新疆农业科学 ›› 2022, Vol. 59 ›› Issue (6): 1466-1474.DOI: 10.6048/j.issn.1001-4330.2022.06.018
林青1(), 史应武1, 王娜2, 华兰兰3, 杨红梅1, 楚敏1, 曾军1, 高雁1, 霍向东1(
)
收稿日期:
2021-10-15
出版日期:
2022-06-20
发布日期:
2022-07-07
通信作者:
霍向东(1974-),男,甘肃人,副研究员,研究方向为微生物资源,(E-mail) xiangdonghuo@163.com作者简介:
林青(1985-),女,山东人,硕士,助理研究员,研究方向为微生物生态,(E-mail) qinglinxj@163.com
基金资助:
LIN Qing1(), SHI Yingwu1, WANG Na2, HUA Lanlan3, YANG Hongmei1, CHU Min1, ZENG Jun1, GAO Yan1, HUO Xiangdong1(
)
Received:
2021-10-15
Published:
2022-06-20
Online:
2022-07-07
Supported by:
摘要:
【目的】 筛选具有诱导番茄系统抗性的促生菌并验证其对加工番茄早疫病、灰霉病的防效,为新疆加工番茄病害的生物防治提供理论依据和菌种资源。【方法】 采用稀释涂布法,分离番茄等作物的根部土壤细菌,以无菌生理盐水和稀释至104倍数未接菌的NB培养基为空白对照,利用发芽实验初筛加工番茄促生菌;用菌株发酵液灌根处理加工番茄幼苗,以清水处理为空白对照,测量叶片中茉莉酸含量,复筛系统抗性诱导菌株,分别挑战接种番茄早疫病、灰霉病病原菌,统计疫情指数和诱抗效果。测定菌株16S rDNA序列,初步进行菌种鉴定。【结果】 共分离到147株细菌,筛选得到19株显著(P<0.05)促进加工番茄种子萌发、增加根长的促生菌,有4株促生菌显著(P<0.05)提高加工番茄叶片中茉莉酸含量,防病验证最终得到3株能同时有效防治加工番茄早疫病、灰霉病的菌株,诱抗防效在27.59%~39.44%。菌株FY10、FY12、FY93鉴定为Bacillus atrophaeus,Pseudomonas wadenswilerensis和Bacillus pumilus。【结论】 获得3株具有系统抗性诱导功能且有效防治加工番茄早疫病、灰霉病的促生菌。
中图分类号:
林青, 史应武, 王娜, 华兰兰, 杨红梅, 楚敏, 曾军, 高雁, 霍向东. 加工番茄系统抗性诱导促生菌的筛选鉴定及其促生防病效果[J]. 新疆农业科学, 2022, 59(6): 1466-1474.
LIN Qing, SHI Yingwu, WANG Na, HUA Lanlan, YANG Hongmei, CHU Min, ZENG Jun, GAO Yan, HUO Xiangdong. Screening and Identification of Systemic Resistant Inducing Growth-Promoting Bacteria and Their Effects on Growth and Disease Prevention of Processing Tomatoes[J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1466-1474.
样本数量 Number of samples | 根际土壤 细菌数量 The number of bacteria in rhizosp here soil | 根区土壤 细菌数量 The number of bacteria in root zone soil | |
---|---|---|---|
番茄 Tomato | 15 | 48 | 32 |
辣椒 Chilli Pepper | 5 | 24 | 12 |
豆角 Beans | 4 | 19 | 12 |
表1 不同作物根际和根区土壤分离细菌数量
Table 1 The number of bacteria isolated from rhizosphere and root zone soil of different crops
样本数量 Number of samples | 根际土壤 细菌数量 The number of bacteria in rhizosp here soil | 根区土壤 细菌数量 The number of bacteria in root zone soil | |
---|---|---|---|
番茄 Tomato | 15 | 48 | 32 |
辣椒 Chilli Pepper | 5 | 24 | 12 |
豆角 Beans | 4 | 19 | 12 |
图1 加工番茄促生菌的促生效果 注:A:加工番茄种子根长;B:加工番茄种子发芽率;C:加工番茄种子发芽势
Fig.1 Growth-promoting effect of processing tomato growth-promoting bacteria Note:A: Root length of processing tomato seeds; B: Germination rate of processing tomato seeds; C: Germination potential of processing tomato seeds
菌株 Strain | 早疫病 Early blight | 灰霉病 Gray mold | ||||||
---|---|---|---|---|---|---|---|---|
病情指数 Disease index (%) | 诱抗效果 Induced effect(%) | 病情指数 Disease index(%) | 诱抗效果 Induced effect (%) | |||||
5 d | 14 d | 5 d | 14 d | 5 d | 14 d | 5 d | 14 d | |
CK | 16.00d | 50.67c | - | - | 16.67b | 56.00c | - | - |
FY10 | 4.67b | 34.67b | 70.57b | 31.54b | 2.00a | 35.33a | 88.33a | 36.67a |
FY12 | 1.33a | 30.67a | 92.13c | 39.44c | 4.67a | 39.33b | 88.33a | 29.63a |
FY93 | 3.33ab | 36.67b | 78.90bc | 27.59b | 4.00a | 38.00ab | 75.48a | 31.85a |
FY136 | 8.00c | 51.33c | 50.07a | -1.33a | 3.33a | 36.67ab | 78.81a | 34.32a |
表2 诱导菌株对加工番茄早疫病、灰霉病的诱抗效果
Table 2 Inducing effect of induced strains on early blight and gray mold of processing tomato
菌株 Strain | 早疫病 Early blight | 灰霉病 Gray mold | ||||||
---|---|---|---|---|---|---|---|---|
病情指数 Disease index (%) | 诱抗效果 Induced effect(%) | 病情指数 Disease index(%) | 诱抗效果 Induced effect (%) | |||||
5 d | 14 d | 5 d | 14 d | 5 d | 14 d | 5 d | 14 d | |
CK | 16.00d | 50.67c | - | - | 16.67b | 56.00c | - | - |
FY10 | 4.67b | 34.67b | 70.57b | 31.54b | 2.00a | 35.33a | 88.33a | 36.67a |
FY12 | 1.33a | 30.67a | 92.13c | 39.44c | 4.67a | 39.33b | 88.33a | 29.63a |
FY93 | 3.33ab | 36.67b | 78.90bc | 27.59b | 4.00a | 38.00ab | 75.48a | 31.85a |
FY136 | 8.00c | 51.33c | 50.07a | -1.33a | 3.33a | 36.67ab | 78.81a | 34.32a |
[1] | 刘峰娟, 朱靖蓉, 周俊, 等. 新疆主栽加工番茄品种营养品质比较研究[J]. 新疆农业科学, 2016, 53(2):225-231. |
LIU Fengjuan, ZHU Jingrong, ZHOU Jun, et al. Isolation and Identification of Filamentous Fungi F161 and Its Biosorption and Enrichment Characteristics of Strontiu[J]. Xinjiang Agricultural Sciences, 2016, 53(2):225-231. | |
[2] | 李凯, 谭丹. 新疆番茄产业国际竞争力分析[J]. 现代商业, 2018,(35):65-68. |
LI Kai, TAN Dan. Analysis on the International Competitiveness of Xinjiang Tomato Industry[J]. Modern Business, 2018,(35):65-68. | |
[3] | 崔元玙, 杨华, 孙晓军, 等. 新疆加工番茄主要病害发生[J]. 新疆农业科学, 2004, 41(3):160-163. |
CUI Yuanyu, YANG Hua, SUN Xiaojun, et al. Occurrence and Damage of Important Diseases of Processing Tomato in Xinjiang[J]. Xinjiang Agricultural Sciences, 2004, 41(3):160-163. | |
[4] | 李平, 王晓东, 张莉. 新疆加工番茄品种抗早疫病测定及防治药剂筛选[J]. 石河子大学学报(自然科学版), 2014, 32(1):17-20. |
LI Ping, WANG Xiaodong, ZHANG Li. Screen Varieties Resistance and Fungicide to Early Blight of Processing Tomato[J]. Journal of Shihezi University (Natural Science), 2014, 32(1):17-20. | |
[5] |
Asmaa E, Abdelnaser A,. Elzaawely, Naglaa A, et al. The Antifungal Activity of Gallic Acid and Its Derivatives against Alternaria solani, the Causal Agent of Tomato Early Blight[J]. Agronomy. 2020, 10(9):1402.
DOI URL |
[6] | Pooja K, Krishna K, Akhileshwar Ka, et al. PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. 2019. In: Singh, A.K., Kumar,A., Singh, P.K. (Eds.), PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental management.[M]. Wood head Publishing, Cambridge, UK, 67-84. |
[7] | 陶晶, 李春, 吴艳, 等. 加工番茄促生拮抗菌的筛选及其抑菌效果测定[J]. 石河子大学学报( 自然科学版). 2006, 24(1):34-37. |
TAO Jing, LI Chun, WU Yan, et al. The Selection of Growth-Promoting Bacteria and the Measurement of Bacteria Control Effect[J]. Journal of Shihezi University (Natural Science), 2006, 24(1):34-37. | |
[8] | 孙广正, 侯栋, 岳宏忠, 等. 番茄早疫病菌拮抗细菌的筛选及其抑制作用[J]. 草原与草坪, 2015, 35(1):32-36,43. |
SUN Guangzheng, HOU Dong, YUE Hongzhong, et al. Screening of bacteria antagonizing Alternaria solani and its inhibitory effects[J]. Grassland and Turf. 2015, 35(1):32-36,43. | |
[9] |
杨蓉, 杨文琦, 张峥, 等. 2株番茄早疫病拮抗菌的分离筛选与拮抗作用研究[J]. 新疆农业科学, 2017, 54(8):1496-1504.
DOI |
YANG Rong, YANG Wenqi, ZHANG Zheng, et al. Isolation and Screening for 2 Stains of Antagonistic Bacteria against Alternaria solani of Tomato and Study on Antagonistic Effect[J]. Xinjiang Agricultural Sciences, 2017, 54(8):1496-1504.
DOI |
|
[10] | 贺字典, 高玉峰. 生防菌在植物病害防治中的研究进展(综述)[J]. 河北职业技术师范学院学报, 2003, 17(2):56-59. |
HE Zidian, GAO Yufeng. Research Development of Biological Control Germ in Preventing and Controling Plants Disease and Insects (Summary)[J]. Journal of Hebei Vocation Technical Teachers College, 2003, 17(2):56-59. | |
[11] |
刘晓光, 高克祥, 康振生, 等. 生防菌诱导植物系统抗性及其生化和细胞学机制[J]. 应用生态学报. 2007, 18(8):1861-1868.
PMID |
LIU Xiaoguang, GAO Kexiang, KANG Zhensheng, et al. Systemic resistance induced by biocontrol agents in plants and its biochemical and cytological mechanisms[J]. Chinese Journal of Applied Ecology, 2007, 18(8):1861-1868.
PMID |
|
[12] |
段佳丽, 舒志明, 魏良柱, 等. 丹参红叶病发生的微生态机制[J]. 应用生态学报, 2013, 24(7):1991-1999.
PMID |
DUAN Jiali, SHU Zhiming, WEI Liangzhu, et al. Microecological mechanisms of red-leaf disease occurrence in Salvia miltiorrhiza Bge[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1991-1999.
PMID |
|
[13] | 赵伟进, 王孝先, 杨洋, 等. 黑青稞根际促生菌筛选及其对种子萌发的影响[J]. 种子, 2018, 37(12):1-5,10. |
ZHAO Weijin, WANG Xiaoxian, YANG Yang, et al. Selection of Rhizotrophic Bacteria from Rhizosphere and Its Effect on Seed Germination of Black Barley[J]. Seed, 2018, 37(12):1-5,10. | |
[14] | Gao H, Guo M, Song J, et al. Signals in systemic acquired resistance of plants against microbial pathogens[J]. Molecular Biology Reports, 2021, 48(4):1-13. |
[15] | 戚益平, 何逸建, 许煜泉. 根际细菌诱导的植物系统抗性[J]. 植物生理学通讯, 2003,(3):273-278. |
QI Yiping, HE Yijian, XU Yuquan. Rhizobacteria-Mediated Induced Systemic Resistance in Plant[J]. Plant Physiology Journal, 2003,(3):273-278. | |
[16] | 孔庆科, 丁爱云, 刘招舰, 等. 根际细菌诱导的系统抗性[J]. 山东科学, 2001,(4):18-25. |
KONG Qingke, DING Aiyun, LIU Zhaojian, et al. Systemic resistance induced by rhizosphere bacteria[J]. Shandong Science, 2001,(4):18-25. | |
[17] | 陈奕鹏, 杨扬, 桑建伟, 等. 拮抗内生芽孢杆菌BEB17分离鉴定及其挥发性物质抑菌活性分析[J]. 植物病理学报, 2018, 48(4):537-546. |
CHEN Yipeng, YANG Yang, SANG Jianwei, et al. Isolation and identification of antagonistic endophytic bacillus BEB17 and analysis of antibacterial activity of volatile organic compounds[J]. Acta Phytopathologica Sinica, 2018, 48(4):537-546. | |
[18] | 王华, 聂蓓蓓, 包立军, 等. 生防芽孢杆菌抑真菌机制及其在桑树真菌病害防治中的潜在应用价值[J]. 蚕业科学, 2021, 47(2):186-193. |
WANG Hua, NIE Beibei, BAO Lijun, et al. Antifungal Mechanism of Biocontrol Bacillus and Its Potential Application in the Control of Mulberry Fungal Diseases[J]. Science of Sericulture, 2021, 47(2):186-193. | |
[19] |
Gao Z, Zhang B, Liu H, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105:27-39.
DOI URL |
[20] | 花东来, 欧秀玲, 祝建波, 等. PGPR菌液处理对新疆加工番茄种子萌发的影响[J]. 新疆农业科学, 2013, 50(3):484-489. |
HUA Donglai, OU Xiuling, ZHU Jianbo, et al. Effect of PGPR Bacterial Liquid on Germination of Xinjiang Processing Tomato Seed[J]. Xinjiang Agricultural Sciences, 2013, 50(3):484-489. | |
[21] |
Zhang L, Khabbaz S E, Wang A, et al. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato[J]. Journal of applied microbiology, 2015, 118(3):685-703.
DOI PMID |
[22] | 孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5):1203-1215. |
SUN Yunya, CHEN Jia, WANG Yue, et al. Advances in Growth Promotion Mechanisms of PGPRs and Their Effects on Improving Plant Stress Tolerance[J]. Acta Agrestia Sineca, 2020, 28(5):1203-1215. | |
[23] | Akhtar N, Ilyas N, Mashwani Z, et al. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat[J]. Plant Physiology and Biochemistry, 2021,(166):160-176. |
[24] |
Samaras A, Roumeliotis E, Ntasiou P, et al. Bacillus subtilis MBI 600 Promotes Growth of Tomato Plants and Induces Systemic Resistance Contributing to the Control of Soilborne Pathogens[J]. Plants (Basel, Switzerland), 2021, 10(6):1113.
DOI URL |
[25] |
Ayaz M, Ali Q, Farzand A, et al. Nematicidal Volatiles from Bacillus atrophaeus GBSC56 Promote Growth and Stimulate Induced Systemic Resistance in Tomato against Meloidogyne incognita[J]. International Journal of Molecular Sciences, 2021, 22(9):5049.
DOI URL |
[26] |
Xing Z, Wu X, Zhao J, et al. Isolation and identification of induced systemic resistance determinants from Bacillus simplex Sneb545 against Heterodera glycines[J]. Scientific Reports, 2020, 10(1):11586.
DOI URL |
[1] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
[2] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[3] | 阮向阳, 蒲敏, 肖乐乐, 罗林毅, 陈瑞杰, 李然, 陈国永, 冶军. 镁肥施用策略对加工番茄产量和品质的影响[J]. 新疆农业科学, 2024, 61(4): 916-925. |
[4] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
[5] | 赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675. |
[6] | 李春雨, 谭占明, 程云霞, 束胜, 马全会, 何淼, 段轶帆, 吴慧. 不同加工番茄品种的农艺性状比较分析[J]. 新疆农业科学, 2024, 61(11): 2676-2683. |
[7] | 蒲敏, 阮向阳, 肖乐乐, 索常凯, 陈国永, 冶军, 高波. 枸溶性钙镁肥对加工番茄钙、镁吸收及品质的影响[J]. 新疆农业科学, 2023, 60(8): 1987-1995. |
[8] | 杜红艳, 庞胜群, 马海翔, 吉雪花. 加工番茄早熟突变体农艺性状相关性及通径分析[J]. 新疆农业科学, 2023, 60(4): 943-950. |
[9] | 刘升学, 李思琪, 王晓东, 杨德松. 番茄早疫病菌dsRNA多样性分析[J]. 新疆农业科学, 2023, 60(12): 3057-3064. |
[10] | 芦大伟, 哈丽哈什·依巴提, 李青军. 磷肥用量对滴灌加工番茄产量、品质及磷肥利用率的影响[J]. 新疆农业科学, 2023, 60(1): 185-191. |
[11] | 汪飞, 邱光, 罗文芳, 孙晓军, 杨洪梅, 刘成军, 许建军, 何伟. 解淀粉芽孢杆菌B1619对加工番茄幼苗促生及培育壮苗的影响[J]. 新疆农业科学, 2022, 59(5): 1252-1259. |
[12] | 何伟, 罗文芳, 周军辉, 许建军, 孙晓军. 贝莱斯芽孢杆菌JTB8-2对加工番茄促生作用及其安全性评价[J]. 新疆农业科学, 2022, 59(5): 1260-1269. |
[13] | 郭慧静, 李自芹, 李冀新, 赵志永, 宋方圆. 加工番茄全自动耐压测定仪的设计与性能评价[J]. 新疆农业科学, 2022, 59(10): 2495-2501. |
[14] | 郑素慧, 何庆, 张健, 关军锋, 秦南南, 杨怡靖铭, 刘雪艳, 吴斌. 茉莉酸甲酯对红地球葡萄采后贮藏品质和病害的影响[J]. 新疆农业科学, 2022, 59(1): 190-198. |
[15] | 王海琪, 庞胜群, 杜红艳, 吉雪花, 马海翔, 张小燕. 加工番茄亲代与子代生长期内源激素含量与植株生长相关性分析[J]. 新疆农业科学, 2021, 58(1): 40-48. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||