新疆农业科学 ›› 2024, Vol. 61 ›› Issue (12): 2934-2942.DOI: 10.6048/j.issn.1001-4330.2024.12.008
孙晨(), 槐国龙, 王斌, 孙九胜, 杨志莹, 单娜娜(
)
收稿日期:
2024-05-13
出版日期:
2024-12-20
发布日期:
2025-01-16
通信作者:
单娜娜(1976-),女,河南开封人,研究员,博士,研究方向为农业面源污染,(E-mail)406852066@qq.com作者简介:
孙晨(1987-),女,新疆乌鲁木齐人,助理研究员,硕士,研究方向为土壤肥料,水肥资源高效利用,(E-mail)sunchen2010@sina.cn
基金资助:
SUN Chen(), HUAI Guolong, WANG Bin, SUN Jiusheng, YANG Zhiying, SHAN Nana(
)
Received:
2024-05-13
Published:
2024-12-20
Online:
2025-01-16
Supported by:
摘要:
【目的】 研究化肥与黄腐酸有机肥配施对盐渍化土壤养分及花生生长的影响。【方法】 设置花生盆栽试验。试验采用黄腐酸有机肥与减量化肥配施,以常规化肥施用量为对照,在基施黄腐酸有机肥40 kg/667m2基础上,分别设减施氮磷钾化肥常规用量的20%、40%、60%、80%和100%,共设置6个处理。分析土壤养分及花生株高、侧枝长、叶绿素含量(SPAD值)、干物质积累量和产量等指标,研究化肥减量、有机替代施肥模式对盐渍化土壤养分及花生生长的影响。【结果】 基施黄腐酸肥料后,大幅度减施化肥依然可维持花生的正常生长,减施20%~40%化肥可明显促进花生生长,提高土壤养分含量,有效改良盐渍化土壤,提高土壤质量,同时也提高了花生的干物质积累量、叶绿素含量、单株结果数和单株果实重,提高产量。【结论】 化肥与黄腐酸有机肥配施的优选技术方案为在施用40 kg/667m2黄腐酸肥料的基础上,减施20%~40%化肥。
中图分类号:
孙晨, 槐国龙, 王斌, 孙九胜, 杨志莹, 单娜娜. 化肥减量配施黄腐酸对盐渍化土壤养分及花生生长的影响[J]. 新疆农业科学, 2024, 61(12): 2934-2942.
SUN Chen, HUAI Guolong, WANG Bin, SUN Jiusheng, YANG Zhiying, SHAN Nana. Effects of reducing fertilizer and applying fulvic acid on soil nutrients and peanut growth[J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2934-2942.
项目 Items | 数值 Value |
---|---|
pH值pH value (g/kg) | 7.27 |
总盐Total salt(g/kg) | 14.3 |
有机质Organic matter(g/kg) | 77 |
碱解氮Alkali hydrolyzable nitrogen(mg/kg) | 113.5 |
有效磷Available phosphorus(mg/kg) | 42.43 |
速效钾Available potassium(mg/kg) | 121 |
表1 供试土壤基本性质
Tab.1 Basic physical and chemical properties of soils
项目 Items | 数值 Value |
---|---|
pH值pH value (g/kg) | 7.27 |
总盐Total salt(g/kg) | 14.3 |
有机质Organic matter(g/kg) | 77 |
碱解氮Alkali hydrolyzable nitrogen(mg/kg) | 113.5 |
有效磷Available phosphorus(mg/kg) | 42.43 |
速效钾Available potassium(mg/kg) | 121 |
处理 Treatments | 化肥比例 Chemical fertilizer (%) | 尿素 Urea (g/盆) | 过磷酸钙 Calcium superphosphate (g/盆) | 硫酸钾 Potassium sulfate (g/盆) | 乐钙 Lecalcic (g/盆) | 生化黄腐酸 Biochemical fulvic acid(g/盆) |
---|---|---|---|---|---|---|
CK | 100 | 8.213 | 10.267 | 5.867 | 2.933 | 0 |
T1 | 80 | 6.571 | 8.213 | 4.693 | 2.347 | 23.467 |
T2 | 60 | 4.928 | 6.16 | 3.52 | 1.76 | 23.467 |
T3 | 40 | 3.285 | 4.107 | 2.347 | 1.173 | 23.467 |
T4 | 20 | 1.643 | 2.053 | 1.173 | 0.587 | 23.467 |
T5 | 0 | 0 | 0 | 0 | 0 | 23.467 |
表2 试验各处理设计与施肥总量
Tab.2 Experimental design and total fertilization amount for each treatment
处理 Treatments | 化肥比例 Chemical fertilizer (%) | 尿素 Urea (g/盆) | 过磷酸钙 Calcium superphosphate (g/盆) | 硫酸钾 Potassium sulfate (g/盆) | 乐钙 Lecalcic (g/盆) | 生化黄腐酸 Biochemical fulvic acid(g/盆) |
---|---|---|---|---|---|---|
CK | 100 | 8.213 | 10.267 | 5.867 | 2.933 | 0 |
T1 | 80 | 6.571 | 8.213 | 4.693 | 2.347 | 23.467 |
T2 | 60 | 4.928 | 6.16 | 3.52 | 1.76 | 23.467 |
T3 | 40 | 3.285 | 4.107 | 2.347 | 1.173 | 23.467 |
T4 | 20 | 1.643 | 2.053 | 1.173 | 0.587 | 23.467 |
T5 | 0 | 0 | 0 | 0 | 0 | 23.467 |
图1 不同施肥处理下土壤有机质含量的变化 注:不同小写字母表示差异显著,相同字母间表示差异不显著,下同
Fig.1 Changes of different fertilization treatments on soil organic matter content Notes:Changes of different lowercase letters indicate significant difference between treatments,same lowercase letters indicate no significant difference between treatments, the same as below
处理 Treatments | 单株结果数(个) Number of results per plant(piece) | 单株饱果数(个) Number of full fruits per plant(piece) | 单株饱果重 Full fruit weight per plant(g) | 单株秕果重 Weight of single plant blighted fruit(g) | 单株果实重 Fruit weight per plant(g) | 结实率 Seed setting rate(%) |
---|---|---|---|---|---|---|
CK | 38±2.56b | 31.59±4.56b | 61.04±5.23b | 6.41±1.23a | 67.45±5.23b | 65.1 |
T1 | 41±3.61a | 38.76±2.51a | 74.12±9.41a | 2.24±1.96c | 76.36±9.41a | 76.7 |
T2 | 44±3.94a | 40.35±1.19a | 78.03±6.68a | 3.65±0.87c | 81.68±6.68a | 80.3 |
T3 | 36±4.68b | 31.54±2.37b | 64.06±3.93b | 4.46±1.45b | 68.52±3.93b | 75.9 |
T4 | 32±2.85b | 28.12±3.59b | 55.73±4.78b | 3.88±0.67bc | 59.61±4.78b | 61.3 |
T5 | 29±1.42b | 26.27±5.73b | 44.21±7.37c | 2.73±1.64c | 46.94±7.37c | 61.3 |
表3 不同施肥处理下花生产量性状的变化
Tab.3 Changes of different treatments on basic characters of peanut yield
处理 Treatments | 单株结果数(个) Number of results per plant(piece) | 单株饱果数(个) Number of full fruits per plant(piece) | 单株饱果重 Full fruit weight per plant(g) | 单株秕果重 Weight of single plant blighted fruit(g) | 单株果实重 Fruit weight per plant(g) | 结实率 Seed setting rate(%) |
---|---|---|---|---|---|---|
CK | 38±2.56b | 31.59±4.56b | 61.04±5.23b | 6.41±1.23a | 67.45±5.23b | 65.1 |
T1 | 41±3.61a | 38.76±2.51a | 74.12±9.41a | 2.24±1.96c | 76.36±9.41a | 76.7 |
T2 | 44±3.94a | 40.35±1.19a | 78.03±6.68a | 3.65±0.87c | 81.68±6.68a | 80.3 |
T3 | 36±4.68b | 31.54±2.37b | 64.06±3.93b | 4.46±1.45b | 68.52±3.93b | 75.9 |
T4 | 32±2.85b | 28.12±3.59b | 55.73±4.78b | 3.88±0.67bc | 59.61±4.78b | 61.3 |
T5 | 29±1.42b | 26.27±5.73b | 44.21±7.37c | 2.73±1.64c | 46.94±7.37c | 61.3 |
项目 Items | 相关系数Correlation coefficient | ||||||
---|---|---|---|---|---|---|---|
产量 Yield | 总盐 Total salt | pH值 pH value | 有机质 Organic matter | 碱解氮 Alkali hydrolyzable nitrogen | 有效磷 Available phosphorus | 速效钾 Available potassium | |
产量Yield | 1 | ||||||
总盐Total salt | 0.402 | 1 | |||||
pH值pH value | 0.068 | 0.078 | 1 | ||||
有机质 Organic matter | 0.603** | 0.418 | 0.237 | 1 | |||
碱解氮 Alkali hydrolyzable nitrogen | 0.072 | 0.261 | -0.086 | 0.792** | 1 | ||
有效磷 Available phosphorus | 0.567* | 0.373 | 0.073 | 0.518* | 0.629** | 1 | |
速效钾 Available potassium | 0.417 | 0.329 | 0.307 | 0.784** | 0.674** | 0.809** | 1 |
表4 产量与土壤理化性状的相关性
Tab.4 Correlation analysis between yield and soil physicochemical properties
项目 Items | 相关系数Correlation coefficient | ||||||
---|---|---|---|---|---|---|---|
产量 Yield | 总盐 Total salt | pH值 pH value | 有机质 Organic matter | 碱解氮 Alkali hydrolyzable nitrogen | 有效磷 Available phosphorus | 速效钾 Available potassium | |
产量Yield | 1 | ||||||
总盐Total salt | 0.402 | 1 | |||||
pH值pH value | 0.068 | 0.078 | 1 | ||||
有机质 Organic matter | 0.603** | 0.418 | 0.237 | 1 | |||
碱解氮 Alkali hydrolyzable nitrogen | 0.072 | 0.261 | -0.086 | 0.792** | 1 | ||
有效磷 Available phosphorus | 0.567* | 0.373 | 0.073 | 0.518* | 0.629** | 1 | |
速效钾 Available potassium | 0.417 | 0.329 | 0.307 | 0.784** | 0.674** | 0.809** | 1 |
[1] | 谷明轩, 刘风珍, 孙伟, 等. 黄腐酸通过调控花生根系形态及活力促进幼苗生长[J]. 花生学报, 2023, 52(1): 63-71. |
GU Mingxuan, LIU Fengzhen, SUN Wei, et al. Fulvic acid promotes seedling growth by regulating root morphology and activity of peanut[J]. Journal of Peanut Science, 2023, 52(1): 63-71. | |
[2] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. |
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2022. | |
[3] | 赵盼盼. 南疆干旱区花生新品种筛选与栽培技术研究[D]. 阿拉尔: 塔里木大学, 2017: 1-3. |
ZHAO Panpan. Screening and cultivation techniques of new peanut varieties in arid areas of southern Xinjiang[D]. Aral: Tarim University, 2017: 1-3. | |
[4] | 何飞燕. 复合微生物菌剂对花生的促生作用及土壤细菌菌群变化研究[D]. 长沙: 湖南农业大学, 2020. |
HE Feiyan.. Study on the growth promoting effect of compound microbial agents on peanut and the change of soil bacterial flora[D]. Changsha: Hunan Agricultural University, 2020. | |
[5] | 徐婷. 盐碱胁迫下花生生长发育及改良剂施用效果研究[D]. 石河子: 石河子大学, 2022. |
XU Ting. Study on the Growth and Development of Peanuts under Saline Alkali Stress and the Effect of Improving Agent Application[D]. Shihezi: Shihezi University, 2022. | |
[6] | 于晟玥, 牛银星, 王泽平, 等. 黄腐酸添加量对低氮胁迫下小麦生长和根系形态的影响[J]. 植物营养与肥料学报, 2023, 29(2): 323-333. |
YU Shengyue, NIU Yinxing, WANG Zeping, et al. Effects of fulvic acid addition rate on wheat growth and root morphology under low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 323-333. | |
[7] | 于常海, 曹艳, 任孟伟, 等. 不同黄腐酸对苗期玉米生长及土壤养分含量的影响[J]. 肥料与健康, 2022, 49(3): 44-48. |
YU Changhai, CAO Yan, REN Mengwei, et al. Effects of different fulvic acids on maize growth at seedling stage and soil nutrient content[J]. Fertilizer & Health, 2022, 49(3): 44-48. | |
[8] | 刘侠. 黄腐酸对黑垆土结构及小白菜生长特性的影响研究[D]. 西安: 西安理工大学, 2020. |
LIU Xia. The effect of fulvic acid on the structure of blacb loessial soil and growth characteristics of pakchoi[D]. Xi’an: Xi’an University of Technology, 2020. | |
[9] | GAO Wei, LI Mingyue, YANG Jun, et al. Effects of Different Application Amounts of Potassium Fulvate on Yield and Quality of Tomato and Soil Physical and Chemical Properties[J]. Agricultural Science & Technology, 2017, 18(12): 2392-2395. |
[10] | 郑剑超. 化肥减量配施生物菌肥和黄腐酸钾对番茄生长及肥料利用率的影响[J]. 黑龙江农业科学, 2022,(8): 106-110. |
ZHENG Jianchao. Effects of chemical fertilizer reduction combined with biofertilizer and fulvic acid potassium on tomato growth and fertilizer utilization rate[J]. Heilongjiang Agricultural Sciences, 2022,(8): 106-110. | |
[11] | 高原, 郭晓青, 李福德, 等. 基施黄腐酸肥料情况下减施化肥提高设施辣椒产量和品质[J]. 植物营养与肥料学报, 2020, 26(3): 594-602. |
GAO Yuan, GUO Xiaoqing, LI Fude, et al. Improvement of yield and quality of greenhouse-grown pepper through basal application of fulvic acid fertilizer under chemical fertilizer reduction[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 594-602. | |
[12] | 孙克刚, 郭良进, 和爱玲, 等. 黄腐酸有机肥不同用量对花生的增产效果研究[J]. 化肥工业, 2015, 42(2): 81-83. |
SUN Kegang, GUO Liangjin, HE Ailing, et al. Study of yield-increasing effect of different usage amount of fulvic acid organic fertilizer on peanuts[J]. Chemical Fertilizer Industry, 2015, 42(2): 81-83. | |
[13] |
Jeong H, Bhattarai R. Exploring the effects of nitrogen fertilization management alternatives on nitrate loss and crop yields in tile-drained fields in Illinois[J]. Journal of Environmental Management, 2018, 213: 341-352.
DOI PMID |
[14] | 索炎炎, 张翔, 毛家伟, 等. 喷施不同有机酸与铁复混制剂对花生生长发育的影响[J]. 花生学报, 2013, 42(2): 36-40. |
SUO Yanyan, ZHANG Xiang, MAO Jiawei, et al. Effects of spraying different Fe-organic acid complex on growth of peanut[J]. Journal of Peanut Science, 2013, 42(2): 36-40. | |
[15] | Puglisi E, Pascazio S, Suciu N, et al. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits[J]. Journal of Geochemical Exploration, 2013, 129: 82-94. |
[16] | 高建强, 曲杰, 程亮, 等. 不同抗旱剂处理对花生产量及主要农艺性状的影响[J]. 花生学报, 2015, 44(4): 63-66. |
GAO Jianqiang, QU Jie, CHENG Liang, et al. Effects of different drought-resistant agents on yield and main agronomic traits of peanut[J]. Journal of Peanut Science, 2015, 44(4): 63-66. | |
[17] | 詹柳琪, 郭陞垚, 黄佳华, 等. 花生玉米间作对土壤酶活性、养分及作物产量的影响[J]. 福建农业学报, 2022, 37(8): 985-994. |
ZHAN Liuqi, GUO Shengyao, HUANG Jiahua, et al. Crop yield, rhizosphere enzyme activity, and soil fertility as affected by peanut/maize intercropping[J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 985-994. | |
[18] | 刘小媛, 杨劲松, 姚荣江. 化肥减量配施黄腐酸降低盐渍农田NaCl含量提高氮磷养分有效性的协同效应[J]. 植物营养与肥料学报, 2021, 27(8): 1339-1350. |
LIU Xiaoyuan, YANG Jinsong, YAO Rongjiang. Synergistic effects of fertilizer reduction and fulvic acid application on decreasing NaCl content and N, P availability of salinized soil[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1339-1350. | |
[19] | 丁维婷, 房静静, 武雪萍, 等. 有机肥替代化肥不同比例对黑土土壤微生物学性质及春麦产量品质的影响[J]. 中国土壤与肥料, 2021,(2): 44-52. |
DING Weiting, FANG Jingjing, WU Xueping, et al. Effects of different ratios of organic fertilizers instead of chemical fertilizers on black soil microbiological properties and spring wheat yield and quality[J]. Soil and Fertilizer Sciences in China, 2021,(2): 44-52. | |
[20] |
回振龙, 李朝周, 史文煊, 等. 黄腐酸改善连作马铃薯生长发育及抗性生理的研究[J]. 草业学报, 2013, 22(4): 130-136.
DOI |
HUI Zhenlong, LI Chaozhou, SHI Wenxuan, et al. A study on the use of fulvic acid to improve growth and resistance in continuous cropping of potato[J]. Acta Prataculturae Sinica, 2013, 22(4): 130-136.
DOI |
|
[21] | 庞强强, 陈日远, 刘厚诚, 等. 硝酸盐胁迫下黄腐酸对小白菜生长及氮代谢相关酶活性的影响[J]. 浙江农业学报, 2015, 27(12): 2136-2140. |
PANG Qiangqiang, CHEN Riyuan, LIU Houcheng, et al. Effects of fulvic acid on the growth and activities of nitrogen metabolism enzymes in pakchoi under NO3- stress[J]. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2136-2140. | |
[22] | 庞晓燕. 营养液中添加不同剂量黄腐酸对基质栽培黄瓜生长、品质及产量的影响[D]. 泰安: 山东农业大学, 2017. |
PANG Xiaoyan. Effects of different doses of fulvic acid on the growth, quality and yield of substrate cultured cucumber[D]. Taian: Shandong Agricultural University, 2017. | |
[23] | Ning C C, Gao P D, Wang B Q, et al. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content[J]. Journal of Integrative Agriculture, 2017, 16(8): 1819-1831. |
[1] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[2] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[3] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[4] | 张承洁, 胡浩然, 段松江, 吴一帆, 张巨松. 氮肥与密度互作对海岛棉生长发育及产量和品质的影响[J]. 新疆农业科学, 2024, 61(8): 1821-1830. |
[5] | 候丽丽, 王伟, 崔新菊, 周大伟. 有机无机肥配施对冬小麦产量和土壤养分及酶活性的影响[J]. 新疆农业科学, 2024, 61(8): 1845-1852. |
[6] | 牛婷婷, 马明生, 张军高. 秸秆还田和覆膜对旱作雨养农田土壤理化性质及春玉米产量的影响[J]. 新疆农业科学, 2024, 61(8): 1896-1906. |
[7] | 李锁丞, 柳延涛, 董红业, 孙振博, 李紫薇, 张春媛, 王开勇, 李强, 杨明凤. 不同施钾量对滴灌花生光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1926-1936. |
[8] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[9] | 鲁伟丹, 周远航, 马小龙, 高江龙, 樊晓琴, 郭建富, 李健强, 林明. 不同比例有机肥替代化肥对甜菜植株养分及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1631-1639. |
[10] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
[11] | 侯献飞, 李强, 苗昊翠, 贾东海, 顾元国, 买买提依明·斯马依, 崔福洋. 棉花-花生轮作模式对土壤养分及其产量的影响[J]. 新疆农业科学, 2024, 61(7): 1657-1665. |
[12] | 马百幻, 赵强, 谢佳, 徐开玥, 任若飞, 宋兴虎. 生物药剂复配对棉花黄萎病防治及生长发育的影响[J]. 新疆农业科学, 2024, 61(7): 1748-1756. |
[13] | 刘跃, 贾永红, 张金汕, 于月华, 王润琪, 李丹丹, 石书兵. 滴灌条件下不同高油酸花生品种比较[J]. 新疆农业科学, 2024, 61(6): 1361-1367. |
[14] | 赵云, 冯国郡, 古丽扎提·巴孜尔别克, 胡相伟, 苏比努尔·卡德尔, 李鹏兵, 邵疆, 刘杰. 钾肥用量对滴灌谷子生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(6): 1378-1385. |
[15] | 王润琪, 贾永红, 王玉娇, 刘跃, 李丹丹, 董艳雪, 古力尼尕尔·吐尔洪, 张路路, 张金汕, 石书兵. 不同滴灌量对匀播冬小麦生长发育和产量的影响[J]. 新疆农业科学, 2024, 61(5): 1048-1056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||