Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (4): 1025-1033.DOI: 10.6048/j.issn.1001-4330.2022.04.029
• Genetic Engineering·Prataculture·Agricultural Product Analysis and Detection·Animal Husbandry Veterinarian • Previous Articles Next Articles
LIU Xiaoli1(), CHENG Biao1, LIU Luyao1, LI Qinfan2, TONG Panpan1, ZHANG Yi1, LIU Yingyu1, SU Zhanqiang1(
), LI Bin1(
)
Received:
2021-05-13
Online:
2022-04-20
Published:
2022-04-24
Correspondence author:
SU Zhanqiang, LI Bin
Supported by:
刘肖利1(), 程彪1, 刘璐瑶1, 李勤凡2, 佟盼盼1, 张毅1, 刘英玉1, 苏战强1(
), 李斌1(
)
通讯作者:
苏战强,李斌
作者简介:
刘肖利(1995-),女,河南淮阳人,硕士,研究方向为临床兽医学,(Email) 1316875742@qq.com
基金资助:
CLC Number:
LIU Xiaoli, CHENG Biao, LIU Luyao, LI Qinfan, TONG Panpan, ZHANG Yi, LIU Yingyu, SU Zhanqiang, LI Bin. Analysis of the Structure and Diversity of Microbial Communities of Cow Mastitis based on High-throughput Sequencing[J]. Xinjiang Agricultural Sciences, 2022, 59(4): 1025-1033.
刘肖利, 程彪, 刘璐瑶, 李勤凡, 佟盼盼, 张毅, 刘英玉, 苏战强, 李斌. 基于高通量测序技术分析奶牛乳房炎关联微生物群落结构及多样性[J]. 新疆农业科学, 2022, 59(4): 1025-1033.
样品 Sample | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon-index | 均匀度 Pielou_e | 可见物种 Observed- species | 覆盖度 Goods coverage (%) |
---|---|---|---|---|---|---|
CJ.LC1 | 462.288 | 0.121 018 | 0.743 671 | 0.084 275 3 | 453.3 | 99 |
CJ.LC2 | 1 348.25 | 0.827 401 | 4.431 91 | 0.429 205 | 1 283.5 | 99 |
CJ.LC3 | 2 622.23 | 0.957 049 | 6.647 99 | 0.586 655 | 2 578 | 99 |
CJ.ZC | 1 148.38 | 0.650 92 | 3.454 96 | 0.340 844 | 1 125.6 | 99 |
HZS.LC1 | 2 513.94 | 0.972 411 | 7.153 58 | 0.636 186 | 2 426.2 | 99 |
HZS.LC2 | 1 779.43 | 0.970 484 | 6.836 3 | 0.636 326 | 1 714.3 | 99 |
HZS.LC3 | 478.182 | 0.092 715 3 | 0.581 873 | 0.065 990 2 | 451.2 | 99 |
HZS.ZC | 1 024.69 | 0.956 733 | 5.680 18 | 0.572 007 | 975.7 | 99 |
Table 1 Microflora Alpha Diversity Index of Sample
样品 Sample | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon-index | 均匀度 Pielou_e | 可见物种 Observed- species | 覆盖度 Goods coverage (%) |
---|---|---|---|---|---|---|
CJ.LC1 | 462.288 | 0.121 018 | 0.743 671 | 0.084 275 3 | 453.3 | 99 |
CJ.LC2 | 1 348.25 | 0.827 401 | 4.431 91 | 0.429 205 | 1 283.5 | 99 |
CJ.LC3 | 2 622.23 | 0.957 049 | 6.647 99 | 0.586 655 | 2 578 | 99 |
CJ.ZC | 1 148.38 | 0.650 92 | 3.454 96 | 0.340 844 | 1 125.6 | 99 |
HZS.LC1 | 2 513.94 | 0.972 411 | 7.153 58 | 0.636 186 | 2 426.2 | 99 |
HZS.LC2 | 1 779.43 | 0.970 484 | 6.836 3 | 0.636 326 | 1 714.3 | 99 |
HZS.LC3 | 478.182 | 0.092 715 3 | 0.581 873 | 0.065 990 2 | 451.2 | 99 |
HZS.ZC | 1 024.69 | 0.956 733 | 5.680 18 | 0.572 007 | 975.7 | 99 |
Fig.2 Comparison of bacteria groups at phylum level Note:HZS.ZC:Non-clinical milk samples from HZS dairy farm; HZS.LC1:Milk samples of clinical mastitis from HZS dairy farm; HZS.LC2:Milk samples of clinical mastitis from HZS dairy farm; HZS.LC3:Milk samples of clinical mastitis from HZS dairy farm; CJ.ZC:Non-clinical milk samples from CJ dairy farm; CJ.LC1:Milk samples of clinical mastitis from CJ dairy farm; CJ.LC2:Milk samples of clinical mastitis from CJ dairy farm; CJ.LC3:Milk samples of clinical mastitis from CJ dairy farm,the same as below
Fig.6 Heat map of genus horizontal species composition Note:The red color block indicates that the abundance of this genus in this sample is higher than other samples, the blue color block means that the abundance of this genus in this sample is lower than other samples
[1] | 缪强, 张绍军, 黄和继, 等. 昆明地区奶牛乳房炎致病菌的分离鉴定及药敏试验[J]. 动物医学进展, 2011, 32(8):119-123. |
MIAO Qiang, ZHANG Shaojun, HUANG Heji, et al. Isolation, identification and drug Sensitive test of pathogens causing cow mastitis in kunming, yunnan province[J]. Progress in Veternary Medicine, 2011, 32(8):119-123. | |
[2] |
Riffon, Sayasith, Khalil, et al. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR[J]. Journal of Clinical Microbiology, 2001, 39(7):2584-2589.
PMID |
[3] | 李玉, 敖日格乐, 王纯洁, 等. 临床型奶牛乳房炎致病菌的分离与鉴定[J]. 畜牧与兽医, 2011, 43(3):78-81. |
LI Yu, Aorigele, WANG Chunjie, et al. Isolation and identification of pathogenic bacteria for clinical dairy cow mastitis[J]. Animal Husbandry and Veterinary Medicine, 2011, 43(7):78-81. | |
[4] | 张俊杰. 奶牛乳房炎研究进展[J]. 中国奶牛, 2020,(7):26-30. |
ZHANG Junjie. Research progress of dairy cow mastitis[J]. China Dairy Cattle, 2020(7):26-30. | |
[5] | 宋亚攀, 杨利国, 宋洛文, 等. 奶牛乳房炎综合防治技术[J]. 中国奶牛, 2008,(4):39-41. |
SONG Yapan, YANG Liguo, SONG Luowen, et al. Comprehensive prevention and cure technology of dairy cow mastitis[J]. China Dairy Cattle, 2008,(4):39-41. | |
[6] | 郝景锋, 李静姬, 张宇航, 等. 吉林省奶牛乳房炎病原菌分离鉴定及药敏试验[J]. 动物医学进展, 2016, 37(12):126-129. |
HAO Jingfeng, LI Jingji, ZHANG Yuhang, et al. Isolation identification and drug sensitivity test of pathogens of dairy cow mastitis in jilin province[J]. Progress in Veternary Medicine, 2016, 37(12):126-129. | |
[7] | 李春海. 奶牛乳房炎的防治措施探析[J]. 中国畜禽种业, 2020, 16(1):106. |
LI Chunhai. Analysis on the prevention and treatment of milk cow mastitis[J]. The Chinese Livestock and Poultry Breeding, 2020, 16(1):106. | |
[8] | 王方正, 田中杰, 田文儒. 噬菌体内溶素对奶牛乳房炎致病菌的溶解作用[J]. 动物医学进展, 2015, 36(4):113-116. |
WANG Fangzheng, TIAN Zhongjie, TIAN Wenru. Lytic effect of bacteriophage and its endolysin to bovince mastitis pathogens[J]. Progress in Veterinary Medicine, 2015, 36(4):113-116. | |
[9] | 叶秀娟, 杜爱芳, 胡松华. 金华地区奶牛乳房炎病原菌的分离鉴定及药敏试验[J]. 黑龙江畜牧兽医, 2004,(8):41-42. |
YE Xiujuan, DU Aifang, HU Songhua. Isolation, identification and drug sensitivity test of the pathogen of dairy cow mastitis in jinhua, zhejiang province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2004,(8):41-42. | |
[10] | 王军, 陈广宏, 何寿昕, 等. 青海省部分规模化奶牛场乳房炎主要病原菌调查分析[J]. 中国奶牛, 2020,(2):45-48. |
WANG Jun, CHEN Guanghong, HE Shouxin, et al. Investigation and analysis of the main pathogens of mastitis in some large-scale dairy farms in qinghai province[J]. China Dairy Cattle, 2020,(2):45-48. | |
[11] | 陶娜拉. 高通量测序解析奶牛乳房炎关联菌群[D]. 呼和浩特:内蒙古农业大学, 2016. |
TAO Nala. High throughput sequencing analysis of bovince mastitis associated bacteria.[D]. Hohhot: Inner Mongolia Agricultural University, 2016. | |
[12] | 王冬梅, 刘磊, 王胜利. 奶牛乳房炎病原菌的分离鉴定及药敏试验[J]. 动物医学进展, 2005,(6):81-83. |
WANG Dongmei, LIU Lei, WANG Shengli. Isolation and identification of the pathogenic bacteria of cow mastitis and its pharmacosensitive test[J]. Progress in Veterinary Medicine, 2005,(6):81-83. | |
[13] | 罗正中, 张保海, 张廷青, 等. 奶牛场金黄色葡萄球菌乳房炎的鉴别诊断及发病特征[J]. 中国奶牛, 2018,(9):27-30. |
LUO Zhengzhong, ZHANG Baohai, ZHANG Tingqing, et al. Differential diagnosis and incidence characteristics of Staphylococcus aureus mastitis in dairy farms[J]. China Dairy Cattle, 2018,(9):27-30. | |
[14] |
Taponen S, Salmikivi L, Simojoki H, et al. Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing[J]. Journal of Dairy Science, 2009, 92(6):2610-2617.
DOI PMID |
[15] |
Kuehn J S, Gorden P J, Daniel M, et al. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis[J]. Plos One, 2013, 8(4):e61959.
DOI URL |
[16] |
Li Y, Shi M, Zhang T, et al. Dynamic changes in intestinal microbiota in young forest musk deer during weaning[J]. PeerJ, 2020, 8(3):e8923.
DOI URL |
[17] |
Catozzi C, Bonastre A S, Francino O, et al. The microbiota of water buffalo milk during mastitis[J]. Plos One, 2017, 12(9):e0184710.
DOI URL |
[18] | Falentin H, Rault L, Nicolas A, et al. Bovine teat microbiome analysis revealed reduced Alpha diversity and significant changes in taxonomic profiles in quarters with a history of Mastitis[J]. Frontiers in Microbiology, 2016, (7):480. |
[19] |
Chandel D S, Johnson J A, Chaudhry R, et al. Extended-spectrum beta-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings[J]. Journal of Medical Microbiology, 2011, 60(Pt4):500-507.
DOI URL |
[20] |
Adler A, Katz D E, Marchaim D. The continuing plague of extended-spectrum β-lactamase-producing enterobacteriaceae infections[J]. Infect Dis Clin North Am, 2016, 30(2):347-375.
DOI URL |
[21] |
Sabrina M A, Schramm S T J, Traglia G M, et al. The genetic analysis of an acinetobacter johnsonii clinical strain evidenced the presence of horizontal genetic transfer[J]. Plos One, 2016, 11(8):e0161528.
DOI URL |
[22] | Al Atrouni A, Joly-Guillou M-L, Hamze M, et al. Reservoirs of non-baumannii acinetobacter species[J]. Frontiers in Microbiology, 2016, (7):49. |
[23] | Morris F C, Dexter C, Kostoulias X, et al. The mechanisms of disease caused by Acinetobacter baumannii[J]. Frontiers in Microbiology, 2019, (10):1606. |
[24] | Kirk J H, Bartlett P C. Nonclinical Pseudomonas aeruginosa mastitis in a dairy herd[J]. Journal of the American Veterinary Medical Association, 1984, 184(6):671. |
[25] | Ruffin M, Brochiero E. Repair Process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues[J]. Frontiers in Cellular and Infection Microbiology, 2019,(9):182. |
[26] | Parkins M D, Ranjani S, Waters V J. Epidemiology, Biology, impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis[J]. Clinical Microbiology Reviews, 2018, 31(4):e00019-18. |
[27] |
Podder M P, Laura R, Daler P K, et al. Klebsiella species associated with bovine mastitis in newfoundland[J]. Plos One, 2014, 9(9):e106518.
DOI URL |
[28] |
Elizabeth A M, Bart C W, James D M D O A S, et al. Dissecting the role of milk components on gut microbiota composition[J]. Gut Microbes, 2013, 4(2):136-139.
DOI PMID |
[29] |
Ma C, Sun Z, Zeng B, et al. Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis[J]. Microbiome, 2018, 6(1):200.
DOI URL |
[30] | Gomes F, Saavedra M J, Henriques M. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms[J]. Pathogens and Disease, 2016, 74(3): ftw006. |
[1] | WANG Dandan, LI Yan, ZHANG Qingyin, Li Shidong, PANG Yongchao, MA Kunzhi, MA Long, NIU Ruisheng, ZHONG Zengming, QI Lianfen, SHI Jianhua. Effects of different microbial treatments on tomato soil microbial diversity [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2248-2257. |
[2] | YUE Li, WANG Hui, Shanqimike , Zaituniguli Kuerban, TU Zhendong. Microbial diversity analysis of sweet sorghum silage using High-Throughput sequencing [J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2742-2750. |
[3] | SONG Wenwen, CHEN Zhuo, LI Xin, CHEN Lijing, SHU Zhan, LI Ziqian, GUO Xueping, YE Qianwen, MA Xuelian, SU Zhanqiang, YAO Gang. A Comparative Analysis of Milk Nutritional and Functional Components between Junggar Bactrian Camel and Holstein Cow [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 234-241. |
[4] | SHI Jizhen, GAO Qing, YANG Zhichao, ZHANG Siwei, LUO Sunlin, HUANG Shangzhen, ZHANG Hailiang, GUO Yanbin, GUO Gang, Yu Ying, WANG Yachun. Analysis on Influencing Factors of Blood Potassium in Holstein Cows [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2303-2309. |
[5] | QIN Xinzheng, WANG Yumiao, WANG Zhihui, XIE Chengjuan, WANG Bo. Effects of Straw Returning on Soil Nutrients and Microbial Diversity in Cotton Field [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1236-1244. |
[6] | Akbar Kasim, FAN Yonghong, Dilara Hamit. High Throughput Analysis of the Microbial Community in Different Parts of Nitraria in Saline Alkali Land [J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2562-2573. |
[7] | WANG Dengfeng, LI Jianjun, LIU Zhiqiang, WENG Yebin, GE Jianjun, YANG Xueyun, WU Jianyong. Targeted Isolation of Staphylococcus aureus in Milk Samples and Qualitative Risk Analysis in Provoking Clinical Mastitis [J]. Xinjiang Agricultural Sciences, 2020, 57(5): 974-980. |
[8] | SANG Zhagen, ZHANG Menghua, DONG Mingming, QIAO Chunhua, CHEN Jun, DENG Xiaofeng, JIANG Hui, WEI Chen, WANG Dan, XU Lei, ZHANG Xiaoxue, ZHAO Fanfan, ZHONG Liwei, HUANG Xixia. Pedigree Tracing and Analysis of 10,000 kg of Holstein Dairy Cow in Changji Area of Xinjiang [J]. Xinjiang Agricultural Sciences, 2020, 57(10): 1940-1947. |
[9] | GU Mei-ying1, XU Wan-li2, ZHANG Zhi-dong1, TANG Guang-mu2, TANG Qi-yong1, GU Yu-zhong3, SONG Su-qin1, Gulinisha Shayimu1, YANG Bo4, FENG Lei2. Analysis of Soil Microbial Diversity in Root Zone of Walnut Orchard with Different Levels of Rot Disease [J]. Xinjiang Agricultural Sciences, 2018, 55(6): 1107-1116. |
[10] | MENG Chao-ran, BAI Ru-xiao, YANG Peng-hui, ZHANG Hao-yu, WEI Chang-zhou. Effects of Straw Returning on Maize Production and Soil Microorganism under Drip Irrigation in Arid Regions [J]. Xinjiang Agricultural Sciences, 2018, 55(12): 2251-2260. |
[11] | CHEN Jing;DAI Jin-ping;YANG Xin-ping;Guli Ahmat;Marhaba;FENG Lei. Microbial Community Diversity Analysis of Biogas Slurry from Households in Northern Xinjiang [J]. , 2016, 53(3): 539-546. |
[12] | . Measurement and Analysis of Air Quality in Double-slope-type-tether-edfeeding Cowshed by Natural Ventilation during Xinjiang Winter Time [J]. , 2016, 53(2): 383-390. |
[13] | Rexiti Reyimujing;WEI Chen;HUANG Xi-xia;Mairemubieke Heisha;GE Jian-jun;Paerhati Mutielihan;MA Gang-hui. Genetic Analysis of Fetal Milk Yield of Holstein Cow [J]. , 2016, 53(11): 2142-2148. |
[14] | LI Ying;CHENG Li-jing;CHEN Wei. The Dependent form of Biofilm Formation of Staphylococcus epidermidis Isolated from the Southern Xinjiang [J]. , 2015, 52(4): 754-758. |
[15] | . Estimation of Breeding Values in Holstein Cattle Using Animal BLUP Model [J]. , 2015, 52(4): 747-753. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||