[D]. Haerbing: Northeast Agricultural University, 2021. | |
[2] |
丁峰, 蒲胜海, 吕玉平, 等. 不同灌溉定额对膜下滴灌水稻耗水特征及水分生产效率的影响[J]. 新疆农业科学, 2021, 58(9):1577-1584.
DOI |
DING Feng, PU Shenghai, LV Yuping, et al. Effects of Different Irrigation Quotas on Water Consumption Characteristics and Water Production Efficiency of Rice under Film Drip Irrigation[J]. Xinjiang Agricultural Sciences, 2021, 58(9):1577-1584.
DOI |
|
[3] | 段孟越. 不同水分利用效率水稻品种筛选及其光合特性初步探究[D]. 哈尔滨: 东北农业大学, 2019. |
DUAN Mengyue. Screening of Rice Varieties with Different Water Use Efficiency and Their Photosynthetic Characteristics[D]. Haerbing: Northeast Agricultural University, 2019. | |
[4] | 杨秀霞, 燕辉, 周春火, 等. 水分胁迫下氮形态对水稻根系孔隙度及水分吸收的影响[J]. 干旱地区农业研究, 2019, 37(2):144-149. |
YANG Xiuxia, YAN Hui, ZHOU Chunhuo, et al. Effects of nitrogen forms on root porosity and waterabsorption of rice under drought stress[J]. Agricultural Research in the Arid Areas, 2019, 37(2):144-149. | |
[5] | 朱士江, 叶晓思, 王斌, 等. 不同水分调控、生物炭配比对水稻产量与水分利用效率的影响[J]. 节水灌溉, 2018,(1):1-5. |
ZHU Shijiang, YE Xiaosi, WANG Bin, et al. Effects of Water-Biochar Coupling on Rice Yield and Water Use Efficiency[J]. Water Saving Irrigation, 2018,(1):1-5. | |
[6] | Barnaby J Y, Rohila J S, Henry C G, et al. Physiological and Metabolic Responses of Rice to Reduced Soil Moisture:Relationship of Water Stress Tolerance and Grain Production[J]. International Journal of Molecular Sciences, 2019, 20(8). |
[7] | 刘虎, 王健, 阿比亚斯, 等. 内蒙古东部膜下滴灌旱作水稻作物需水量与产量研究[J]. 中国农学通报, 2021, 37(29):146-151. |
Liu Hu, Wang Jian, Abiyasi, et al. Crop Water Requirement and Yield of Aerobic Rice Under Mulched Drip Irrigation in Eastern Inner Mongolia[J]. Chinese Agricultural Science Bulletin, 2021, 37(29):146-151. | |
[8] |
何海兵, 杨茹, 武立权, 等. 膜下滴灌水稻优化毛管配置模式及适宜灌溉强度的研究[J]. 中国水稻科学, 2016, 30(1):75-84.
DOI |
HE Haibing, YANG Ru, WU Liquan, et al. Optimal Capillary Configuration Modes and Irrigation Intensities for Drip Irrigation with Plastic Film Mulching in Rice[J]. Chinese Journal of Rice Science, 2016, 30(1):75-84.
DOI |
|
[9] |
Zhuang Y, Zhang L, Li S, et al. Effects and potential of water-saving irrigation for rice production in China[J]. Agricultural Water Management, 2019, 217:374-382.
DOI URL |
[10] | 蔡一霞, 李洋, 朱海涛, 等. 灌浆期亏缺灌溉对水稻产量形成的影响[J]. 中国农业科学, 2015, 48(8):1492-1505. |
CAI Yixia, LI Yang, ZHU Haitao, et al. Effects of Deficit Irrigation on the Formation of the Yield in Rice(Oryza sativa) During Filling Period[J]. ScientiaAgriculturaSinica, 2015, 48(8):1492-1505. | |
[11] |
杨晓龙, 程建平, 汪本福, 等. 灌浆期干旱胁迫对水稻生理性状和产量的影响[J]. 中国水稻科学, 2021, 35(1):38-46.
DOI |
YANG Xiaolong, CHENG Jianping, WANG Benfu, et al. Effects of Drought Stress at Grain Filling Stage on Rice Physiological Characteristics and Yield[J]. Chinese Journal of Rice Science, 2021, 35(1):38-46.
DOI |
|
[12] |
Palanog A D, Swamy B P M, Shamsudin N A A, et al. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice[J]. Field Crops Research, 2014, 161:46-54.
DOI URL |
[13] |
Ndjiondjop M N, Futakuchi K, Cisse F, et al. Field evaluation of rice genotypes from the two cultivated species (Oryza sativa L. and OryzaglaberrimaSteud.) and their interspecifics for tolerance to drought[J]. Crop science, 2012, 52(2):524-538.
DOI URL |
[14] |
Yang X, Wang B, Chen L, et al. The different influences of drought stress at the flowering stage on rice physiological traits,grain yield,and quality[J]. Scientific reports, 2019, 9(1):1-12.
DOI URL |
[15] | 吕艳梅. 两个优质水稻品种孕穗至灌浆期高温干旱对品质和产量性状的影响[D]. 长沙: 湖南农业大学, 2015. |
LV Yanmei. Effects of High Temperature and Drought during Booting to Filling Stage on the Grain Quality and Yield Characters for Two High Quality Rice Varieties[D]. Changsha: Hunan Agricultural University, 2015. | |
[16] | 马文慧. 土壤水分下限控制灌溉对水稻生长性状及产量的影响[D]. 天津: 天津农学院, 2021. |
MA Wenhui. Effects of Lower Limit-controlled Irrigation of Soil Moisture on Growth Characteristics and Yield of Rice[D]. Tianjing: Tianjin Agricultural College, 2021. | |
[17] | 王易天, 郭相平, Hamoud YousefAlhaj, 等. 智能氮肥在干湿交替灌溉下对水稻产量与水分利用率的影响[J]. 节水灌溉, 2021,(8):37-41. |
WANG Yitian, GUO Xiangping, Hamoud YousefAlhaj, et al. Effects of Smart Fertilizer Under Alternate Wetting and Drying Irrigation on Yield and Water Use Efficiency of Rice[J]. Water Saving Irrigation, 2021(8):37-41. | |
[18] | 徐晨, 凌风楼, 徐克章, 等. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响[J]. 中国水稻科学, 2013, 27(3):280-286. |
XU Chen, LING Fenglou, XU Kezhang, et al. Effect of Salt Stress on Photosynthetic Characteristics and Physiological and Biochemical Traits of Different Rice Varieties[J]. Chinese Journal of Rice Science, 2013, 27(3):280-286. | |
[19] | 李合生. 现代植物生理学(第3版)[M]. 北京: 高等教育出版社, 2012:131-138. |
LI Hesheng. Plant Physiology (3rd edition)[M]. Beijing: Higher Education Press, 2012:131-138. | |
[20] |
钱晓晴, 沈其荣, 徐勇, 等. 不同水分管理方式下水稻的水分利用效率与产量[J]. 应用生态学报, 2003,(3):399-404.
PMID |
QIAN Xiaoqing, SHEN Qirong, XU Yong, et al. Water use efficiency and rice yield under different water managements.[J]. Chinese Journal of Applied Ecology, 2003(3):399-404.
PMID |
|
[21] | He H, Yang R, Jia B, et al. Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation[J]. The scientific world journal, 2014:1-14. |
[22] | 徐强, 马晓鹏, 吕廷波, 等. 分蘖期干旱胁迫对水稻光合特性及产量的影响[J]. 干旱地区农业研究, 2020, 38(1):133-139. |
XU Qiang, MA Xiaopeng, LV Tingbo, et al. Effects of drought stress at tillering stage on photosynthetic characteristics and yield of rice[J]. Agricultural Research in the Arid Areas, 2020, 38(1):133-139. | |
[23] | Jones H G. Partitioning stomatal and non‐stomatal limitations to photosynthesis[J]. Plant,Cell & Environment, 1985, 8(2):95-104. |
[24] |
Xu Q, Ma X, Lv T, et al. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice[J]. Water, 2020, 12(1):289.
DOI URL |
[25] |
Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture[J]. Journal of experimental botany, 2004, 55(407):2365-2384.
DOI PMID |
[26] |
蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J]. 植物生态学报, 2008,(2):491-500.
DOI |
CAI KunZheng, WU XueZhu,and LUO ShiMing. Effects of water stress on osmolytes at different growth stages in rice leaves and roots[J]. Journal of Plant Ecology, 2008,(2):491-500. | |
[27] |
Koca H, Bor M, Özdemir F, et al. The effect of salt stress on lipid peroxidation,antioxidative enzymes and proline content of sesame cultivars[J]. Environmental and experimental Botany, 2007, 60(3):344-351.
DOI URL |
[28] | Tripathi S B, Gurumurthi K, Panigrahi A K, et al. Salinity induced changes in proline and betaine contents and synthesis in two aquatic macrophytes differing in salt tolerance[J]. Biologiaplantarum, 2007, 51(1):110-115. |
[29] |
He H, Ma F, Yang R, et al. Rice performance and water use efficiency under plastic mulching with drip irrigation[J]. PLoS One, 2013, 8(12):e83103.
DOI URL |
[30] |
王抄抄, 孔雷蕾, 李妹娟, 等. 分蘖期控水处理对超级稻产量和生理特性的影响[J]. 华北农学报, 2015, 30(5):146-152.
DOI |
WANG Chaochao, KONG Leilei, LI Meijuan, et al. Effect of Water Treatments at Tillering Stage on Super Rice Yield and Physiological Characteristics[J]. ActaAgriculturaeBoreali-Sinica, 2015, 30(5):146-152. | |
[31] |
宋新颖, 邬爽, 张洪生, 等. 土壤水分胁迫对不同品种冬小麦生理特性的影响[J]. 华北农学报, 2014, 29(2):174-180.
DOI |
SONG Xinying, WU Shuang, ZHANG Hongsheng, et al. Effect of Soil Water Stress on Physiological Characteristics in Different Winter Wheat Cultivars[J]. ActaAgriculturaeBoreali-Sinica, 2014, 29(2):174-180. | |
[32] |
Raza S H, Athar H R, Ashraf M, et al. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance[J]. Environmental and Experimental Botany, 2007, 60(3):368-376.
DOI URL |
[33] | 王贺正, 马均, 李旭毅, 等. 水分胁迫对水稻结实期活性氧产生和保护系统的影响[J]. 中国农业科学, 2007,(7):1379-1387. |
WANG Hezheng, MA Jun, LI Xuyi, et al. Effects of Water Stress on Active Oxygen Generation and Protection System in Rice During Grain Filling Stage[J]. ScientiaAgriculturaSinica, 2007,(7):1379-1387. | |
[34] | 王贺正, 马均, 李旭毅, 等. 水分胁迫对水稻结实期一些生理性状的影响[J]. 作物学报, 2006,(12):1892-1897. |
WANG HeZheng, MA Jun, LI XuYi, et al. Effects of Water Stress on Some Physiological Characteristics in Rice during Grain Filling Stage[J]. ActaAgronomicaSinica, 2006,(12):1892-1897. | |
[35] | 耿艳秋, 金峰, 朱明霞, 等. 灌浆乳熟期土壤水势对苏打盐渍土水稻产量及生理性状的影响[J]. 中国水稻科学, 2014, 28(5):534-540. |
GENG Yanqiu, JIN Feng, ZHU Mingxia, et al. Effects of Soil Water Potential at Grain Filling-Milky Stage on Rice Yield and Physiological Traits in Saline-alkali Soil[J]. Chinese Journal of Rice Science, 2014, 28(5):534-540. | |
[36] | 白如霄, 陈勇, 张新疆, 等. 土壤盐分对膜下滴灌水稻生长及产量的影响[J]. 新疆农业科学, 2016, 53(3):473-480. |
BAI Ruxiao, CHEN Yong, ZHANG Xinjiang, et al. Effects of Soil Salinity on Rice Growth and Yield under Drip Irrigation and Film Mulch[J]. Xinjiang Agricultural Sciences, 2016, 53(3):473-480. | |
[37] | 陈金武. 内蒙古通辽市水稻膜下滴灌灌溉制度试验研究[J]. 节水灌溉, 2018,(4):11-14. |
CHEN Jinwu. Experimental Research on Irrigation Schedule of Drip Irrigation under Film for Rice of Tongliao City[J]. Water Saving Irrigation, 2018(4):11-14. | |
[38] | 李冬, 杨江平, 王欢庆, 等. 新疆膜下滴灌旱作水稻不同生育期控制性灌溉对产量及农艺性状的影响[J]. 北方水稻, 2018, 48(6):11-12,15. |
LI Dong, YANG Jiangping, WANG Huanqing, et al. Effects of Control Irrigation on Yield and Agronomic Characteristics of Different Fertility Periods of Drip Irrigation for Rice in Xinjiang[J]. North Rice, 2018, 48(6):11-12,15. | |
[39] | 吕艳东, 郭晓红, 李猛, 等. 膜下滴灌水肥耦合对寒地水稻产量构成因素及产量的影响[J]. 水土保持通报, 2017, 37(5):46-52. |
LV Yandong, GUO Xiaohong, LI Meng, et al. Effect of Water and Fertilizer Coupling on Rice Yield and Its Components Under Drip Irrigation with Plastic Film Mulching in Cold Region[J]. Bulletin of Soil and Water Conservation, 2017, 37(5):46-52. | |
[40] | 何进宇, 田军仓. 膜下滴灌旱作水稻水肥耦合模型及组合方案优化[J]. 农业工程学报, 2015, 31(13):77-82. |
He Jinyu, Tian Juncang. Model of coupling water with fertilizer and optimum combination scheme of rice cultivated in aerobic soil with drip irrigation under plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13):77-82. |
[1] | Areziguli Tuxun, GAO Jie. Effects of drought stress and planting density on physiological characteristics and yield of onion bulblets [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2211-2222. |
[2] | LIU Fuyu, ZHANG Jianghui, BAI Yungang, ZHAO Jinghua, CAO Biao. Analysis of yield and water use efficiency of under-irrigated crops based on meta-analysis [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1487-1496. |
[3] | XIE Zhong, YE Hanchun, WANG Zhenhua, LI Haiqiang, LIU Jian, CHEN Rui, XU Yushuang. Effects of water and nitrogen application on winter wheat growth, yield, and water use efficiency under shallow buried drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1057-1066. |
[4] | HUI Ruihan, LIN Li, CAO Wei, ZHANG Mengke, LIN Hao, YAO Shuai. Design and experiment of intelligent irrigation system for cotton field based on P-M model [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 300-309. |
[5] | LIU Yi, LI Jiangtao, JIANG Yinghong, YANG Ruwei, SUN Hui, WU Yan. Effect of exogenous spermidine on physiological characteristics of potato seedlings under NaCl stress [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 336-344. |
[6] | ZHOU Xiaoyun, LEI Bin, ZHANG Jungao, LIANG Jing, GONG Jingyun, ZHOU Guangwei, ZHANG Shaomin, LI Jin. Comparative analysis of physiological and biochemical characteristics of cold tolerance of cotton seedlings coated with 7.2% carboxin and 40% amicarthiazol [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 176-183. |
[7] | TANG Dong, AN Yuguang, CHENG Ping, LI Hong, YANG Jianjun, WANG Kai. Responses of photosynthetic characteristics of typical shrubs in piedmont on the northern slope of tianshan mountains to drought stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1531-1539. |
[8] | BAI Hongxia, ZHANG Yahong, MA Xiaolian, HUANG Jiajun. Effects of Irrigation Frequency and Irrigation Amount on Yield,Quality and Irrigation Water use Efficiency of Greenhouse Cucumber [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2136-2146. |
[9] | CAO Hui, WANG Hongbo, ZHANG Nan, WANG Xingpeng. Photosynthetic Characteristics and Yield Response to Water Content of Apple under Close Planting on Dwarf Rootstocks in Southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1409-1417. |
[10] | LI Jiangyan, ZHANG Xianhua, YUAN Xiaoqiang, YUAN Hui, LIU Wenxin. Study on the Growth Characteristics and Water Consumption Law of Dactylisglomerata Seedling under Drought Stress [J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1502-1512. |
[11] | WANG Liang, Wumaierjiang Kuerban, GUO Rensong, LIN Tao, XU Haijiang, ZHENG Zipiao, CUI Jianping, TIAN Liwen. Effects of Irrigation Quota on Water use Efficiency and Yield of Cotton Field under Subsoiling Tillage [J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2374-2383. |
[12] | LI Junhong, LI Wenjing, WANG Yuanyuan, SHI Xiaojuan, HAO Xianzhe, LIU Ping. Response of Root Growth and Water Use Efficiency to Drought in Different Drought Tolerant Cotton Varieties [J]. Xinjiang Agricultural Sciences, 2022, 59(1): 20-29. |
[13] | LIN Tao, MEI Xurong, HAO Weiping, TIAN Liwen, CUI Jianping, GUO Rensong, WANG Liang, ZHENG Zipiao. The Effect of Deficit Irrigation on the Yield and Water Utilization of Machine-picked Cotton under Condition of Drip Irrigation [J]. Xinjiang Agricultural Sciences, 2021, 58(3): 419-429. |
[14] | LI Hai-feng, ZHANG Chun-mei, LIU Zhi-gang, GUO Hong-mei, Luerziyeguli Mahemuti, Huxidan Maimaiti. Effects of Nitrogen Fertilizer Application Rate on Yield, Economic Benefit and Nitrogen Use Efficiency of Greenhouse Pepper (Capsicum annuum L.) [J]. Xinjiang Agricultural Sciences, 2019, 56(8): 1502-1509. |
[15] | HUANG Guang-wei, ZHAI Yun-long, WU Quan-zhong, LI Ling, LIU Tai-jie, GUO Zi-xuan, MENG Yan-qi, CHEN Guo-dong. Effects of Magnetization Times and Magnetized Irrigation on Growth, Yield and Quality of Cotton [J]. Xinjiang Agricultural Sciences, 2019, 56(12): 2208-2218. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 238
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||